

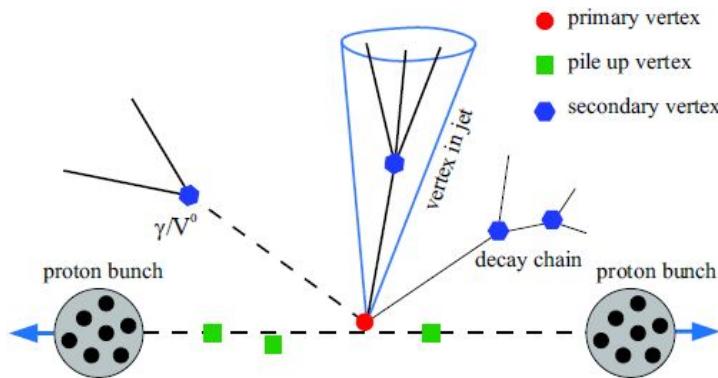
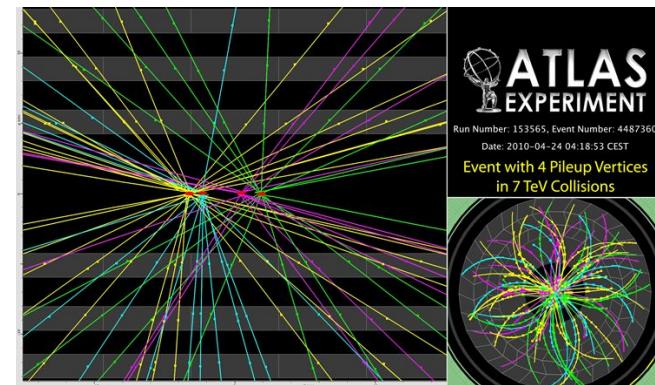
Secondary Vertexing using HyperGraph

Diptaparna Biswas

HEP
CPPS
Experimental
High Energy Physics
Center for Particle
Physics Siegen

TrackOpt meeting
16th January 2025

Recap: Primary vertexing vs. secondary vertexing

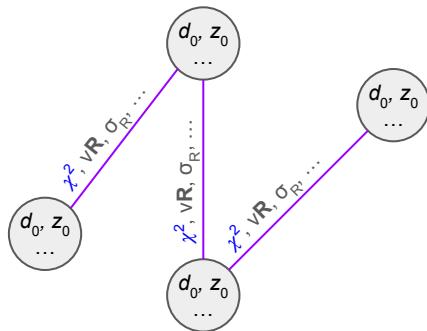


- For our purpose, we call both “**primary vertex**” and “**pileup vertex**” inclusively as the **primary vertices**.
- Each track in an event is associated to one of these **primary vertices**.
 - This includes tracks originating from the **secondary vertices**.

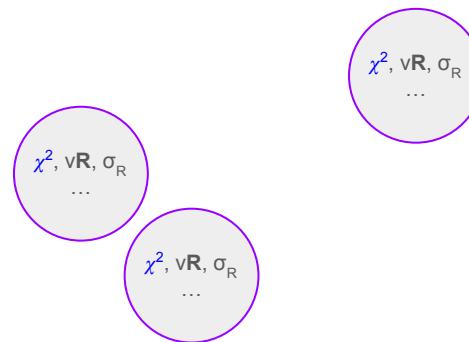
Recap: Framing vertex finding as a clustering problem

- Most obvious approach: A vertex is a cluster of **tracks**.
 - Consider the tracks as nodes.
 - Track params are node features.
 - Different quantities from track-pair Billoir fit can be taken as edge features.
 - This is the chosen strategy for MaskFormer as well as the previous primary-vertexing work.
- New proposal: A vertex is a cluster of one or more **two-track vertices**.
 - Each track-pair satisfying **Billoir fit** is a node (in a Point Cloud).
 - Different quantities from track-pair Billoir fit are node features.
 - No edge feature. The Euclidean distance might be taken as one.
 - Immediately offers us a bounding box heuristic.
 - For two-track vertices, the performance is guaranteed to be at least as good as Billoir fit.
 - Trivial to implement using `sklearn.cluster.DBSCAN` to establish a baseline.
 - Useable with better clustering techniques (e.g. lifted multicut graph partitioning)

