

Technology Transfer HEP Detectors in Radiotherapy

Dr. Jens Weingarten AG Kröninger

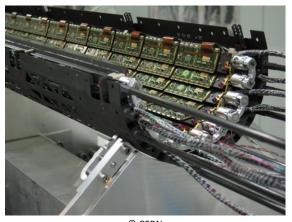
Managing expectations

A short introduction

High energy physicist by training, worked mostly on silicon pixel detectors for the ATLAS experiment at the LHC

Pixel, IBL, and ITk Upgrades

Joined TU Dortmund University in 2018


- Still ATLAS: Pixel and Strip Detectors for HL-LHC Upgrade
- Move to Medical Physics
 - → Proton Radiotherapy in collaboration with WPE Essen and OncoRay Dresden

© CERN

- 1. Introduction to Radiotherapy
- 2. Applications
 - Daily Quality Assurance
 - Nano Dosimetry
 - Image Guidance
- 3. Summary

Radiotherapy

One of three types of therapy for cancers: Surgery, Chemotherapy, Radiotherapy

Goal: Deposit enough dose in the tumour tissue to damage cells irreparably

- → accumulate enough DNA damage, so it can't be repaired
- → cell kills itself in a certain way (no toxic residue)

High-LET radiation is more effective than low-LET radiation

LET: Linear energy transfer

- → Equivalent to stopping power if only secondaries up to a certain range are taken into account
- → LET $_{\infty}$ = dE/dx = Stopping Power

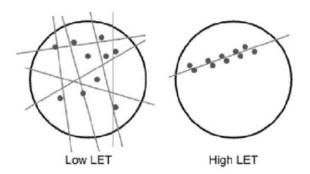
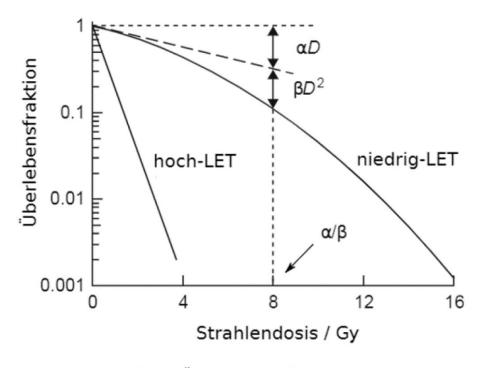



Abbildung: Verteilung der Ionisierung in gleichen Volumina durch niedrige und hohe LET-Strahlung [1]

Strahlungsart	LET keV/μm
Photonen	< 3,5
Elektronen	< 3,5
Protonen	5 - 100 (f(E))
lpha -Teilchen	100 - 200 (f(E))
Neutronen	50 - 250 (f(E))

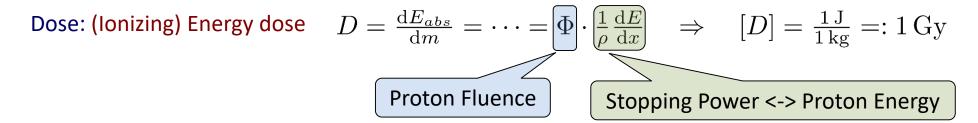

Abbildung: LET verschiedener Strahlungsarten

Abbildung: Überleben der Zellen wird über Linear-Quadratisches Modell beschrieben

Goal: Deposit enough dose in the tumour tissue to damage cells irreparably

Typical dose values:

About 50-70 Gy deposited in the target volume, spread out over few (~2) or many (~30) sessions: fractions

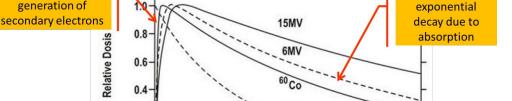
For comparison:

- 50% lethal whole-body dose is 4 Gy
- Adult (80 kg) radiates about 100 W in body heat \rightarrow energy deposition of 4 Gy \triangleq 3 sec of body heat

Protons vs Photons

(External) radiotherapy uses ionizing radiation to deposit dose in tissue

- 1. Photons up to about 18MV acceleration of the electron linac
 - → (relatively) cheap, available in many hospitals
- 2. Ions, mostly protons up to 230 MeV (isochronous cyclotrons, less often synchrotrons)
 - → very expensive, available in 5 centres in Germany (plus one centre for neutron therapy)

