= | }X|X

Q
A

|

P

XD

B (X

r+

Secondary Vertexing using HyperGraph

Diptaparna Biswas

‘ P Experimental S T RSensing and Sensibility
i 13 High Energy Physics 3 o i
Universitat e A i S 2

i Center for Partiel =
Siegen PPS Srrfarrrde @¢ @@

TrackOpt meeting
16" January 2025

Recap: Primary vertexing vs. secondary vertexing

@ primary vertex
B pile up vertex

@ secondary vertex

~

'{;"V0 > ~

decay chain

proton bunch proton bunch

e Forour purpose, we call both “primary vertex” and “pileup vertex” inclusively
as the primary vertices.

Y/

e Each track in an event is associated to one of these primary vertices.
> This includes tracks originating from the secondary vertices.

Recap: Framing vertex finding as a clustering problem

e Most obvious approach: A vertex is a cluster of tracks.

> Consider the tracks as nodes.
m Track params are node features.
m Different quantities from track-pair Billoir fit can be taken as edge features.
> This is the chosen strategy for MaskFormer as well as the previous primary-vertexing work.

e New proposal: A vertex is a cluster of one or more two-track vertices.
> Each track-pair satisfying Billoir fit is a node (in a Point Cloud).
m Different quantities from track-pair Billoir fit are node features.
m No edge feature. The Euclidean distance might be taken as one.
> Immediately offers us a bounding box heuristic.
> For two-track vertices, the performance is guaranteed to be at least as good as Billoir fit.
> Trivial to implement using sklearn.cluster.DBSCAN to establish a baseline.
m Useable with better clustering techniques (e.qg. lifted multicut graph partitioning)

Recap: Framing vertex finding as a clustering problem

> Each track is a node. > Each node is a two-track

> Each edge is a two-track vertex from Billoir fit.

vertex from Billoir fit. > Point Cloud based on vR.

Recap: Visualizing vertices clusters in ODD

.”*_

Event: O

Event: 94

From Point Cloud to HyperGraph

e Point Clouds (of two-track vertices) are nice for Physical intuition, providing a
simple bounding-box heuristic enabling us to use any clustering method.

e But they have a significant caveat: Individual track features are lost!
> No way to improve upon Billoir fit for estimating track-pair compatibility.
m Theoretically one can append the features of the two tracks to the vertex-level features.
e But this looks like more like a hack (might work nevertheless).

e Let’s try to find some alternative way to represent the problem.

From Graph (of tracks) to HyperGraph

e Secondary vertexing is very different from primary vertexing!

Primary Vertexing

Each track in an event belong to one of the
PVs.

A given track always belongs to exactly one
PV (after removing ambiguity).

Suitable to be framed as graph partitioning.

Secondary Vertexing

Most of the tracks in an event doesn’t
belong to any SV.

Albeit rare, a given track can belong to
multiple SVs.

Need to think beyond graph partitioning.

SV finding is not really a graph partitioning problem

What happens to these nodes?

> Does each of them get
its own “partition”?

From Graph (of tracks) to HyperGraph

This issue disappears as soon as we
frame it as a HyperEdge prediction
problem:

> A hyperedge can connect any
number of nodes.

> Anode can belong to multiple
hyperedges.

> There can be isolated nodes.

What happens to these nodes?

> Does each of them get
its own “partition”?

From Point Cloud to HyperGraph

Combine two nodes to form a “cluster”.
> Using some node feature(s), e.g. VR.

Combine two edges to form a HyperEdge.
> Using some edge feature(s), e.g. VR.

10

HyperGraph representation: Incidence matrix

b3 €11€2(€3|%s do|zo| 0 q/p
vii1]|o|1|o0]| |wv
v,{1]1]|0]|0 v,
vilo|1]|o0fo]| |v
vofo]1]|0]| |v,
vs|lofo[1]0]| |vs
velo|1]|o|1| |vs
v,/0(0(0 (1 v,
H X

Incidence matrix

1, if v; € e;
0, otherwise.