Recap: Framing vertex finding as a clustering problem

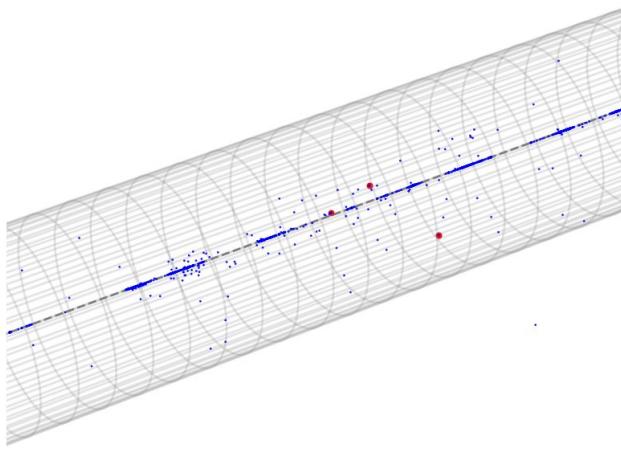


- Each track is a node.
- Each edge is a two-track vertex from Billoir fit.

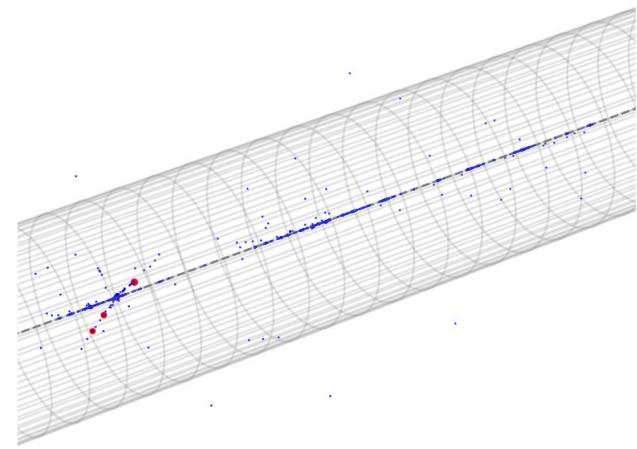


- Each node is a two-track vertex from Billoir fit.
- Point Cloud based on vR .

Recap: Visualizing vertices clusters in ODD



Event: 0



Event: 94

From Point Cloud to HyperGraph

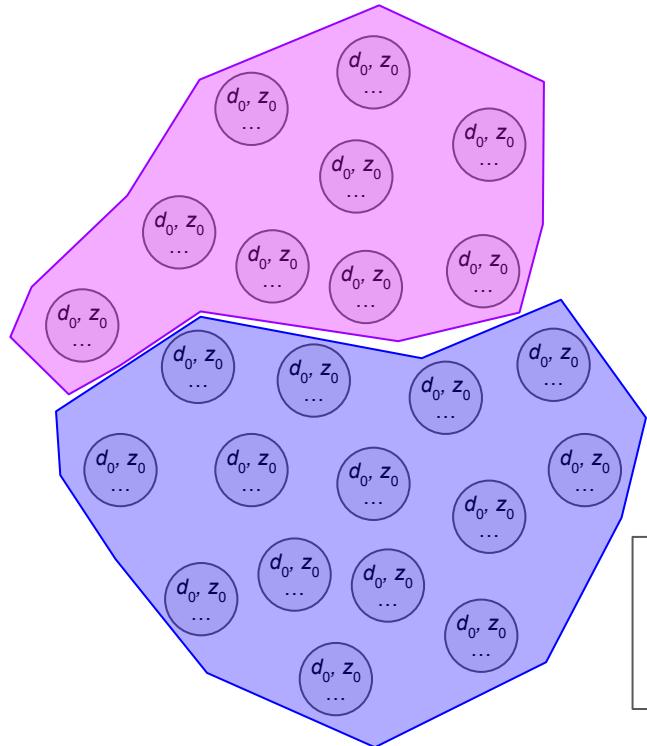
- Point Clouds (of two-track vertices) are nice for Physical intuition, providing a simple bounding-box heuristic enabling us to use any clustering method.
- But they have a significant caveat: Individual track features are lost!
 - No way to improve upon Billoir fit for estimating track-pair compatibility.
 - Theoretically one can append the features of the two tracks to the vertex-level features.
 - But this looks like more like a hack (might work nevertheless).
- Let's try to find some alternative way to represent the problem.

