

Unitarity Triangle Angles Explained: a Predictive New Quark Mass Matrix Texture

Paul Harrison University of Warwick

October 28, 2025

JHEP 07 (2025) 155 (arXiv: 2501.18508) with Bill Scott, Rutherford Appleton Laboratory

Outline of Talk

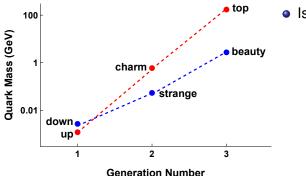
- Mysteries of the quark mass and mixing spectra
- Weak Interaction flavour structure
- SM origins of masses and mixings
- Historical efforts to explain

Outline of Talk

- Mysteries of the quark mass and mixing spectra
- Weak Interaction flavour structure
- SM origins of masses and mixings
- Historical efforts to explain
- Mysteries of the Unitarity Triangle
- The new mass matrix texture
- Confronting the data
- Symmetries of the texture
- Discussion and conclusions

Mystery of Quark Mass Spectra

• Quark masses show marked hierarchical structure:



Is quasi-"geometric":

$$\frac{m_c}{m_t} \simeq 0.0035$$

$$\frac{m_u}{m_t} \sim 0.0020$$

$$\frac{m_u}{m_c} \simeq 0.0020$$

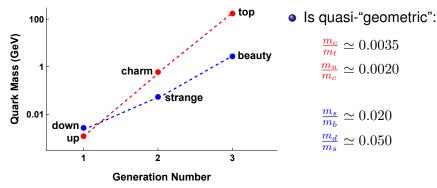
$$\frac{m_s}{m_b} \simeq 0.020$$

$$\frac{m_d}{m_s} \simeq 0.050$$

Noted by very many authors

Mystery of Quark Mass Spectra

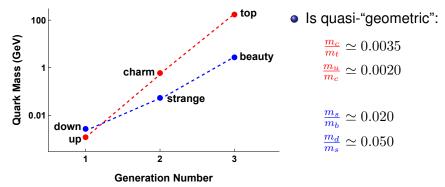
• Quark masses show marked hierarchical structure:



- Noted by very many authors
- Masses not predicted in the SM
- Hierarchy certainly not explained within SM

Mystery of Quark Mass Spectra

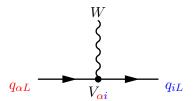
• Quark masses show marked hierarchical structure:



- Noted by very many authors
- Masses not predicted in the SM
- Hierarchy certainly not explained within SM
- BSM, Froggatt-Neilsen mechanism has had some success

• CKM quark mixing matrix:

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$



CKM quark mixing matrix:

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \qquad q_{\alpha L} \qquad q_{iL}$$

$$\sim \begin{pmatrix} 1 & \lambda & A\lambda^3(\overline{\rho} - i\overline{\eta}) \\ -\lambda & 1 & A\lambda^2 \\ A\lambda^3(1 - \overline{\rho} - i\overline{\eta}) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4),$$

where
$$\lambda \equiv |V_{us}| \simeq 0.22$$

 $A, \overline{\rho} \text{ and } \overline{\eta} \lesssim \mathcal{O}(1)$

CKM quark mixing matrix:

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \qquad q_{\alpha L} \qquad q_{iL}$$

$$\sim \begin{pmatrix} 1 & \lambda & A\lambda^3(\overline{\rho} - i\overline{\eta}) \\ -\lambda & 1 & A\lambda^2 \\ A\lambda^3(1 - \overline{\rho} - i\overline{\eta}) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4),$$

where
$$\lambda \equiv |V_{us}| \simeq 0.22$$

 $A, \ \overline{\rho} \text{ and } \overline{\eta} \lesssim \mathcal{O}(1)$

- Elements not predicted by the SM
- Strong hierarchy certainly not explained within SM

CKM quark mixing matrix:

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \qquad q_{\alpha L} \qquad q_{iL}$$

$$\sim \begin{pmatrix} 1 & \lambda & A\lambda^3(\overline{\rho} - i\overline{\eta}) \\ -\lambda & 1 & A\lambda^2 \\ A\lambda^3(1 - \overline{\rho} - i\overline{\eta}) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4),$$

where
$$\lambda \equiv |V_{us}| \simeq 0.22$$

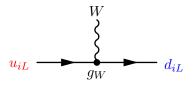
 $A, \ \overline{\rho} \text{ and } \overline{\eta} \lesssim \mathcal{O}(1)$

- Elements not predicted by the SM
- Strong hierarchy certainly not explained within SM
- But masses and mixings both arise in the Yukawa/Mass matrices

The Weak Interaction

- In the gauge theory
- 3 generations of quarks:

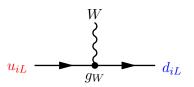
$$\begin{pmatrix} u_1 \\ d_1 \end{pmatrix}_L \quad \begin{pmatrix} u_2 \\ d_2 \end{pmatrix}_L \quad \begin{pmatrix} u_3 \\ d_3 \end{pmatrix}_L$$



The Weak Interaction

- In the gauge theory
- 3 generations of quarks:

$$\begin{pmatrix} u_1 \\ d_1 \end{pmatrix}_L \quad \begin{pmatrix} u_2 \\ d_2 \end{pmatrix}_L \quad \begin{pmatrix} u_3 \\ d_3 \end{pmatrix}_L$$

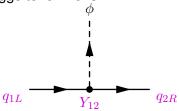


- ullet Write $\underline{u}_w = (u_1, u_2, u_3)^T$ and $\underline{d}_w = (d_1, d_2, d_3)^T$
- W^{\pm} couplings initially flavour-diagonal:

$$\mathcal{L}_W \sim g_W \, \underline{\bar{u}_{wL}} \cdot \underline{d}_{wL} \, W^+ + H.C.$$

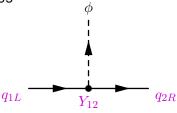
Masses and Mixings from SM

 Fermion Masses and Mixings have common origin in (Yukawa) couplings of the Higgs to fermions

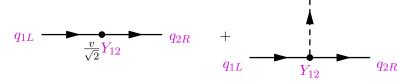


Masses and Mixings from SM

 Fermion Masses and Mixings have common origin in (Yukawa) couplings of the Higgs to fermions



- After SSB, $\phi \to \frac{v}{\sqrt{2}} + H$
- Diagram splits to give:



Н

Taking all Permutations

Recall

$$\underline{u}_w = (u_1, u_2, u_3)^T$$
 and $\underline{d}_w = (d_1, d_2, d_3)^T$

After SSB, Lagrangian for the quark masses is (dropping L/R labels):

$$\mathcal{L}_{Mass} \sim \frac{v}{\sqrt{2}} \, \underline{\bar{u}}_w \cdot Y_u \cdot \underline{u}_w + \frac{v}{\sqrt{2}} \, \underline{\bar{d}}_w \cdot Y_d \cdot \underline{d}_w$$