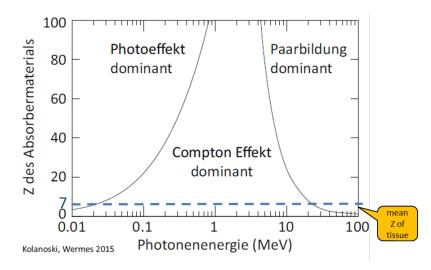

Photons are "indirectly ionizing":

0.2-

Mostly Compton effect in clinically relevant energy range

- → Radiation damage mostly from secondary electrons
- → depth dose curve

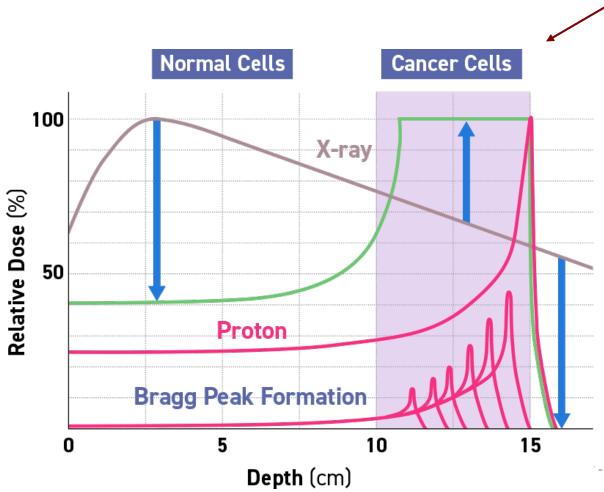
dose build-up, i.e.



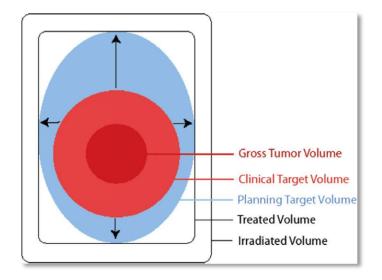
Tiefendosiskurven

Tiefe (cm)

- .. Need large dose deposition at shallow depth to reach target dose at tumour depth
- 2. Photon range unlimited → dose deposition downstream of tumour
- → Significant damage to healthy tissue



Radiotherapy using Protons


Protons are (directly) ionizing:

Vary proton energy to irradiate the full depth of the tumour → spread-out Bragg-peak SOBP

Problem: Proton range not as well-known as one would hope

- range straggling (Landau fluctuations)
- inelastic nuclear scattering → secondary particles
- tissue composition (water-equivalent thickness WET) uncertain (x-ray absorption → stopping power)
- → range uncertainty 3.5% + 1mm
 - → extent target volume
 - → damage to healthy tissue

Radiotherapy using Protons

9

Source: Provision CARES Proton Therapy Center

The treatment process → Very much simplified!

- Take x-ray CT of the affected part of the body \rightarrow Oncologist identifies tumour volume (GTV) and organs-at-risk (OAR), prescribes target dose and fractionation (number of treatments and dose per treatment)
- Medical physicist takes into account uncertainties in dose delivery, enlarges target volume accordingly (PTV)
- Treatment Planning System (TPS) optimizes beam directions, energy, and intensity
- Patient positioning in treatment room: Movement restraints, x-ray for position verification
- Treatment, i.e. shoot a high intensity proton beam at a person...

Repeat steps 4 and 5 for the number of fractions N with dose per fraction D (typically one fraction per day) Mostly two cases:

- Few fractions at high dose $N \approx 2, \, D \approx 25 \, \mathrm{Gy}$ Many fractions at low dose $N \approx 30, \, D \approx 2 \, \mathrm{Gy}$ Disclaimer: Just orders of magnitude

- Beam Quality (not today)
- Repeatability: Deposit the same dose in the same volume for each fraction
 - → Is the beam the same as last time?
 - → Is the target in the same place wrt. accelerator?

