
TrackOpt Siegen 2026

TrackOpt vertex with GNN

V. Kostyukhin

Siegen university

V. Kostyukhin 1/7 TrackOpt Siegen 2026

Reminder

Solution idea:

1. Create a track-track compatibility graph using a priory physics knowledge, i.e. explicitly calculate

 a point of closest approach of the 2 tracks in 3D space and the track/vertex parameters at this point.

2. Based on this information, estimate a probability (GNN) that a given 2-track vertex is real

3. Use LMC algorithm to partition this graph with weighted edges

Problem:
Having a set of tracks find all vertices (track production points)

V. Kostyukhin 2/7 TrackOpt Siegen 2026

Graph

Example:

6 tracks (nodes)

7 possible 2-track vertices (edges)

Node vector of features(track parameters): td0, tZ, tPhi, tEta, tQoP, tTheta, tChi2, tNDoF, tCovD0, tCovZ,tCovD0Z, tSignif

Edge vector of features(2-track vertex): vChi2, vX, vY, vZ, vcovXX, vcovXY, vcovYY, vcovXZ, vcovYZ, vcovZZ, vsumPt, vEta,

vPhi, vDZ, massPiPi, vtrue, vCharge, isGamma, isKs, isLambda + truth_label

1

2

3

4 5

6

Prepared graphs saved in ROOT format (~1.5mb/ev, ~1400nodes/ev, ~26k edges/ev)

For the moment, to save CPU, for tracks closer that 3σ to the beamline no real vertex fit is done.

Compatibility is calculated based on Z track position on the beamline (1D fit, like in the PV finding paper).

V. Kostyukhin 3/7 TrackOpt Siegen 2026

Edge weights with DGL

Edge weights estimation is implemented in DGL

1) Node_hidden_state = NN{Concat(Node_features, Mean(Edge_features)}

2) Edge_weight = NN{ Concat(Node_hidden_state_i, Edge_features, Node_hidden_state_j)}

3) Node_hidden_state = NN{Concat(Node_features, Weighted_Mean(Edge_features)}

4) Upd_Edge_weight = NN{ Concat(Node_hidden_state_i, Edge_features, Node_hidden_state_j)}

Steps (3),(4) happened to be not needed, final weights are practically the same.

Loss – binary cross-entropy (classification)

Activations – Mish + Sigmoid to get probability

V. Kostyukhin 4/7 TrackOpt Siegen 2026

DGL results (preliminary)

AUC(train)= 0.8265. AUC(test)= 0.8294 for both primary and secondary edges(aka. 2-track vertices)

For comparison - XGBoost classification of edges based on the same edge features: AUC ~ 0.75

Number of edgesNumber of nodes

Training: 200 epoch, 100 graphs(events) batch train/test

 loss= 0.5098(train), 0.5080(test) – no overtraining

Train

Test

Loss

V. Kostyukhin 5/7 TrackOpt Siegen 2026

LMC after DGL

For LMC: weight=WGTGNN-0.5

Ncluster (size>1) Nsingle_track
Cluster size

V. Kostyukhin 6/7 TrackOpt Siegen 2026

LMC metrics

Fraction of correctly resolved true edges

Variation of information Mutual information Rand index

V. Kostyukhin 7/7 TrackOpt Siegen 2026

Conclusions and next steps

1) Basic machinery for data processing is created and works, although
requires polishing/optimisation

2) R&D on GNN layer versions, LMC parameters, constraints, informative

problem-dependent metrics, etc. can be started.

3) Current technical problems(work in progress):

a. DGL doesn’t export GNN models directly (ONNX?).

PyTorch backend/export?

b. UPROOT buffer sizes – limit number of graphs for saving

c. …

	Slide 0
	Slide 1: Reminder
	Slide 2: Graph
	Slide 3: Edge weights with DGL
	Slide 4: DGL results (preliminary)
	Slide 5: LMC after DGL
	Slide 6: LMC metrics
	Slide 7: Conclusions and next steps