Identify

$$\frac{v}{\sqrt{2}}Y_u \equiv M_u$$
 and $\frac{v}{\sqrt{2}}Y_d \equiv M_d$

Taking all Permutations

Recall

$$\underline{u}_w = (u_1, u_2, u_3)^T$$
 and $\underline{d}_w = (d_1, d_2, d_3)^T$

After SSB, Lagrangian for the quark masses is (dropping L/R labels):

$$\mathcal{L}_{Mass} \sim \frac{v}{\sqrt{2}} \, \underline{\bar{u}}_w \cdot Y_u \cdot \underline{u}_w + \frac{v}{\sqrt{2}} \, \underline{\bar{d}}_w \cdot Y_d \cdot \underline{d}_w$$

Identify

$$\frac{v}{\sqrt{2}}Y_u \equiv M_u$$
 and $\frac{v}{\sqrt{2}}Y_d \equiv M_d$

- ullet M_u and M_d are clearly not diagonal
- Can choose basis where they are Hermitian without observable consequences.

Physical Particles?

- Identified as eigenstates of M_u and M_d
- So, diagonalise to find them:

$$(u,c,t)^T \equiv \underline{u} = U_u \cdot \underline{u}_w$$
 and $(d,s,b)^T \equiv \underline{d} = U_d \cdot \underline{d}_w$

Physical Particles?

- Identified as eigenstates of M_u and M_d
- So, diagonalise to find them:

$$(u,c,t)^T\equiv \underline{u}= \underline{U_u}\cdot \underline{u_w}$$
 and $(d,s,b)^T\equiv \underline{d}=U_d\cdot \underline{d}_w$

Then (chiral labels dropped):

$$\mathcal{L}_{M+W} = \underline{\bar{u}} \cdot D_{u} \cdot \underline{u} + \underline{\bar{d}} \cdot D_{d} \cdot \underline{d} + g_{W} \, \underline{\bar{u}} \cdot U_{u} \cdot U_{d}^{\dagger} \cdot \underline{d} \, W^{+} + \dots$$

Physical Particles?

- Identified as eigenstates of M_u and M_d
- So, diagonalise to find them:

$$(u,c,t)^T \equiv \underline{u} = \underline{U_u} \cdot \underline{u_w} \text{ and } (d,s,b)^T \equiv \underline{d} = U_d \cdot \underline{d}_w$$

• Then (chiral labels dropped):

$$\mathcal{L}_{M+W} = \underline{\bar{u}} \cdot D_{u} \cdot \underline{u} + \underline{\bar{d}} \cdot D_{d} \cdot \underline{d} + g_{W} \, \underline{\bar{u}} \cdot U_{u} \cdot U_{d}^{\dagger} \cdot \underline{d} \, W^{+} + \dots$$

where

$$egin{aligned} D_u &\equiv U_u \cdot M_u \cdot U_u^{\dagger} = \mathrm{diag}(m_u, m_c, m_t) \ D_d &\equiv U_d \cdot M_d \cdot U_d^{\dagger} = \mathrm{diag}(m_d, m_s, m_b) \ &= V_{CKM} \equiv U_u \cdot U_d^{\dagger} \ &= \mathrm{unitary}. \end{aligned}$$

Thus masses and mixings both originate in the MMs

Historical Context

- So, can mass ratios and mixings be related?
- One way is with "texture zeroes" pioneering idea by Harald Fritzsch (1976-78)
- E.g. $M_d \equiv M_F(m_b, a_d, b_d)$

$$= m_b \begin{pmatrix} 0 & a_d & 0 \\ a_d^* & 0 & b_d \\ 0 & b_d^* & 1 \end{pmatrix} : \text{diagonalise} \Rightarrow \begin{vmatrix} |a_d| = \sqrt{\frac{m_d m_s}{m_b m_b}} \\ |b_d| = \sqrt{\frac{m_s}{m_b}} \sim 0.1044$$

Historical Context

- So, can mass ratios and mixings be related?
- One way is with "texture zeroes" pioneering idea by Harald Fritzsch (1976-78)
- E.g. $M_d \equiv M_F(m_b, a_d, b_d)$

$$= m_b \begin{pmatrix} 0 & a_d & 0 \\ a_d^* & 0 & b_d \\ 0 & b_d^* & 1 \end{pmatrix} : \text{diagonalise} \Rightarrow \begin{vmatrix} |a_d| = \sqrt{\frac{m_d}{m_b} \frac{m_s}{m_b}} \sim 0.0044 \\ |b_d| = \sqrt{\frac{m_s}{m_b}} \sim 0.14 \end{vmatrix}$$

Diagonalised by:

$$U_d^{\dagger} \sim \begin{pmatrix} 1 & s_1^d & s_1^d s_2^d \\ -s_1^d & 1 & s_2^d \\ 0 & -s_2^d & 1 \end{pmatrix} \text{ with } \begin{aligned} s_1^d &\equiv \sin \theta_{12}^d \simeq \sqrt{\frac{m_d}{m_s}} \sim 0.224 \\ s_2^d &\equiv \sin \theta_{23}^d \simeq \sqrt{\frac{m_s}{m_b}} \sim 0.14 \end{aligned}$$

Already somewhat encouraging.

Fritzsch Texture Prediction for V_{us}

- ullet BUT s_2^d , s_3^d too big, AND should treat M_u and M_d alike
- Do by writing $M_u = M_F(m_t, a_u, b_u)$ [NB. 8 params for 10 obs \checkmark]
- Since

$$V_{CKM} = U_u U_d^{\dagger}(\dagger \Rightarrow \text{ inverse for unitary matrix}),$$

is like rotation and a rotation back

Fritzsch Texture Prediction for V_{us}

- ullet BUT s_2^d , s_3^d too big, AND should treat M_u and M_d alike
- Do by writing $M_u = M_F(m_t, a_u, b_u)$ [NB. 8 params for 10 obs \checkmark]
- Since

$$V_{CKM} = \frac{U_u}{U_d}^{\dagger} (\dagger \Rightarrow \text{ inverse for unitary matrix}),$$

is like rotation and a rotation back

In complex case, phase enters (gives CP-violation):

$$\tilde{\delta} \equiv arg(\mathbf{a_u}) - arg(\mathbf{a_d})$$

Together give:

$$\begin{aligned} V_{us} \sim \lambda &= |s_1^d - s_1^u e^{i\tilde{\delta}}| \\ &= |\sqrt{\frac{m_d}{m_s}} - \sqrt{\frac{m_u}{m_c}} e^{i\tilde{\delta}}| \end{aligned}$$