From Graph (of tracks) to HyperGraph

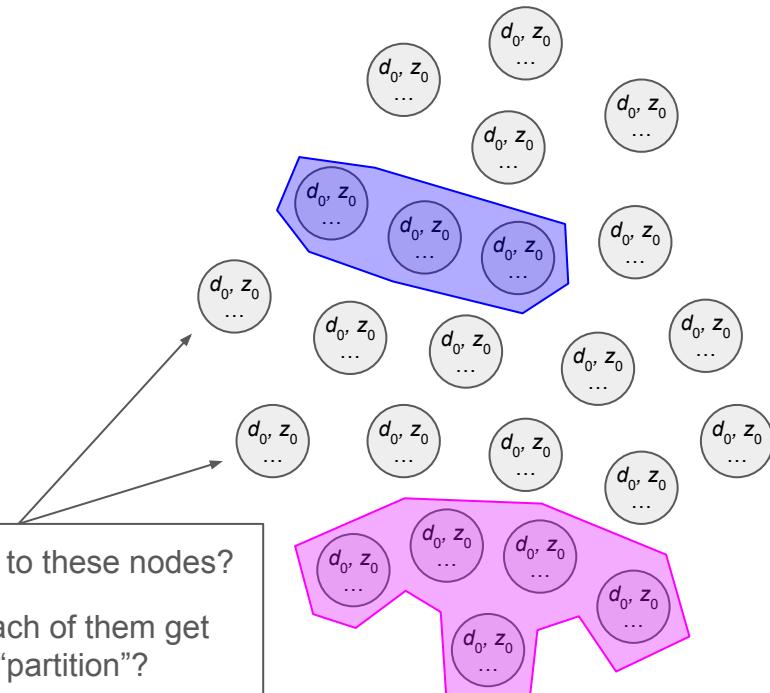
- Secondary vertexing is *very different* from primary vertexing!

Primary Vertexing	Secondary Vertexing
Each track in an event belong to one of the PVs.	Most of the tracks in an event doesn't belong to any SV.
A given track always belongs to exactly one PV (after removing ambiguity).	Albeit rare, a given track can belong to multiple SVs.
Suitable to be framed as graph partitioning.	Need to think beyond graph partitioning.

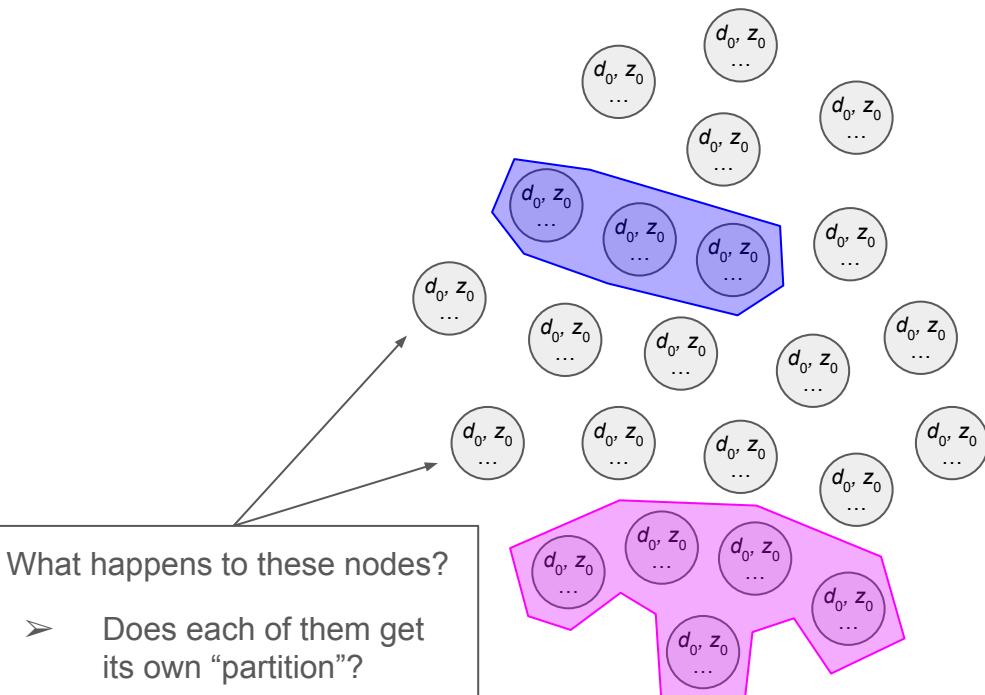
SV finding is not really a graph partitioning problem