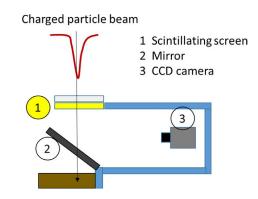
Daily Quality Assurance

11

Commercial solutions

Transversal dose profiles

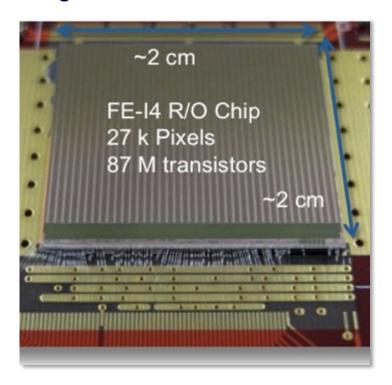
- Radiochromic films: non-linearity with dose/LET, time consuming analysis
- Arrays of ionization chambers: fast but low spatial resolution (5-8 mm pitch)
- Scintillating screens: fast but non-linearity with dose/LET
- Solid-stat detectors: see next slide

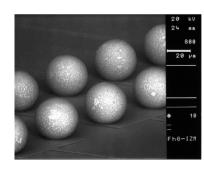

Longitudinal dose profiles

- Ionization Chamber: slow but high depth resolution (moved through water phantom)
- Films: positioned parallel to beam axis, measure penetration depth
- 2D scintillator with wedge phantom: range → position on screen
- Multi Layer Ionization Chamber: one-shot consistency check, calibration needed for conversion to depth in water

So far, DailyQA mostly uses multiple detector technologies

→ Setup takes time, reduces patient throughput


Medical Physics, 45 (11), November 2018



IBL detectors: Tools for medical physics

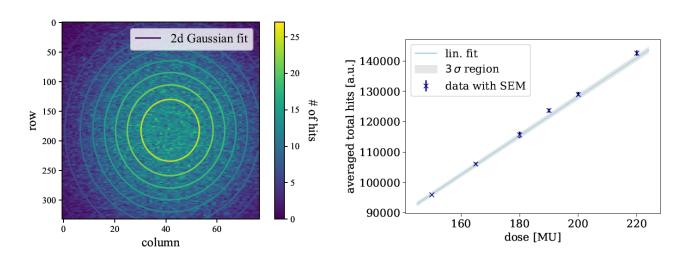
These are LHC tracking detectors, which means

- + hit efficiency for single charged particles >98.5% before irradiation
- + pixel size $50x250 \mu m^2 \rightarrow \text{spatial resolution} \approx 14\mu m$
- + 336x80 pixels \rightarrow active area 16.8 x 20.0 mm² per chip
- + radiation hard: 250 Mrad & 5x10¹⁵ n_{eq}cm⁻²
- designed for minimum inactive area around edge

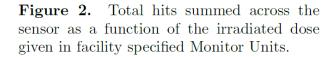
- clock frequency 40 MHz
 → timing resolution 25 ns
- avg. hit rate with <1% data loss: $400 \text{ MHz/cm}^2 \equiv 60 \text{kHz/pixel}$
- max sustained trigger rate: 200kHz
- resolution of charge measurement (ToT): 4 bit
- max charge ~100 ke

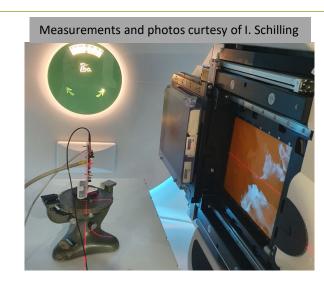
They are also hybrid detectors

- + can connect to different sensors
 - mostly planar Si
 - looking into diamond
- extra cost and material


Biggest advantage: Easily available still

Daily Quality Assurance


Monitoring quantities we can address


- 1. Beam spot position, size, shape
- Dose calibration (i.e. proton flux)
- 3. Proton range (i.e. proton energy)
- → Spatial resolution
- → High count rate due to large number of channels
- → Energy resolution of the detectors

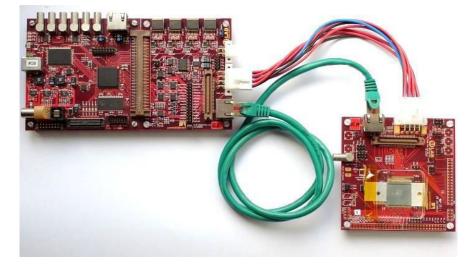
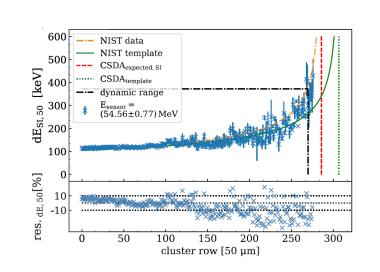


Figure 1. Hitmap of a single pencil beam spot. The intensity profile is fitted with a two-dimensional Gaussian function.

