
Secondary Vertexing using HyperGraph

Diptaparna Biswas

TrackOpt meeting
16th January 2025



Recap: Primary vertexing vs. secondary vertexing

● For our purpose, we call both “primary vertex” and “pileup vertex” inclusively 
as the primary vertices.

● Each track in an event is associated to one of these primary vertices.
➢ This includes tracks originating from the secondary vertices.
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Recap: Framing vertex finding as a clustering problem

● Most obvious approach: A vertex is a cluster of tracks.
➢ Consider the tracks as nodes.

■ Track params are node features.
■ Different quantities from track-pair Billoir fit can be taken as edge features.

➢ This is the chosen strategy for MaskFormer as well as the previous primary-vertexing work.

● New proposal: A vertex is a cluster of one or more two-track vertices.
➢ Each track-pair satisfying Billoir fit is a node (in a Point Cloud).

■ Different quantities from track-pair Billoir fit are node features.
■ No edge feature. The Euclidean distance might be taken as one.

➢ Immediately offers us a bounding box heuristic.
➢ For two-track vertices, the performance is guaranteed to be at least as good as Billoir fit.
➢ Trivial to implement using sklearn.cluster.DBSCAN to establish a baseline.

■ Useable with better clustering techniques (e.g. lifted multicut graph partitioning)
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Recap: Framing vertex finding as a clustering problem
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➢ Each track is a node.

➢ Each edge is a two-track 
vertex from Billoir fit.

➢ Each node is a two-track 
vertex from Billoir fit.

➢ Point Cloud based on vR.
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Recap: Visualizing vertices clusters in ODD

Event: 0 Event: 94
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From Point Cloud to HyperGraph

● Point Clouds (of two-track vertices) are nice for Physical intuition, providing a 
simple bounding-box heuristic enabling us to use any clustering method.

● But they have a significant caveat: Individual track features are lost!
➢ No way to improve upon Billoir fit for estimating track-pair compatibility.

■ Theoretically one can append the features of the two tracks to the vertex-level features.
● But this looks like more like a hack (might work nevertheless).

● Let’s try to find some alternative way to represent the problem.
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From Graph (of tracks) to HyperGraph

● Secondary vertexing is very different from primary vertexing!

Primary Vertexing Secondary Vertexing

Each track in an event belong to one of the 
PVs.

Most of the tracks in an event doesn’t 
belong to any SV.

A given track always belongs to exactly one 
PV (after removing ambiguity).

Albeit rare, a given track can belong to 
multiple SVs.

Suitable to be framed as graph partitioning. Need to think beyond graph partitioning.
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SV finding is not really a graph partitioning problem
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What happens to these nodes?

➢ Does each of them get 
its own “partition”?
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From Graph (of tracks) to HyperGraph
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What happens to these nodes?

➢ Does each of them get 
its own “partition”?

This issue disappears as soon as we 
frame it as a HyperEdge prediction 
problem:

➢ A hyperedge can connect any 
number of nodes.

➢ A node can belong to multiple 
hyperedges.

➢ There can be isolated nodes.
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From Point Cloud to HyperGraph
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Combine two nodes to form a “cluster”.
➢ Using some node feature(s), e.g. vR.
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Combine two edges to form a HyperEdge.
➢ Using some edge feature(s), e.g. vR.
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HyperGraph representation: Incidence matrix
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Message passing on HyperGraph: generalization of GCN
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Message passing on HyperGraph: The “Clique Expansion”

Symmetric normalization:

(      can be replaced with a DNN)
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The SV finding algorithm using HyperGraph convolution

● Start with a HyperGraph of tracks as nodes.
➢ Initial incidence matrix is formed by z0 binning.
➢ Message passing through the hyperedges:

■ Updates the node features.
■ Updates the incidence matrix.

● Final output: Two possibilities
1. The model outputs the final incidence matrix.

■ Can be immediately used to get the SVs.
■ Constructing the loss function is a bit tricky.

2. The model transforms the node features to an 
abstract vector space where clustering is possible.

■ “Construstive loss” can be used to train this.

14



Clustering tracks using “construstive loss”

● The HyperGraph model transforms the 
node features into 16-dim vectors.

● The model learns a transformation, which:
➢ Minimizes the (Euclidean) distance among the 

nodes (tracks) from the same cluster (vertex).
➢ Maximizes the distance between two nodes from 

different clusters, upto a margin m (here, m=1.0).
● Any standard clustering algorithm can be 

used to find the clusters.
➢ A simple “connected components” algorithm, 

implemented as a BFS, has been used for this.
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Finding the clusters

● The following simple steps has been used 
to find the clusters:
1. The model outputs a 16-dim vector for each node.
2. Calculate pairwise distances in that 16-dim space.
3. Put a threshold (0.5, as m=1.0) on those distances 

to calculate the (boolean) adjacency matrix.
4. Apply the “connected components” algorithm.

● DBSCAN could also be used for this.
➢ Although it would likely be an overkill.
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Training setup

● Using a dataset of 6381 events.
➢ Simulated ttbar events using Pythia8 

and Geant4 (for ODD with ACTS).
➢ 80:20 train/val split.

● Sequential model:
➢ Layers:

■ HypergraphConv(64, "relu")
■ HypergraphConv(32, "relu")
■ Dense(16, activation=None)

➢ Input padding:
■ MAX_TRACKS = 1000
■ MAX_VERTICES = 200
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Results

● For initial performance estimate:
➢ The model is compared with Billoir 

fit for track-pair compatibility task.
■ A binary classification task.

➢ Performance of this HyperGraph 
model is already similar to Billoir fit.

● Points to note:
➢ The HyperGraph model doesn’t use 

any information from Billoir fit.
➢ Uses only 5 track features:

d0, z0, 𝛳, 𝜙 and q/p.
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Next steps

● Replace the matrix multiplication between the feature matrix and the matrix of 
learnable parameters (i.e.      ) with a small feed-forward network.

● Use attention mechanism (instead of convolution) for message passing.

● Modify the model architecture and loss function so that the model can directly 
output the final incidence matrix (i.e. hyperdeges).

● Currently the model uses only 5 track features:

➢ Investigate whether including more features improves performance.

➢ Incorporate the quantities from Billoir fit as model input.
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Summary

● Secondary vertexing can be expressed as a HyperEdge prediction task.
➢ Instead of graph partitioning, which is more suitable for primary vertexing.

● A preliminary convolution-based HyperGraph model is developed.
➢ Doesn’t use any information from Billoir fit.
➢ Uses only 5 track features as input.

■ As comparison, Billoir fit additionally uses the (co)variances of the 5 track parameters.
➢ Performance is already similar to Billoir fit for track-pair compatibility prediction.
➢ Lots of room for improvement in the HyperGraph model (e.g. applying attention mechanism).

● Currently, the model maps the tracks to a 16-dim embedding space.
➢ Using a constrastive loss, where the secondary vertices are found as clusters.
➢ Can be modified to directly predict the vertices (hyperedges) as incidence matrix.
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