Fritzsch Texture Prediction for V_{us}

- BUT s_2^d , s_3^d too big, AND should treat M_u and M_d alike
- Do by writing $M_u = M_F(m_t, a_u, b_u)$ [NB. 8 params for 10 obs \checkmark]
- Since

$$V_{CKM} = \frac{U_u}{U_d}^{\dagger} (\dagger \Rightarrow \text{ inverse for unitary matrix}),$$

is like rotation and a rotation back

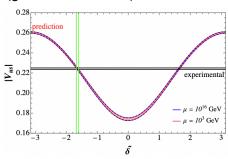
• In complex case, phase enters (gives *CP*-violation):

$$\tilde{\delta} \equiv arg(\mathbf{a_u}) - arg(\mathbf{a_d})$$

Together give:

$$V_{us} \sim \lambda = |s_1^d - s_1^u e^{i\tilde{\delta}}|$$
$$= |\sqrt{\frac{m_d}{m_s}} - \sqrt{\frac{m_u}{m_c}} e^{i\tilde{\delta}}|$$

Good fit ✓



• Here, another phase enters:

$$\bar{\beta} \equiv arg(\frac{\mathbf{b_u}}{\mathbf{a}}) - arg(\frac{\mathbf{b_d}}{\mathbf{a}})$$

One finds:

$$\begin{split} V_{cb} \sim A\lambda^2 &= |s_2^d - s_2^u e^{i\bar{\beta}}| \\ &= |\sqrt{\frac{m_s}{m_b}} - \sqrt{\frac{m_c}{m_t}} e^{i\bar{\beta}}| \end{split}$$

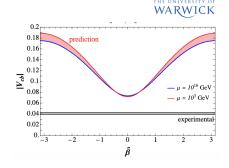
• Here, another phase enters:

$$\bar{\beta} \equiv arg(\frac{\mathbf{b_u}}{\mathbf{a}}) - arg(\frac{\mathbf{b_d}}{\mathbf{b}})$$

One finds:

$$\begin{split} V_{cb} \sim A\lambda^2 &= |s_2^d - s_2^u e^{i\bar{\beta}}| \\ &= |\sqrt{\frac{m_s}{m_b}} - \sqrt{\frac{m_c}{m_t}} e^{i\bar{\beta}}| \end{split}$$

Too big: excluded X



• Here, another phase enters:

$$\bar{\beta} \equiv arg(\frac{\mathbf{b_u}}{\mathbf{a}}) - arg(\frac{\mathbf{b_d}}{\mathbf{a}})$$

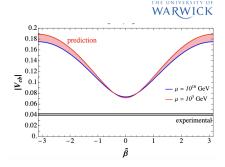
One finds:

$$\begin{split} V_{cb} \sim A\lambda^2 &= |s_2^d - s_2^u e^{i\bar{\beta}}| \\ &= |\sqrt{\frac{m_s}{m_b}} - \sqrt{\frac{m_c}{m_t}} e^{i\bar{\beta}}| \end{split}$$

Too big: excluded X

and:

$$\left| rac{V_{ub}}{V_{cb}} \right| \sim \lambda \simeq \sqrt{rac{m_u}{m_c}}$$



• Here, another phase enters:

$$\bar{\beta} \equiv arg(\frac{\mathbf{b_u}}{\mathbf{a}}) - arg(\frac{\mathbf{b_d}}{\mathbf{b}})$$

One finds:

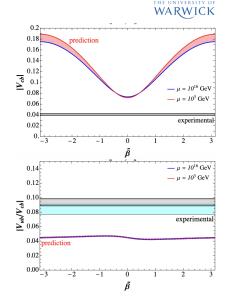
$$\begin{split} V_{cb} \sim A\lambda^2 &= |s_2^d - s_2^u e^{i\bar{\beta}}| \\ &= |\sqrt{\frac{m_s}{m_b}} - \sqrt{\frac{m_c}{m_t}} e^{i\bar{\beta}}| \end{split}$$

Too big: excluded X

and:

$$|\frac{V_{ub}}{V_{cb}}| \sim \lambda \simeq \sqrt{\frac{m_u}{m_c}}$$

Too small: more excluded X



• Here, another phase enters:

$$\bar{\beta} \equiv arg(\frac{\mathbf{b_u}}{\mathbf{a}}) - arg(\frac{\mathbf{b_d}}{\mathbf{a}})$$

One finds:

$$\begin{split} V_{cb} \sim A\lambda^2 &= |s_2^d - s_2^u e^{i\bar{\beta}}| \\ &= |\sqrt{\frac{m_s}{m_b}} - \sqrt{\frac{m_c}{m_t}} e^{i\bar{\beta}}| \end{split}$$

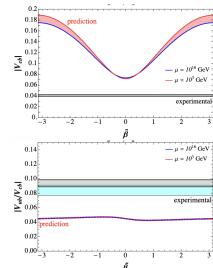
Too big: excluded X

and:

$$|\frac{V_{ub}}{V_{cb}}| \sim \lambda \simeq \sqrt{\frac{m_u}{m_c}}$$

Too small: more excluded X

 Figs from B. Belfatto and
 Z. Berezhiani, arXiv: 2305.00069. Recent approach to revive Fritzsch using non-Hermitian MMs (but 10 pars)



The Unitarity Triangle

$$V_{CKM} \equiv \begin{matrix} V_u U_d^{\dagger} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \text{ is unitary}.$$

ie. complex dot-product of every pair of columns (or rows) is zero.
 E.g.

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

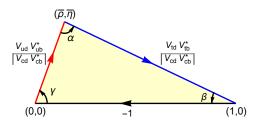
The Unitarity Triangle

$$V_{CKM} \equiv \begin{array}{c} \textbf{\textit{U}}_{u} \textbf{\textit{U}}_{d}^{\dagger} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \text{ is unitary}.$$

ie. complex dot-product of every pair of columns (or rows) is zero.
 E.g.

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

• \Rightarrow triangle in complex plane (normalise by $1/|V_{cd}V_{cb}^*|$):



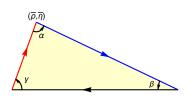
- Base length unity
- 2 parameters, choose:
 2 angles or
 top vertex = ρ + iη
- Area = $\frac{1}{2}\overline{\eta}$
- All CP-violating observables \propto Area

Mysteries of the Unitarity Triangle

- Sides/Angles of UT are arbitrary in SM
- But measured angles:

$$\alpha = (91.6 \pm 1.4)^{\circ}$$

 $\beta = (22.6 \pm 0.4)^{\circ}$
 $\gamma = (65.7 \pm 1.3)^{\circ}$



consistent with "special" values:

$$(\alpha, \beta, \gamma) \simeq (\frac{\pi}{2}, \frac{\pi}{8}, \frac{3\pi}{8}) \equiv (\alpha_0, \beta_0, \gamma_0).$$

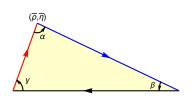
Seems striking!