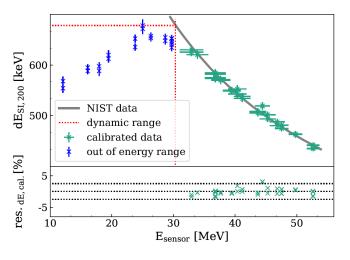
arXiv:2204.02060

Proton Energy/Range

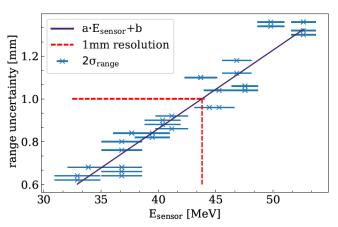
Requirement


Measure proton range in water with uncertainty < 1mm

Approach: Energy deposition in silicon sensor → proton energy

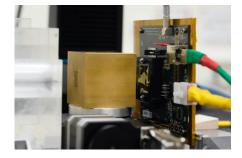

- 4 bit ToT information for individual protons
- due to huge statistics we can measure dE with few keV uncertainty
- → For proton energy below about 44 MeV, we can measure the range well enough for Daily QA purposes

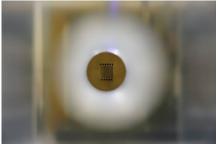
Also looking into track length in silicon


- multiple Coulomb scattering
- sensor thickness/bow
- tuning
- → no improvement

CPPS Seminar - Universität Siegen

Nano dosimetry

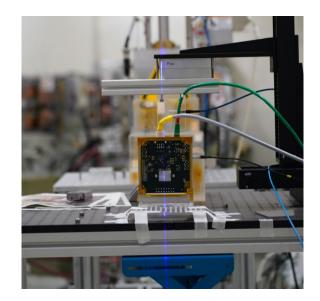

Proton Minibeams


Pre-clinical studies have shown improved healthy tissue sparing using very narrow photon beams

- → Figure-of-merit: Peak-to-valley dose ratio (PVDR)
- → Microbeam Radiotherapy (MRT)

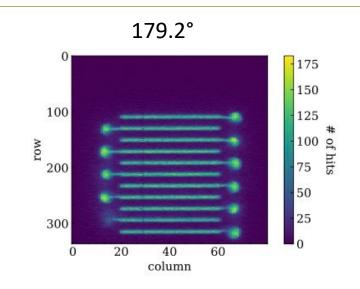
Does that work with protons as well? → Proton Minibeams

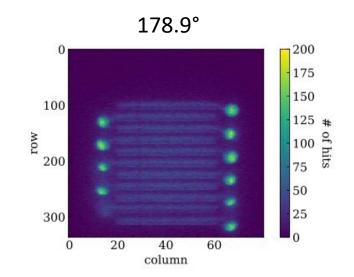
→ Cell experiments ongoing at OncoRay (and elsewhere)



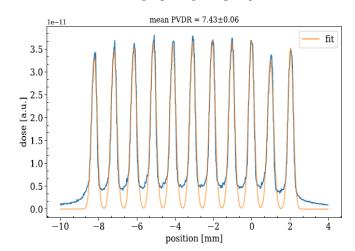
Slit collimator to create 200µm - 1mm wide beams

- 1. Alignment collimator to beam axis → EBT3 film
- 2. Determine PVDR → microdiamond (type 60019, PTW, Freiburg, Germany)
- → both measurements slow and labour-intensive

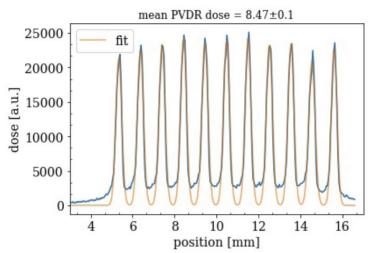

Proton Minibeams


Alignment:

- about 10s per measurement
- rotation stage
- → working on automation of alignment


Measurement of PVDR: one shot measurement

→ significantly faster at comparable spatial resolution



microDiamond

IBL Pixel Detector

Image Guidance

Targeting in three dimensions

"Alignment" of the patient wrt beam isocenter

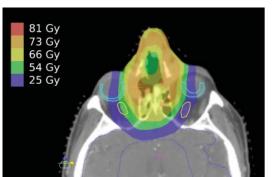
→ transversal patient positioning

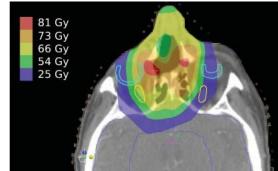
Patient mechanically held in a known position, position checked before treatment using in-room x-ray imager