What happens to these nodes?
➤ Does each of them get its own “partition”?



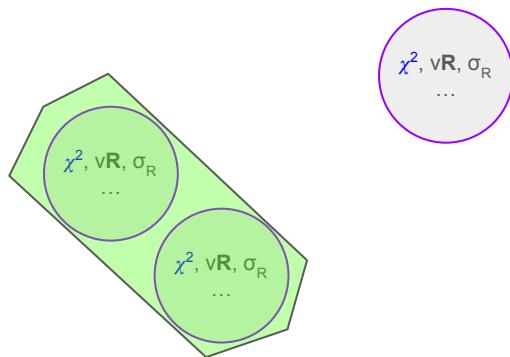
From Graph (of tracks) to HyperGraph



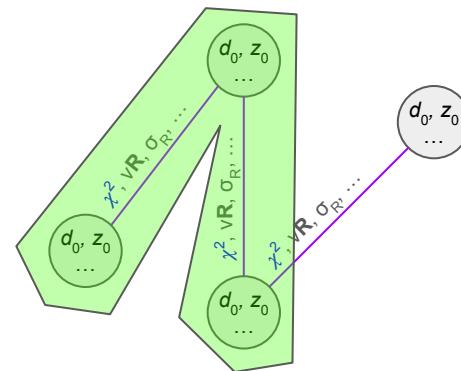
This issue disappears as soon as we frame it as a **HyperEdge prediction** problem:

- A hyperedge can connect any number of nodes.
- A node can belong to multiple hyperedges.
- There can be isolated nodes.

From Point Cloud to HyperGraph

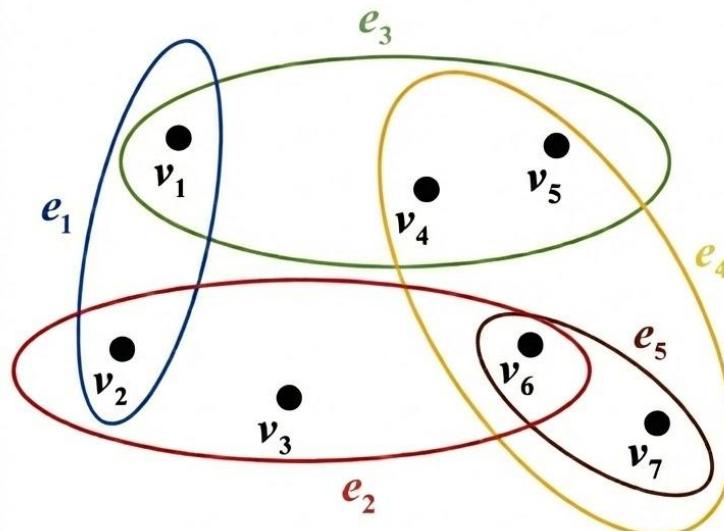


Combine two nodes to form a “cluster”.
➤ Using some node feature(s), e.g. vR .



Combine two edges to form a HyperEdge.
➤ Using some edge feature(s), e.g. vR .