Mysteries of the Unitarity Triangle

- Sides/Angles of UT are arbitrary in SM
- But measured angles:

$$\alpha = (91.6 \pm 1.4)^{\circ}$$

 $\beta = (22.6 \pm 0.4)^{\circ}$
 $\gamma = (65.7 \pm 1.3)^{\circ}$



consistent with "special" values:

$$(\alpha, \beta, \gamma) \simeq (\frac{\pi}{2}, \frac{\pi}{8}, \frac{3\pi}{8}) \equiv (\alpha_0, \beta_0, \gamma_0).$$

- Seems striking!
- Coincidence or smoking gun?
- → Test as clue to what lies behind.

Build Special Angles into a Texture

$$M_q^{HS} \equiv n_q \begin{pmatrix} c_q \lambda_q^4 & b \lambda_q^3 & 0 \\ b \lambda_q^{*3} & b \lambda_q^2 & A_0 \lambda_q^2 \\ 0 & A_0 \lambda_q^{*2} & 1 \end{pmatrix}, \quad \begin{matrix} q = \mathbf{u}, \mathbf{d}, \\ \lambda_q \text{ complex} \\ \arg(\lambda_q) \text{ unobservable} \\ (A_0, b, c_u, c_d) \leq \mathcal{O}(1) \end{matrix}$$

Build Special Angles into a Texture

$$M_q^{HS} \equiv n_q \begin{pmatrix} c_q \lambda_q^4 & b \lambda_q^3 & 0 \\ b \lambda_q^{*3} & b \lambda_q^2 & A_0 \lambda_q^2 \\ 0 & A_0 \lambda_q^{*2} & 1 \end{pmatrix}, \quad \begin{matrix} q = \mathbf{u}, d, \\ \lambda_q \text{ complex} \\ \arg(\lambda_q) \text{ unobservable} \\ (A_0, b, c_u, c_d) \lesssim \mathcal{O}(1) \end{matrix}$$

Complex ratio is fixed constant:

$$\frac{\lambda_u}{\lambda_d} \equiv -i \tan \frac{\pi}{8}$$

Controls angles of the UT (see later)

Build Special Angles into a Texture

$$M_q^{HS} \equiv n_q \begin{pmatrix} c_q \lambda_q^4 & b \lambda_q^3 & 0 \\ b \lambda_q^{*3} & b \lambda_q^2 & A_0 \lambda_q^2 \\ 0 & A_0 \lambda_q^{*2} & 1 \end{pmatrix}, \quad \begin{matrix} q = \mathbf{u}, d, \\ \lambda_q \text{ complex} \\ \arg(\lambda_q) \text{ unobservable} \\ (A_0, b, c_u, c_d) \lesssim \mathcal{O}(1) \end{matrix}$$

Complex ratio is fixed constant:

$$\frac{\lambda_u}{\lambda_d} \equiv -i \, \tan \frac{\pi}{8}$$

- Controls angles of the UT (see later)
- ightharpoonup arg $\lambda_u/\lambda_d = -i$, is sole source of CP violation

Build Special Angles into a Texture

$$M_q^{HS} \equiv n_q \begin{pmatrix} c_q \lambda_q^4 & b \, \lambda_q^3 & 0 \\ b \, \lambda_q^{*3} & b \lambda_q^2 & A_0 \lambda_q^2 \\ 0 & A_0 \lambda_q^{*2} & 1 \end{pmatrix}, \quad \begin{matrix} q = \mathbf{u}, d, \\ \lambda_q \text{ complex} \\ \arg(\lambda_q) \text{ unobservable} \\ (A_0, b, c_u, c_d) \lesssim \mathcal{O}(1) \end{matrix}$$

Complex ratio is fixed constant:

$$\frac{\lambda_u}{\lambda_d} \equiv -i \tan \frac{\pi}{8}$$

- Controls angles of the UT (see later)
- $ightharpoonup \arg \frac{\lambda_u}{\lambda_d} = -i$, is sole source of CP violation
- $ho |\lambda_u/\lambda_d| \simeq 0.41$ controls relative strength of "u" and "d" mass hierarchies

Build Special Angles into a Texture

$$M_q^{HS} \equiv n_q \begin{pmatrix} c_q \lambda_q^4 & b \, \boldsymbol{\lambda_q^3} & 0 \\ b \, \boldsymbol{\lambda_q^{*3}} & b \lambda_q^2 & A_0 \boldsymbol{\lambda_q^2} \\ 0 & A_0 \boldsymbol{\lambda_q^{*2}} & 1 \end{pmatrix}, \quad \boldsymbol{\lambda_q} \text{ complex}$$

$$(A_0, b, c_u, c_d) \lesssim \mathcal{O}(1)$$

Complex ratio is fixed constant:

$$\frac{\frac{\lambda_u}{\lambda_d} \equiv -i \tan \frac{\pi}{8}}{}$$

- Controls angles of the UT (see later)
- ightharpoonup arg $\lambda_u/\lambda_d = -i$, is sole source of CP violation
- $ho |\lambda_u/\lambda_d| \simeq 0.41$ controls relative strength of "u" and "d" mass hierarchies
- Complex sum is fitted parameter close to λ :

$$|\boldsymbol{\lambda_d} + \boldsymbol{\lambda_u}| \equiv \lambda_0 = \boldsymbol{\lambda} + \mathcal{O}(\boldsymbol{\lambda}^3).$$

Build Special Angles into a Texture

$$M_q^{HS} \equiv n_q \begin{pmatrix} c_q \lambda_q^4 & b \, \boldsymbol{\lambda_q^3} & 0 \\ b \, \boldsymbol{\lambda_q^{*3}} & b \lambda_q^2 & A_0 \boldsymbol{\lambda_q^2} \\ 0 & A_0 \boldsymbol{\lambda_q^{*2}} & 1 \end{pmatrix}, \quad \boldsymbol{\lambda_q} \text{ complex}$$

$$(A_0, b, c_u, c_d) \lesssim \mathcal{O}(1)$$

Complex ratio is fixed constant:

$$\frac{\frac{\lambda_u}{\lambda_d} \equiv -i \tan \frac{\pi}{8}}{}$$

- Controls angles of the UT (see later)
- ightharpoonup arg $\lambda_u/\lambda_d=-i$, is sole source of CP violation
- $|\lambda_u/\lambda_d| \simeq 0.41$ controls relative strength of "u" and "d" mass hierarchies
- Complex sum is fitted parameter close to λ :

$$|\lambda_d + \lambda_u| \equiv \lambda_0 = \lambda + \mathcal{O}(\lambda^3).$$

Describes 10 observables with 7 real parameters

Leading-order Solution (Quark Masses)