- → Problem solved, right?
- No real-time position monitoring (movement)
- Not possible in MR-guided PT
- → Use radiation hard, counting detector to take a "proton x-ray"
- → Patient position verification

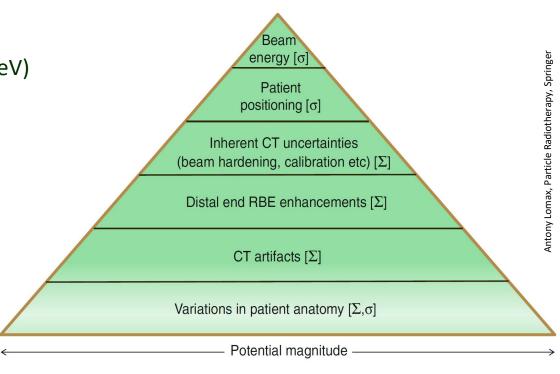
Add-On: Water-equivalent path length (WEPL) along proton trajectory

- → Measure proton energy to determine stopping power along trajectory
- → proton range verification
 - Changes to patient anatomy between fractions





Proton Range Uncertainty


The problem with Proton Range

- 1. Initial proton energy
 - measurement uncertainties during commissioning ($\sigma_{\rm F} \approx 0.5$ MeV)
- 2. Proton range depends on stopping power, planning CT measures electron density
 - contributions to uncertainty: grey-scale to HU, HU to SPR, parametrization of I values,
- 3. Changes to patient anatomy between fractions
 - weight gain/loss, filling of nasal cavities, etc.
 - no CT scans done between fractions

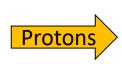
https://www.na-mic.org/wiki/DBP:Head_and_Neck_Cancer

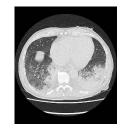
For many years now, this has been taken into account by adding a safety margin of 3.5% + 1mm

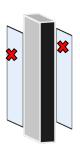
→ Improvement needed!

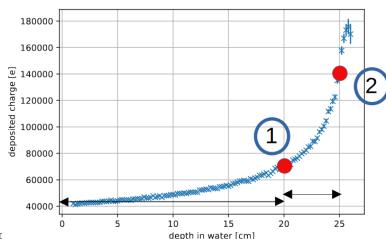
Proton Radiography

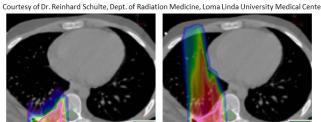
Simple concept:

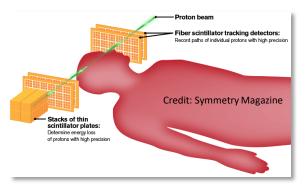

- Number of protons for image
- Energy of protons to determine RSP


Many groups working on proton CT, but effort doesn't seem worth the gain


- expected range uncertainty ~1%
- can be reached with DECT, already in clinical use

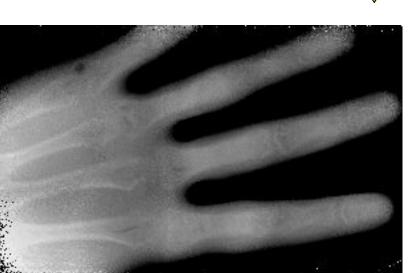

Energy measurement using tracking detectors demonstrated to work


- → Proton Radiography
 - Image for position verification
 - Energy for RSP and anomaly detection