HyperGraph representation: Incidence matrix



	e_1	e_2	e_3	e_5
v_1	1	0	1	0
v_2	1	1	0	0
v_3	0	1	0	0
v_4	0	0	1	0
v_5	0	0	1	0
v_6	0	1	0	1
v_7	0	0	0	1

H
Incidence matrix

	d_0	z_0	θ	ϕ	q/p
v_1					
v_2					
v_3					
v_4					
v_5					
v_6					
v_7					

X
Features matrix

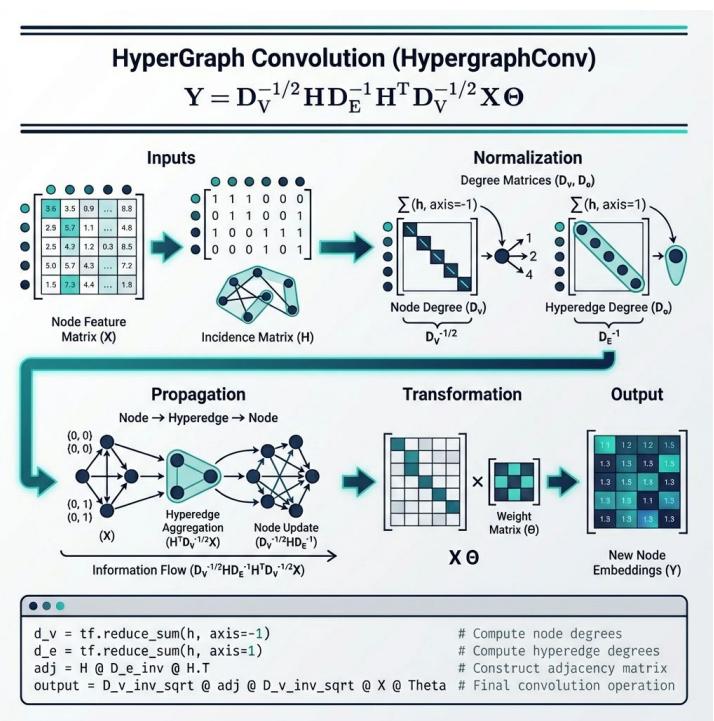
$$H_{ij} = \begin{cases} 1, & \text{if } v_i \in e_j \\ 0, & \text{otherwise.} \end{cases}$$

Message passing on HyperGraph: generalization of GCN

$$\mathbf{X}^{(l+1)} = \sigma \left(\mathbf{D}_V^{-1/2} \mathbf{H} \mathbf{W} \mathbf{D}_E^{-1} \mathbf{H}^T \mathbf{D}_V^{-1/2} \mathbf{X}^{(l)} \Theta \right)$$

Where:

- $\mathbf{X}^{(l)}$ is the input node features.
- \mathbf{H} is the **Incidence Matrix** (defining the hypergraph structure).
- \mathbf{D}_V and \mathbf{D}_E are degree matrices for vertices and hyperedges.
- \mathbf{W} is the hyperedge weight matrix (assumed to be Identity \mathbf{I} in this specific code implementation).
- Θ is the learnable weight matrix (the filter).



Message passing on HyperGraph: The “Clique Expansion”

$$\mathbf{A} = \mathbf{H} \mathbf{D}_E^{-1} \mathbf{H}^T$$

Intuition:

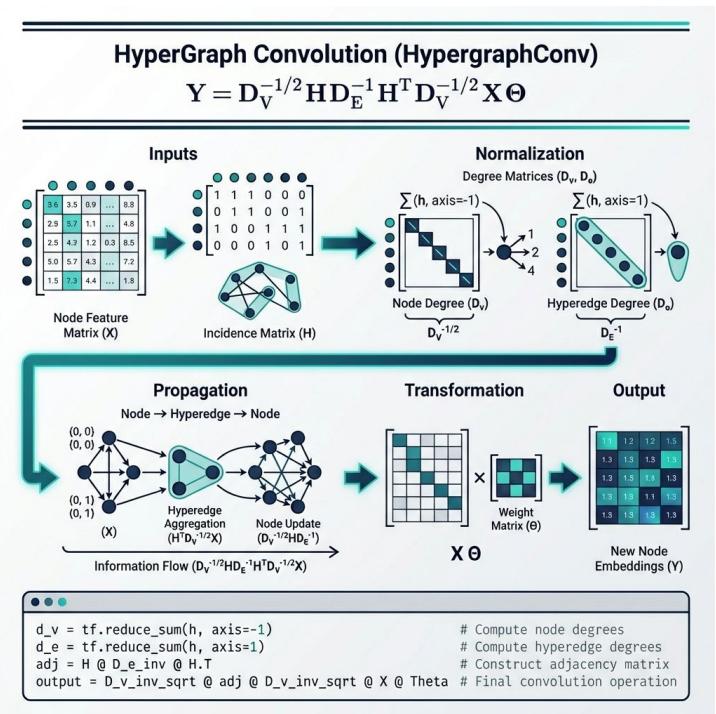
1. $\mathbf{H}^T \mathbf{X}$: Aggregates information from Nodes \rightarrow Hyperedges.
2. \mathbf{D}_E^{-1} : Normalizes this information by the size of the hyperedge (averaging).
3. $\mathbf{H}(\dots)$: Distributes information from Hyperedges \rightarrow Nodes.