■ Diagonalise → masses:

$$D_q = U_q M_q^{HS} U_q^{\dagger} = m_3^q \begin{pmatrix} (c_q - b)\lambda_q^4 & 0 & 0 \\ 0 & b\lambda_q^2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad q = \mathbf{u}, \mathbf{d},$$

• Good for mass hierarchy $(\frac{\lambda_u}{\lambda_u}, \frac{\lambda_d}{\lambda_d} << 1)$ \checkmark

Leading-order Solution (Quark Masses)

■ Diagonalise → masses:

$$D_q = U_q M_q^{HS} U_q^{\dagger} = m_3^q \begin{pmatrix} (c_q - b)\lambda_q^4 & 0 & 0 \\ 0 & b\lambda_q^2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad q = \mathbf{u}, \mathbf{d},$$

- Good for mass hierarchy $(\lambda_u, \lambda_d << 1)$
- 3 free parameters (at LO): b, c_u, c_d (to fit 4 mass ratios)
- ⇒ one constraint/prediction (LO):

$$\frac{m_c}{m_t} \frac{m_b}{m_s} = \left| \frac{\lambda_u}{\lambda_d} \right|^2 = \tan^2 \frac{\pi}{8} = \begin{cases} 0.172 \ (LO) \\ 0.176 \ (NLO) \end{cases} \text{ c.f. } 0.177 \pm 0.002 \ (exp) \checkmark$$

Leading-order Solution (Quark Masses)

■ Diagonalise → masses:

$$D_q = U_q M_q^{HS} U_q^{\dagger} = m_3^q \begin{pmatrix} (c_q - b)\lambda_q^4 & 0 & 0 \\ 0 & b\lambda_q^2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad q = \mathbf{u}, \mathbf{d},$$

- Good for mass hierarchy $(\lambda_u, \lambda_d << 1)$
- 3 free parameters (at LO): b, c_u, c_d (to fit 4 mass ratios)
- ⇒ one constraint/prediction (LO):

$$\frac{m_c}{m_t} \frac{m_b}{m_s} = \left| \frac{\lambda_u}{\lambda_d} \right|^2 = \tan^2 \frac{\pi}{8} = \begin{cases} 0.172 \ (LO) \\ 0.176 \ (NLO) \end{cases} \text{ c.f. } 0.177 \pm 0.002 \ (exp) \checkmark$$

• Fits any m_u , $m_d \checkmark$ (no prediction here).

Leading-order Solution (Quark Mixing)

- ullet Diagonalised by 2×2 (complex) rotations in 23 and 12 spaces.
- Small entries induced in the 13 elements of U_q :

$$U_q \simeq \begin{pmatrix} 1 & \pm \lambda_q & A_0 \lambda_q^3 \\ \mp \lambda_q^* & 1 & -A_0 \lambda_q^2 \\ 0 & A_0 \lambda_q^{*2} & 1 \end{pmatrix}, \quad q = \mathbf{u}, \mathbf{d}.$$

Leading-order Solution (Quark Mixing)

- ullet Diagonalised by 2×2 (complex) rotations in 23 and 12 spaces.
- Small entries induced in the 13 elements of U_q :

$$U_q \simeq \begin{pmatrix} 1 & \pm \lambda_q & A_0 \lambda_q^3 \\ \mp \lambda_q^* & 1 & -A_0 \lambda_q^2 \\ 0 & A_0 \lambda_q^{*2} & 1 \end{pmatrix}, \quad q = \mathbf{u}, \mathbf{d}.$$

• Combine U_u and U_d :

$$\Rightarrow V_{CKM} = \mathbf{U_u} \mathbf{U_d}^{\dagger} \simeq \begin{pmatrix} 1 & \lambda_0 & A_0 \lambda_0^2 \mathbf{\lambda_u} \\ -\lambda_0 & 1 & A_0 \lambda_0^2 \\ A_0 \lambda_0^2 \mathbf{\lambda_d^*} & -A_0 \lambda_0^2 & 1 \end{pmatrix}$$

Leading-order Solution (Quark Mixing)

WARWICK

- ullet Diagonalised by 2×2 (complex) rotations in 23 and 12 spaces.
- Small entries induced in the 13 elements of U_q :

$$U_q \simeq \begin{pmatrix} 1 & \pm \boldsymbol{\lambda}_q & A_0 \, \boldsymbol{\lambda}_q^3 \\ \mp \boldsymbol{\lambda}_q^* & 1 & -A_0 \, \boldsymbol{\lambda}_q^2 \\ 0 & A_0 \, \boldsymbol{\lambda}_q^{*2} & 1 \end{pmatrix}, \quad q = \boldsymbol{u}, \boldsymbol{d}.$$

• Combine U_u and U_d :

$$\Rightarrow V_{CKM} = \frac{\mathbf{U_u}}{\mathbf{U_d}}^{\dagger} \simeq \begin{pmatrix} 1 & \lambda_0 & A_0 \lambda_0^2 \mathbf{\lambda_u} \\ -\lambda_0 & 1 & A_0 \lambda_0^2 \\ A_0 \lambda_0^2 \mathbf{\lambda_d^*} & -A_0 \lambda_0^2 & 1 \end{pmatrix}$$

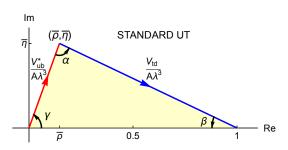
C.f. Wolfenstein form:

$$V_{CKM} = \begin{pmatrix} 1 & \lambda & A\lambda^3(\overline{\rho} - i\overline{\eta}) \\ -\lambda & 1 & A\lambda^2 \\ A\lambda^3(1 - \overline{\rho} - i\overline{\eta}) & -A\lambda^2 & 1 \end{pmatrix} \Rightarrow \begin{cases} \lambda \simeq \lambda_0 \checkmark \\ A \simeq A_0 \checkmark \\ (\overline{\rho} + i\overline{\eta}) \simeq \frac{\lambda_u^*}{\lambda_0} \end{cases}$$

The UT Angles

• Have deduced that:

$$egin{aligned} oldsymbol{\lambda_u^*} &\simeq \lambda(\overline{
ho} + i\overline{\eta}) = rac{V_{ub}^*}{A\lambda^2} \ oldsymbol{\lambda_d^*} &\simeq \lambda(1 - \overline{
ho} - i\overline{\eta}) = rac{V_{td}}{A\lambda^2} \ &\Rightarrow \gamma \simeq \arg oldsymbol{\lambda_u^*} \ eta \simeq \arg oldsymbol{\lambda_d} \ & ext{and} \ lpha \simeq \arg (-rac{oldsymbol{\lambda_u}}{oldsymbol{\lambda_d}}) \end{aligned}$$