Features matrix

11

Message passing on HyperGraph: generalization of GCN

-1/2 — -1/2
XtV = ¢ (D,*"HWD;'H'D,*x"0)

Where:
e XWisthe input node features.
o His the Incidence Matrix (defining the hypergraph structure).
e Dy and Dg are degree matrices for vertices and hyperedges.

o W is the hyperedge weight matrix (assumed to be Identity I in this specific code

implementation).

o O s the learnable weight matrix (the filter).

HyperGraph Convolution (HypergraphConv)
Y = D;'/?HD;'H'D;/2X©

Inputs Normalization
e'eie o0 " : : ? : : : Degree Matrices (D, D,)
h, axis=-1 h, axis=1

: 36 35[0 .. |5 sttt .Z() .Z()\

29 |87111] ... |48
o| [[ve[wa[es *:;gg:“\#’ ive
®|[s0s7[as] 72 ® i a4 i
@ |1s[73] s [1s ® ®

Node Degree (D) Hyperedge Degree (D,)
Node Feature
Matrix (X) Incidence Matrix (H) D12 [

Propagation Transformation
Node —> Hyperedge —> Node
o o \.
:> wp |t x [H] ES
©,1 E
o, 1) Hyperedge 1 Weight
Aggregation Node Upda(e Matrix ()
(HTDy72) (Dy"2HD¢™)
A X0 New Node
Information Flow (D 2HD¢ 'H™D, 2X) Embeddings (Y)
(o000)
d_v = tf.reduce_sum(h, axis=-1) # Compute node degrees
d_e = tf.reduce_sum(h, axis=1) # Compute hyperedge degrees
adj = H @ D_e_inv @ H.T # Construct adjacency matrix

output = D_v_inv_sqrt @ adj @ D_v_inv_sqrt @ X @ Theta # Final convolution operation
J

12

Message passing on HyperGraph: The “Clique Expansion”

A =HD_'H”
Intuition:
1. HTX: Aggregates information from Nodes — Hyperedges.
2. D;le Normalizes this information by the size of the hyperedge (averaging).

3. H(...): Distributes information from Hyperedges — Nodes.

This effectively converts the hypergraph into a weighted graph where two nodes are
connected if they share a hyperedge, weighted by the size of that hyperedge.

Symmetric normalization: A = D,"*(HD;'H”)D, "

Y =AX0+b (XO can be replaced with a DNN)

X' = o(Y)

HyperGraph Convolution (HypergraphConv)
Y = D;'/?HD;'H'D;/2X©

Inputs

86[35(09| ... |88

298711 ... |48

(<]
]
°
25(43] 120385 *.

s50s7|as|..|72

c-o0-'0@
co-==@
co=-@

ee
00
00
35

1810

manso0@

15 (28] 44| .. [1:

Node Feature
Matrix (X) Incidence Matrix (H)

Propagation
Node —> Hyperedge —> Node

@ @/{%\ il

Hyperedge
Aggregation Node Upda(e
(H™D,"2X) (Dy"2HD ")

~

-

Normalization
Degree Matrices (D, D,)

> (h, axis= 1) > (h, axis=1)

= o)

Node Degree (D) Hyperedge Degree (D,)
H—I
D 1/1 DE-'I

Transformation Output

Information Flow (D 2HD¢ 'H™D, 2X)

X0 New Node
Embeddings (Y)

@/

N\

d_v = tf.reduce_sum(h, axis=-1)
d_e = tf.reduce_sum(h, axis=1)
adj = H @ D_e_inv @ H.T
outp

B

Compute node degrees
Compute hyperedge degrees
Construct adjacency matrix

ut = D_v_inv_sqrt @ adj @ D_v_inv_sqrt @ X @ Theta # Final convolution operatlon

13

The SV finding algorithm using HyperGraph convolution

Start with a HyperGraph of tracks as nodes.

>

Initial incidence matrix is formed by z binning.
> Message passing through the hyperedges:

Updates the node features.
Updates the incidence matrix.

Final output: Two possibilities
The model outputs the final incidence matrix.

1.

2.

Can be immediately used to get the SVs.
Constructing the loss function is a bit tricky.

The model transforms the node features to an

abstract vector space where clustering is possible.

“Construstive loss” can be used to train this.