This effectively converts the hypergraph into a weighted graph where two nodes are connected if they share a hyperedge, weighted by the size of that hyperedge.

Symmetric normalization: $\hat{\mathbf{A}} = \mathbf{D}_V^{-1/2} (\mathbf{H} \mathbf{D}_E^{-1} \mathbf{H}^T) \mathbf{D}_V^{-1/2}$

$\mathbf{Y} = \hat{\mathbf{A}} \mathbf{X} \Theta + \mathbf{b}$ ($\mathbf{X} \Theta$ can be replaced with a DNN)

$\mathbf{X}' = \sigma(\mathbf{Y})$



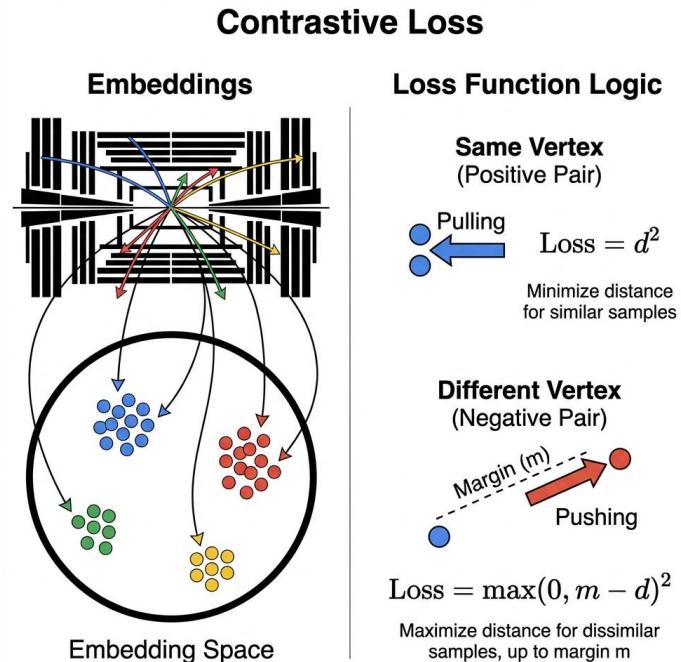
The SV finding algorithm using HyperGraph convolution

- Start with a HyperGraph of tracks as nodes.
 - Initial incidence matrix is formed by z_0 binning.
 - Message passing through the hyperedges:
 - Updates the node features.
 - Updates the incidence matrix.
- Final output: Two possibilities
 1. The model outputs the final incidence matrix.
 - Can be immediately used to get the SVs.
 - Constructing the loss function is a bit tricky.
 2. The model transforms the node features to an abstract vector space where clustering is possible.
 - “Constructive loss” can be used to train this.