The UT Angles

WARWICK

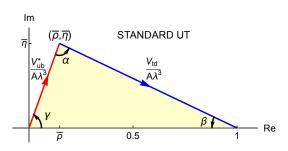
• Have deduced that:

$$\lambda_{u}^{*} \simeq \lambda(\overline{\rho} + i\overline{\eta}) = \frac{V_{ub}^{*}}{A\lambda^{2}}$$

$$\lambda_{d}^{*} \simeq \lambda(1 - \overline{\rho} - i\overline{\eta}) = \frac{V_{td}}{A\lambda^{2}}$$

$$\Rightarrow \gamma \simeq \arg \lambda_{u}^{*}$$

$$\beta \simeq \arg \lambda_{d}$$



- Recall, HS texture asserts $\frac{\lambda_u}{\lambda_d} = -i \tan \frac{\pi}{8}$
 - ightharpoonup \Rightarrow $\alpha \simeq \frac{\pi}{2}$ \checkmark

and $\alpha \simeq \arg(-\frac{\lambda_u}{\lambda_u})$

- $ightharpoonup \Rightarrow \tan \beta = \left| \frac{\lambda_u}{\lambda_d} \right|$ (see Figure).
- $ightharpoonup
 ightharpoonup eta \simeq rac{\pi}{8} \checkmark$

- Data from PDG
- Renormalise to common scale $(\mu = m_t)$
- Fit using full numerical diagonalisation

- Data from PDG
- Renormalise to common scale $(\mu = m_t)$
- Fit using full numerical diagonalisation
- \rightarrow poor fit: $\chi^2/dof \simeq 100/3!$
- Tension between fitted values of A, m_c/m_t and m_s/m_b .
- Disaster?

- Data from PDG
- Renormalise to common scale $(\mu = m_t)$
- Fit using full numerical diagonalisation
- ullet ightarrow poor fit: $\chi^2/dof \simeq 100/3!$
- Tension between fitted values of A, m_c/m_t and m_s/m_b .
- Disaster?
- Not necessarily!

- Data from PDG
- Renormalise to common scale $(\mu = m_t)$
- Fit using full numerical diagonalisation
- \rightarrow poor fit: $\chi^2/dof \simeq 100/3!$
- Tension between fitted values of A, m_c/m_t and m_s/m_b .
- Disaster?
- Not necessarily!
- Because these quantities "run" with renormalisation scale
- ~ 13% from weak to GUT scales: $A(\uparrow), m_c/m_t(\uparrow)$ and $m_s/m_b(\downarrow)$.
- λ , α , β , m_u/m_c and m_d/m_s are \sim invariant.
- $\bullet \Rightarrow \text{vary } \mu$

Some Details of the Fit

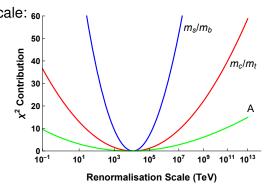
- Fit $\chi^2/\text{d.o.f} \simeq 1.01/2$
- Best fit renormalisation scale:

$$\mu \sim (0.3 \rightarrow 3) \times 10^4 \text{ TeV}$$

- Fitted values of the free parameters:
 - $\lambda_0 = 0.22646$
 - $A_0 = 0.854$
 - b = 0.462
 - $c_u = 0.344$
 - $c_d = -0.040$

Some Details of the Fit

- Fit $\chi^2/\text{d.o.f} \simeq 1.01/2$
- Best fit renormalisation scale: $_{60}$ $\mu \sim (0.3 \rightarrow 3) \times 10^4 \text{ TeV}$
- Fitted values of the free parameters:
 - $\lambda_0 = 0.22646$
 - $A_0 = 0.854$
 - b = 0.462
 - $c_u = 0.344$
 - $c_d = -0.040$
- Three curves minimise at common scale ~ 10⁴ TeV



Fit Predictions

Observable	Input Renormali-	Fitted Value
	sed to $\mu = 10^4$ TeV	at $\mu = 10^4$ TeV
$ m_u/m_c (\times 10^3)$	2.00 ± 0.05	2.00
$\left m_d / m_s \right (\times 10^2)$	4.97 ± 0.06	4.97
$\frac{m_c/m_t}{(\times 10^3)}$	3.46 ± 0.03	3.46
$m_s/m_b (\times 10^2)$	1.968 ± 0.008	1.968
λ	0.2250 ± 0.0007	0.2250
A	0.88 ± 0.02	0.88
$\overline{ ho}$	0.159 ± 0.009	0.152
$\overline{\eta}$	0.352 ± 0.007	0.348
UT Angles		Prediction from Fit
$\frac{\alpha}{\alpha}$ (°)	91.6 ± 1.4	91.30 ± 0.02
eta (°)	22.6 ± 0.4	22.3 ± 0.1
γ (°)	65.7 ± 1.3	66.4 ± 0.1

Fitted values in table are predictions

The Leading Order UT (LO-UT)

Define useful complex constants:

$$\mathbf{z_0} \equiv \mathbf{\lambda_u^*}/\lambda_0 = is_0 e^{-i\beta_0} = \rho_0 + i\eta_0,$$

$$\mathbf{\overline{z_0}} \equiv \mathbf{\lambda_d^*}/\lambda_0 = c_0 e^{-i\beta_0} = 1 - \mathbf{z_0},$$

where

$$s_0 \equiv \sin \beta_0; \quad c_0 \equiv \cos \beta_0; \quad \eta_0 = s_0 c_0 = \frac{1}{2\sqrt{2}} \quad \text{and} \quad \rho_0 = s_0^2.$$

The Leading Order UT (LO-UT)

Define useful complex constants:

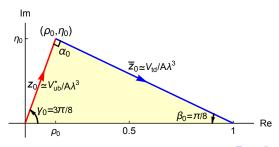
$$\mathbf{z_0} \equiv \mathbf{\lambda_u^*}/\lambda_0 = is_0 e^{-i\beta_0} = \rho_0 + i\eta_0,$$

$$\mathbf{\overline{z_0}} \equiv \mathbf{\lambda_d^*}/\lambda_0 = c_0 e^{-i\beta_0} = 1 - \mathbf{z_0},$$

where

$$s_0 \equiv \sin \beta_0; \quad c_0 \equiv \cos \beta_0; \quad \eta_0 = s_0 c_0 = \frac{1}{2\sqrt{2}} \quad \text{and} \quad \rho_0 = s_0^2.$$