Sliding Window Hyperedge Construction

z
-147 i}

Bin 2
[-149, -147]
-148

/

® Track (Z=-148.5) Incidence
Matrix Fragment

149 - \ Binl Bin2

=l Track | & 1

Bin 1

-150 - [-150, -148]

14

Clustering tracks using “construstive loss”

e The HyperGraph model transforms the Contrastive Loss
node features into 16-dim vectors. Embeddings kioss Tnetiom Loge
e The model learns a transformation, which: e
> Minimizes the (Euclidean) distance among the ol L . _ 2
nodes (tracks) from the same cluster (vertex). o L
> Maximizes the distance between two nodes from BRI R
different clusters, upto a margin m (here, m=1.0). Different Vertex
e Any standard clustering algorithm can be R
. s ®
used to find the clusters. T i
> Asimple “connected components” algorithm, © \
implemented as a BFS, has been used for this. L;asjn:ei:xm(gors;mi)r
Embedding Space samples, up to margin m

15

Finding the clusters

The following simple steps has been used

to find the clusters:
1. The model outputs a 16-dim vector for each node.
2. Calculate pairwise distances in that 16-dim space.
3. Put athreshold (0.5, as m=1.0) on those distances
to calculate the (boolean) adjacency matrix.
4. Apply the “connected components” algorithm.

DBSCAN could also be used for this.

> Although it would likely be an overkill.

CONNECTED COMPONENTS
ALGORITHM (BFS)

COMPONENT 1

Start Node 3

i J

[BFS WORKFLOW:
FINDING COMPONENTS

1 . SELECT UNVISITED NODE

2 USE A QUEUETO
* EXPLORE NEIGHBORS

3. MARKAS VISITED

v &

16

Training setup

e Using a dataset of 6381 events.
> Simulated ttbar events using Pythia8
and Geant4 (for ODD with ACTS).
> 80:20 train/val split.

e Sequential model:

> Layers:
m HypergraphConv(64, "relu")
m HypergraphConv(32, "relu")
m Dense(16, activation=None)

> Input padding:
m MAX_TRACKS = 1000
m MAX VERTICES = 200

0
[
(@)
—

2.8
2.6

no
o

\] A OO 0 o N
© UL L L L s s = = e o o

—_
(=]

X
-

| |
n

et e e
|

—— Train
—— Val

20 40 60 80

alllIll|lIIIlllllllllllllllllllllll
o

Epoch

17

Results

e For initial performance estimate:
> The model is compared with Billoir
fit for track-pair compatibility task.
m Abinary classification task.
> Performance of this HyperGraph
model is already similar to Billoir fit.

e Points to note:
> The HyperGraph model doesn’t use
any information from Billoir fit.
> Uses only 5 track features:
dy, Z,, O, ¢ and q/p.

True Positive Rate

1.2

1.0

0.8

0.6

0.4

0.2

0.8.

lIIIIIIlII|III|III|III

—— —distance 5ihyn (AUC:0.74172)

-x? from Billoir fit (AUC:0.75171)

\
III|II||III|III|III\III

04

06 08 1.0
False Positive Rate

18

Next steps

e Replace the matrix multiplication between the feature matrix and the matrix of
learnable parameters (i.e. X0) with a small feed-forward network.

e Use attention mechanism (instead of convolution) for message passing.

e Modify the model architecture and loss function so that the model can directly
output the final incidence matrix (i.e. hyperdeges).

e Currently the model uses only 5 track features:

> Investigate whether including more features improves performance.

> Incorporate the quantities from Billoir fit as model input.

19

Summary

e Secondary vertexing can be expressed as a HyperEdge prediction task.
> Instead of graph partitioning, which is more suitable for primary vertexing.

e A preliminary convolution-based HyperGraph model is developed.
> Doesn’t use any information from Billoir fit.
> Uses only 5 track features as input.
m As comparison, Billoir fit additionally uses the (co)variances of the 5 track parameters.
> Performance is already similar to Billoir fit for track-pair compatibility prediction.
> Lots of room for improvement in the HyperGraph model (e.g. applying attention mechanism).

e Currently, the model maps the tracks to a 16-dim embedding space.

> Using a constrastive loss, where the secondary vertices are found as clusters.
> Can be modified to directly predict the vertices (hyperedges) as incidence matrix.

20