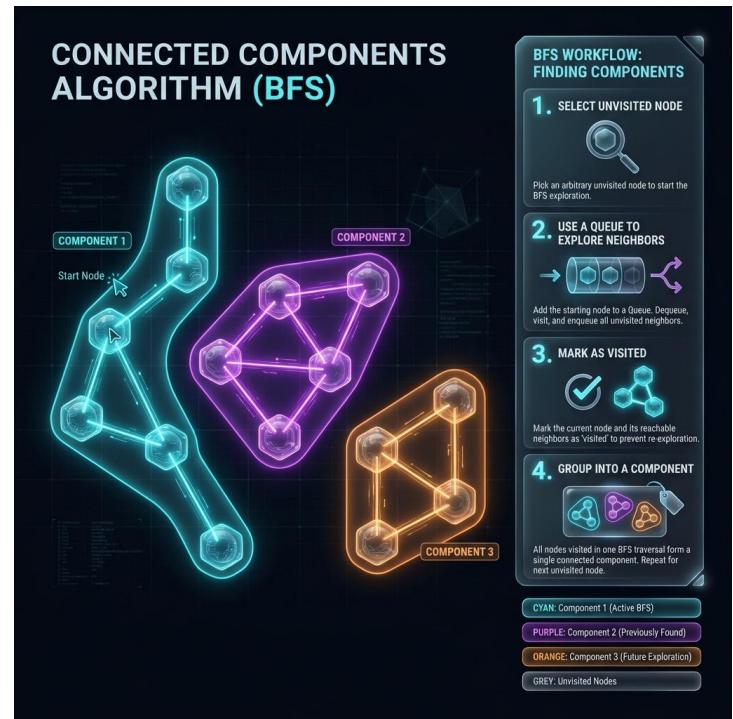
Clustering tracks using “contrastive loss”

- The HyperGraph model transforms the node features into 16-dim vectors.
- The model learns a *transformation*, which:
 - Minimizes the (Euclidean) distance among the nodes (tracks) from the same cluster (vertex).
 - Maximizes the distance between two nodes from different clusters, upto a margin m (here, $m=1.0$).
- Any standard clustering algorithm can be used to find the clusters.
 - A simple “connected components” algorithm, implemented as a BFS, has been used for this.



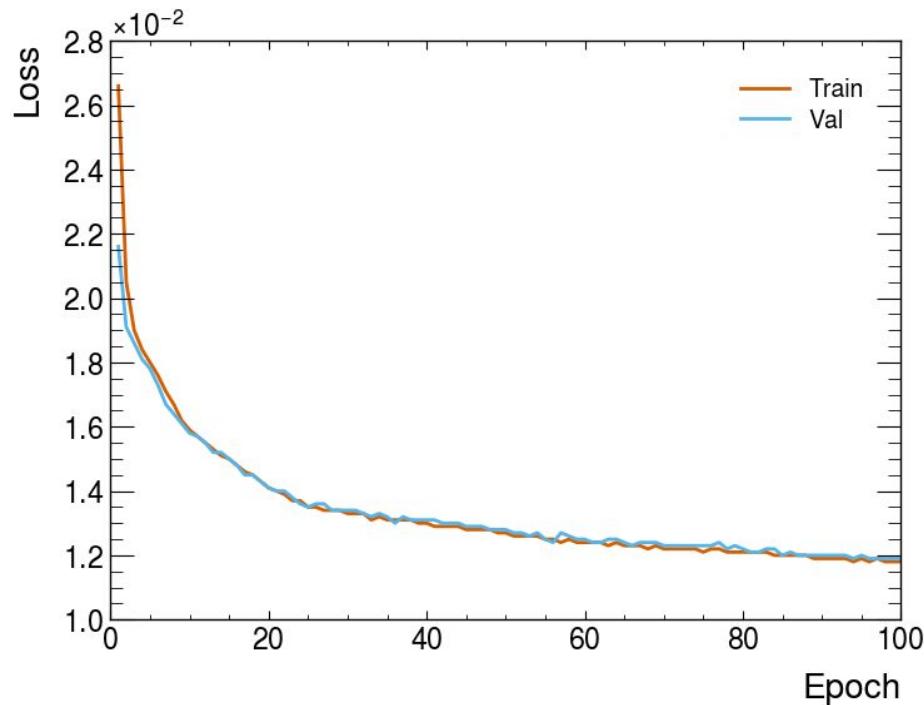
Finding the clusters

- The following simple steps has been used to find the clusters:
 1. The model outputs a 16-dim vector for each node.
 2. Calculate pairwise distances in that 16-dim space.
 3. Put a threshold (0.5, as $m=1.0$) on those distances to calculate the (boolean) adjacency matrix.
 4. Apply the “connected components” algorithm.
- DBSCAN could also be used for this.
 - Although it would likely be an overkill.