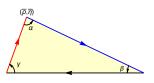
Use to construct LO-UT



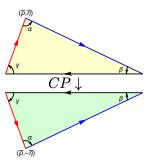
Symmetries of the M_q^{HS}

- Properties of the *paired system* (M_u, M_d) , rather than of either in isolation
- Could be viewed as consequence of forms, or, preferably, as ab initio symmetries which constrain (M_u, M_d) forms
- Outlined below

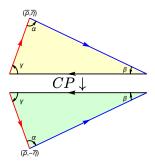
- *CP*:
- Under CP, all complex numbers in the MMs are complex-conjugated



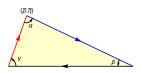
- *CP*:
- Under CP, all complex numbers in the MMs are complex-conjugated
- Observable effect is to flip orientation of UT in complex plane $(\overline{\eta} \to -\overline{\eta})$
- Unless $\overline{\eta} = 0$ (CP is conserved)



- *CP*:
- Under CP, all complex numbers in the MMs are complex-conjugated
- Observable effect is to flip orientation of UT in complex plane $(\overline{\eta} \to -\overline{\eta})$
- Unless $\overline{\eta} = 0$ (*CP* is conserved)

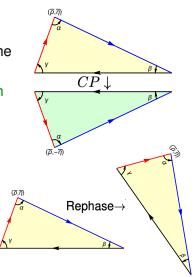


- Rephasing:
- Simultaneous *phase changes* of M_u and M_d unobservable



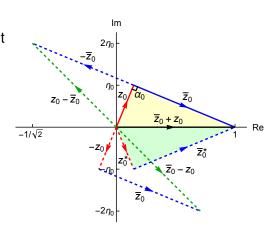
WARWICK

- *CP*:
- Under CP, all complex numbers in the MMs are complex-conjugated
- Observable effect is to flip orientation of UT in complex plane $(\overline{\eta} \rightarrow -\overline{\eta})$
- Unless $\overline{\eta} = 0$ (CP is conserved)
- Rephasing:
- Simultaneous *phase changes* of M_u and M_d unobservable
- UT simply rotates in complex plane
- (Physical) shape and size invariant



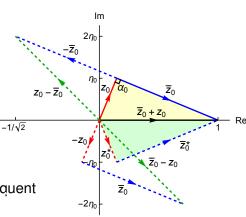
Symmetry for $lpha_0=rac{\pi}{2}$

- In HS texture, simple sign change of z₀ (or of z̄₀, but not both), flips orientation of the UT (see fig →)
- Is only observable effect
- But iff $\alpha = \pm \frac{\pi}{2}$



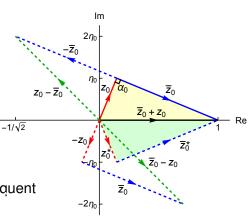
Symmetry for $oldsymbol{lpha}_0 = rac{\pi}{2}$

- In HS texture, simple sign change of z₀ (or of z̄₀, but not both), flips orientation of the UT (see fig →)
- Is only observable effect
- But iff $\alpha = \pm \frac{\pi}{2}$
- Equivalent to CP transformation
- Can be reversed by a subsequent actual CP transformation



Symmetry for $\alpha_0 = \frac{\pi}{2}$

- In HS texture, simple sign change of z₀ (or of z̄₀, but not both), flips orientation of the UT (see fig →)
- Is only observable effect
- But iff $\alpha = \pm \frac{\pi}{2}$
- Equivalent to CP transformation
- Can be reversed by a subsequent actual CP transformation
- Symmetry is good to all orders

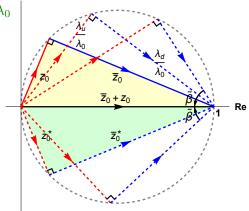


Symmetry for $\beta_0 = \frac{\pi}{8}$

• First consider $\beta_0 = \tilde{\beta} \neq \frac{\pi}{8}$ (fig \rightarrow) Im keeping $\alpha = \frac{\pi}{2}$ and $\lambda_u + \lambda_d = \lambda_0$

Clearly now

$$\left|\frac{\lambda_u}{\lambda_d}\right|=\tan\tilde{\beta},$$
 and $-\frac{\pi}{2}<\tilde{\beta}<\frac{\pi}{2}$



Symmetry for $\beta_0 = \frac{\pi}{8}$

• First consider $\beta_0 = \tilde{\beta} \neq \frac{\pi}{8}$ (fig \rightarrow) Im keeping $\alpha = \frac{\pi}{2}$ and $\lambda_u + \lambda_d = \lambda_0$

Clearly now

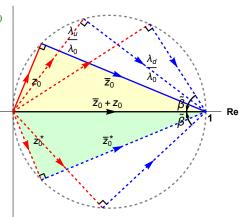
$$\left|\frac{\lambda_u}{\lambda_d}\right| = \tan \tilde{\beta},$$

and
$$-\frac{\pi}{2} < \tilde{\beta} < \frac{\pi}{2}$$

• Consider the following rotation of λ_d :

$$\tilde{\beta} \to \tilde{\beta} - \frac{\pi}{4}$$
 (*)

• Iff $\tilde{\beta} = \frac{\pi}{8}$, the result is just a CP transformation



Symmetry for $\beta_0 = \frac{\pi}{8}$

• First consider $\beta_0 = \tilde{\beta} \neq \frac{\pi}{8}$ (fig \rightarrow) Im keeping $\alpha = \frac{\pi}{2}$ and $\lambda_u + \lambda_d = \lambda_0$

Clearly now

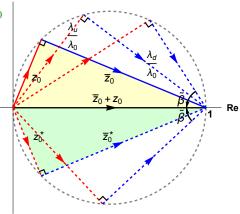
$$\left|\frac{\lambda_u}{\lambda_d}\right| = \tan \tilde{\beta},$$

and
$$-\frac{\pi}{2} < \tilde{\beta} < \frac{\pi}{2}$$

• Consider the following rotation of λ_d :

$$\tilde{\beta} \to \tilde{\beta} - \frac{\pi}{4}$$
 (*)

- Iff $\tilde{\beta} = \frac{\pi}{8}$, the result is just a CP transformation
- \Rightarrow to fix $\beta_0 = \frac{\pi}{8}$ require symmetry under transformation (*) followed by CP flip



- Proposed geometric-hierarchical MM texture
- Mass hierarchy "slopes" are related to UT sides
- ullet Symmetries constrain forms $ightarrow lpha \simeq rac{\pi}{2}$ and $eta \simeq rac{\pi}{8}$

- Proposed geometric-hierarchical MM texture
- Mass hierarchy "slopes" are related to UT sides
- ullet Symmetries constrain forms $ightarrow lpha \simeq rac{\pi}{2}$ and $eta \simeq rac{\pi}{8}$
- Hierarchy not explained, (but standard model-building methods can achieve that, e.g. F-N Mechanism)