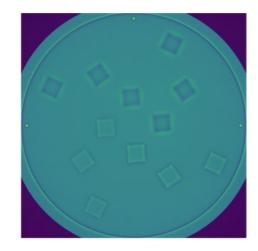
Planned dose deposition

Dose deposition resulting from density error from CT scan

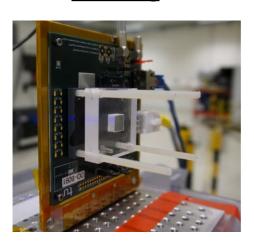


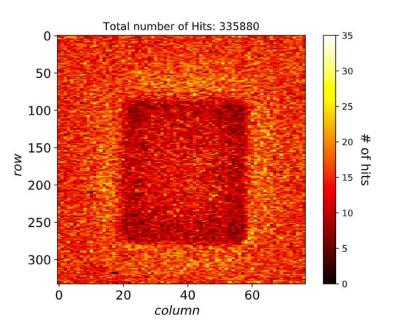
25.04.2023 CPF 22

Proton Radiography



https://news.ucsc.edu/2012/10/proton-radiography.html

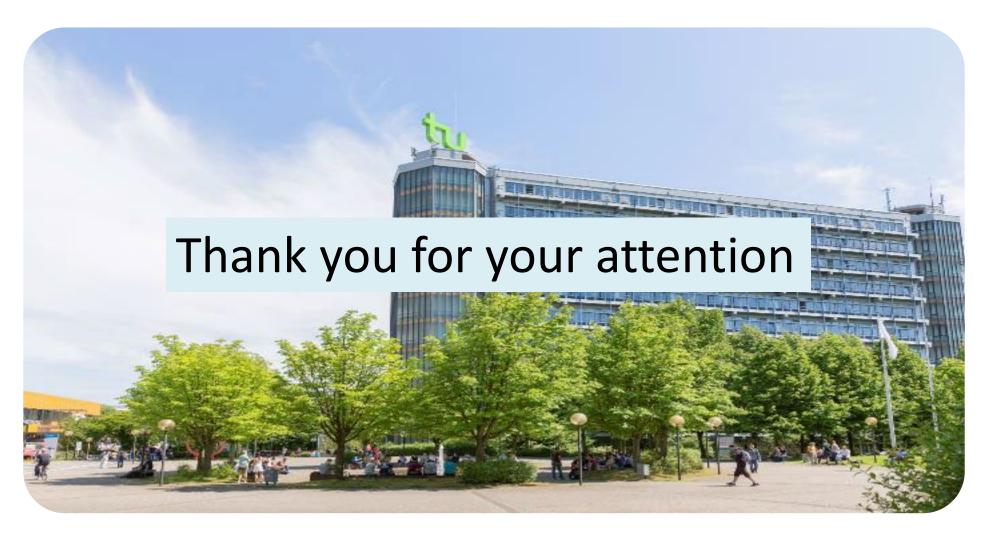



Analysis of characteristics of images acquired with a prototype clinical proton radiography system, C. Sarosiek. et al

CPPS Seminar - Universität Siegen

Messung

Summary


Proton Therapy - Next Steps

Goal: Availability for more patients, i.e. make it cheaper!

- Reduce costs for manufacturing and service of accelerators and beam optics
- Reduce construction costs for a treatment centre → single-room facilities
- Increase patient through-put while maintaining treatment quality
 - Faster daily quality assurance
 - Improve treatment efficiency and accuracy
 - Faster treatment using higher dose rate, i.e. beam current

Lots of (detector) technologies exist to address different requirements, just need to come together

→ Technology Transfer

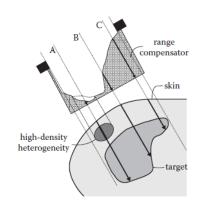
WPE-UK Essen

Close collaboration with West German Proton Therapy Centre in Essen

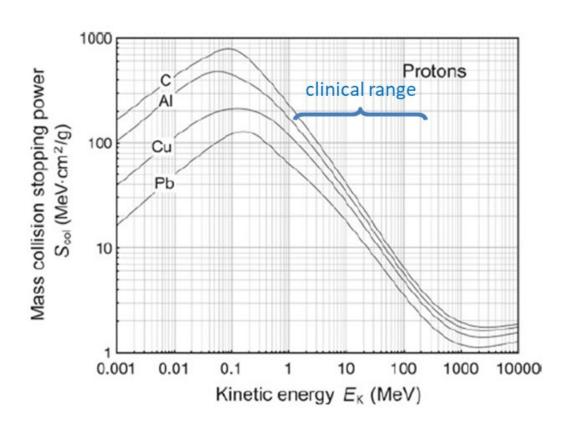
- one of the leading proton radiotherapy institutes in Germany
- four treatment rooms, using IMPT on ENT tumours, cranial base and prostate tumours, as well as for irradiation of tumours in the central nervous system and the entire craniospinal axis
- strong focus on treatment of paediatric patients, where high precision is most important (long-term side effects)
- all manners of beam delivery systems
 - double-scattering, uniform scanning, pencil beam scanning
 - protons up to 226 MeV

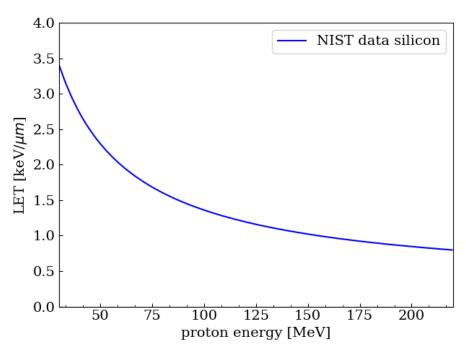
Beam delivery systems

Most treatment centres use cyclotrons to generate treatment beams with constant energy of 225 MeV Issue: Beam from the accelerator typically small diameter, while target volume can be large (~3 ... 40cm) and 3D!