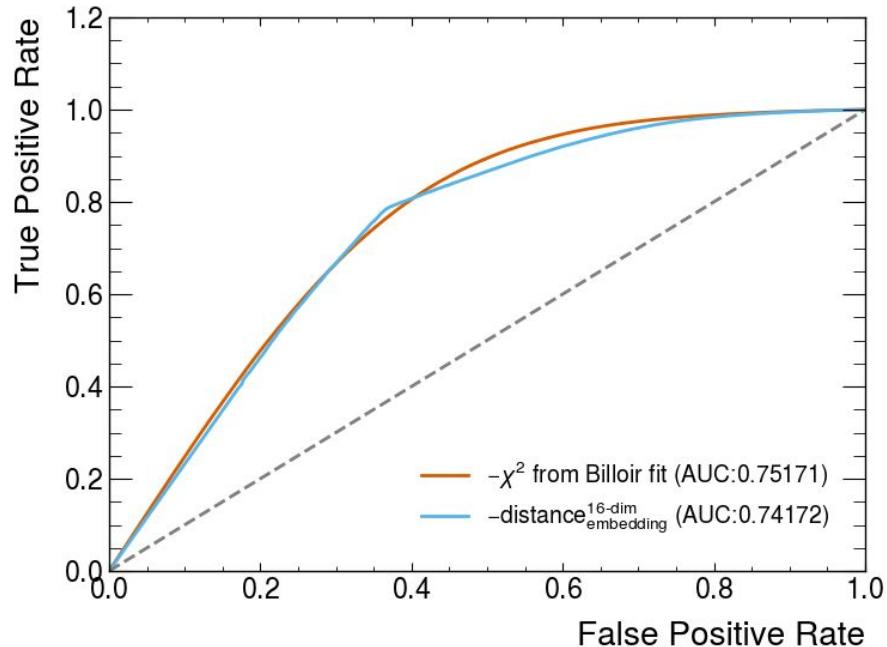
Training setup

- Using a dataset of 6381 events.
 - Simulated ttbar events using Pythia8 and Geant4 (for ODD with ACTS).
 - 80:20 train/val split.
- Sequential model:
 - Layers:
 - HypergraphConv(64, "relu")
 - HypergraphConv(32, "relu")
 - Dense(16, activation=None)
 - Input padding:
 - MAX_TRACKS = 1000
 - MAX_VERTICES = 200



Results

- For initial performance estimate:
 - The model is compared with Billoir fit for track-pair compatibility task.
 - A binary classification task.
 - Performance of this HyperGraph model is already similar to Billoir fit.
- Points to note:
 - The HyperGraph model doesn't use any information from Billoir fit.
 - Uses only 5 track features: d_0, z_0, θ, ϕ and q/p .



Next steps

- Replace the matrix multiplication between the feature matrix and the matrix of learnable parameters (i.e. $\mathbf{x}\theta$) with a small feed-forward network.
- Use attention mechanism (instead of convolution) for message passing.
- Modify the model architecture and loss function so that the model can directly output the final incidence matrix (i.e. hyperedges).
- Currently the model uses only 5 track features:
 - Investigate whether including more features improves performance.
 - Incorporate the quantities from Billoir fit as model input.

Summary

- Secondary vertexing can be expressed as a HyperEdge prediction task.
 - Instead of graph partitioning, which is more suitable for primary vertexing.
- A preliminary convolution-based HyperGraph model is developed.
 - Doesn't use any information from Billoir fit.
 - Uses only 5 track features as input.
 - As comparison, Billoir fit additionally uses the (co)variances of the 5 track parameters.
 - Performance is already similar to Billoir fit for track-pair compatibility prediction.
 - Lots of room for improvement in the HyperGraph model (e.g. applying attention mechanism).
- Currently, the model maps the tracks to a 16-dim embedding space.
 - Using a contrastive loss, where the secondary vertices are found as clusters.
 - Can be modified to directly predict the vertices (hyperedges) as incidence matrix.