- Proposed geometric-hierarchical MM texture
- Mass hierarchy "slopes" are related to UT sides
- ullet Symmetries constrain forms $ightarrow lpha \simeq rac{\pi}{2}$ and $eta \simeq rac{\pi}{8}$
- Hierarchy not explained, (but standard model-building methods can achieve that, e.g. F-N Mechanism)
- ullet M_u and M_d exploit 7 pars to fit 10 observables with $\chi^2/{
 m d.o.f} \simeq 1/2$

- Proposed geometric-hierarchical MM texture
- Mass hierarchy "slopes" are related to UT sides
- ullet Symmetries constrain forms $ightarrow lpha \simeq rac{\pi}{2}$ and $eta \simeq rac{\pi}{8}$
- Hierarchy not explained, (but standard model-building methods can achieve that, e.g. F-N Mechanism)
- ullet M_u and M_d exploit 7 pars to fit 10 observables with $\chi^2/{
 m d.o.f} \simeq 1/2$
- Precise prediction of quark mass double ratio:

$$rac{m_c}{m_t} rac{m_b}{m_s} = |rac{\lambda_u}{\lambda_d}|^2 = an^2 rac{\pi}{8} (1 + \mathcal{O}(\lambda_0^2)) = 0.176 \pm 0.001$$
c.f. 0.177 ± 0.002 (exp)

- Proposed geometric-hierarchical MM texture
- Mass hierarchy "slopes" are related to UT sides
- \bullet Symmetries constrain forms $\to \alpha \simeq \frac{\pi}{2}$ and $\beta \simeq \frac{\pi}{8}$
- Hierarchy not explained, (but standard model-building methods can achieve that, e.g. F-N Mechanism)
- ullet M_u and M_d exploit 7 pars to fit 10 observables with $\chi^2/{
 m d.o.f} \simeq 1/2$
- Precise prediction of quark mass double ratio:

$$\frac{m_c}{m_t} \frac{m_b}{m_s} = |\frac{\lambda_u}{\lambda_d}|^2 = \tan^2 \frac{\pi}{8} (1 + \mathcal{O}(\lambda_0^2)) = 0.176 \pm 0.001$$
c.f. 0.177 ± 0.002 (exp)

Precise predictions of UT angles:

$$\alpha - \frac{\pi}{2} = (1.30 \pm 0.02)^{\circ} \text{ c.f. } (1.6 \pm 1.4)^{\circ} \text{ (exp)}$$

$$\beta - \frac{\pi}{8} = (-0.2 \pm 0.1)^{\circ} \text{ c.f. } (0.1 \pm 0.4)^{\circ} \text{ (exp)}$$

$$\gamma - \frac{3\pi}{8} = (-1.1 \pm 0.1)^{\circ}$$
 c.f. $(-1.8 \pm 1.3)^{\circ}$ (exp)

Backup Slides

Isospin Reflection Symmetry?

Can re-write texture:

$$M_q^{HS} \equiv n_q \begin{pmatrix} c' \lambda_q^4 & b' \lambda_q^3 & 0 \\ b' \lambda_q^{*3} & b' \lambda_q^2 & A_0 \lambda_q^2 \\ 0 & A_0 \lambda_q^{*2} & 1 \end{pmatrix} \pm d \lambda_q^4 I$$

 $(b' \simeq b)$. Still get good fit to data.

- First (leading) matrix solely responsible for quark mass differences and mixing parameters.
- Second (small) matrix is I_z -dependent "pedestal" on quark masses. Symmetric under a generation-SU(3) symmetry.
- All coefficients (λ_0 , A_0 , b', c', d) symmetric under isospin reflection operator $u \leftrightarrow d$.
- Symmetry broken (only) by λ_q , n_q and the sign of d.

Analytic NLO Solutions: 1) Mixing Parameters VARWICK

• We give here the algebraic NLO solutions of the texture:

$$\begin{split} \lambda &= \lambda_0 \left(1 + f_{\lambda} \lambda_0^2 \right) + \mathcal{O}(\lambda_0^5) \\ A &= A_0 \left\{ 1 + \left[\frac{1}{4} (3b - 2\rho_0) - 2f_{\lambda} \right] \lambda_0^2 \right\} + \mathcal{O}(\lambda_0^4) \\ \overline{\rho} &= \rho_0 \left(1 + c_0 f_{\rho} \lambda_0^2 \right) + \mathcal{O}(\lambda_0^4) \\ \overline{\eta} &= \eta_0 \left\{ 1 + \left[s_0 f_{\rho} + \frac{1}{2} (1 - 5b) \right] \lambda_0^2 \right\} + \mathcal{O}(\lambda_0^4), \end{split}$$
 where $f_{\lambda} = \frac{3}{4} f_A - \frac{5}{4} + \eta_0 \delta_c,$

$$f_{A} = \frac{1}{2} \left[A_0^2 + \frac{1}{4} (c_A + c_A) \right] \qquad \delta_A = \frac{1}{2} (c_A - c_A)$$

where
$$f_{\lambda} = \frac{1}{4}f_A - \frac{1}{4} + \eta_0 \sigma_c$$
, $f_A = \frac{1}{b} \left[A_0^2 + \frac{1}{2} (c_d + c_u) \right], \quad \delta_c = \frac{1}{b} (c_d - c_u)$ and $f_{\rho} = \frac{1}{s_0} \left[-\frac{1}{2} f_A + \frac{7}{4} b - \frac{1}{2} \delta_c \right] + s_0 (1 + \delta_c)$.

• NLO corrections above, as fractions of LO terms are respectively: $-5.8 \times 10^{-3}, +2.6\%, +3.6\%$ and -1.8% (using fitted param values from table).

Analytic NLO Solutions: 2) Mass Ratios

For the quark mass ratios, we find:

$$\begin{split} \frac{m_1^q}{m_2^q} &= -\lambda_q^2 (1 - r_q) \left\{ 1 + \left[r_A \frac{(2 - r_q)}{(1 - r_q)} - 2 \right] \lambda_q^2 \right\} + \mathcal{O}(\lambda_q^6) \\ \frac{m_2^q}{m_3^q} &= b \lambda_q^2 \left[1 + (1 - r_A) \lambda_q^2 \right] + \mathcal{O}(\lambda_q^6), \end{split}$$

where $r_q = \frac{c_q}{b}$ and $r_A = \frac{A_0^2}{b}$.

- NLO corrections to mass ratios m_c/m_t , m_s/m_b , m_u/m_c , m_d/m_s as fractions of LO terms are (resp.) -4.3×10^{-3} , -2.5%, +4.3%, and +4.5% (using fitted param values from table).
- All results compatible with full numerical results reported in table.