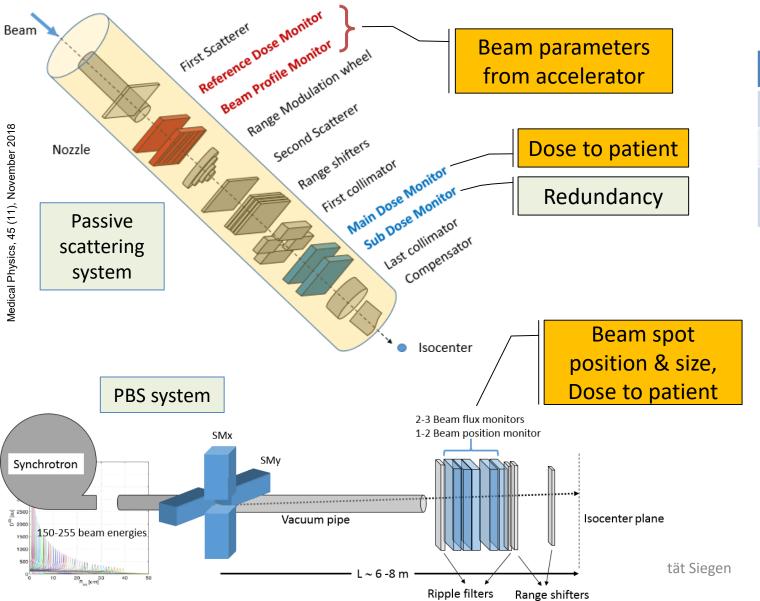

- → Fast energy modulation via rotating modulator wheels, i.e. varying thickness material (dE/dx)
- → Either: Beam broadening in Double scattering systems
 - 1. First, uniform scatterer to widen beam
 - 2. Second, contoured scatterer to homogenize field
 - 3. Contoured range compensator to account for the shape of the body
 - → One large field, conformal along beam axis, which is scanned through the tumour

- 1. Scan small beam spot across tumour volume
- 2. Modulate energy to irradiated different depths
- → Dose deposition conformal in all three dimensions, technologically more complex





energy deposition in silicon:



Beam Conditions Monitoring

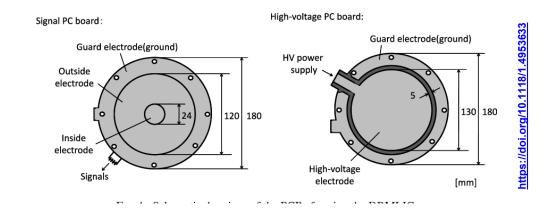
Machine Instrumentation

Typical beam monitor accuracies

Beam property	Detector accuracy
Fluence	1-2% of integral flux
Lateral position	±(0.2 - 0.5) mm
Lateral size (FWHM)	±(0.5 - 1.0) mm for beam width of 4-10 mm FWHM

Note:

Existing detectors do not measure the beam energy independently!


→ Rely on beam optics

Detector technologies

Parallel Plate Ionization Chambers and Multi Wire Ionization Chambers

- single large electrodes or segmented electrodes
 - → dose monitor and/or (1D) beam profile monitor
- robust, good response uniformity, ease of operation (in air),
 minimal perturbation of the beam
- measurement time ≥ 100µs (ion drift time)
 - → good for semi-continuous beams, pulsed beams difficult

Limitations

Accelerator development towards pulsed beams with low duty cycle but high intensity → speed up treatment + FLASH

- → Need faster detectors, electronics and analysis
 - Dedicated readout ASICs, more powerful FPGAs
 - Multi-gap IC, Gas Electron Multipliers short drift length
 - Ultra-fast Silicon Detectors higher drift velocity

Sounds like they're looking for thin, segmented, large area, radiation hard detectors for large particle flux