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Wdh.: Operationen auf einem Qubit

NOT-Operation: NOT|0) =|1) NOT|1) =|0)

Z-Operation: Z|10) = |0) Z| 1) = — | 1) Spiegelung an der | 0) Achse
n 1 cos A 0 —sin 6 T
Rotationen: U(6) = = |y (0)); U(O) = = |y(0+—))
0 sin & 1 cos 6 2

Allgemeinste Spiegelung \7(9) hat die Form: ‘A/(Q) = NOT U(H) = U(—H) NOT

A~ A AT N1
Hadamard Transformation 4 H=V (Z) = NOTU <Z>

. [0)+11) ﬁ|o>=i(|o>+|1>)=:|+>
|+ ) = 2
V2
|—) = |0>\/—§|1> FI|1>=%(|0>—|1>)=:|—>



Wdh.: Kontrollierte Operationen

Man kann fur jede Ein QuBit Operation U verallgemeinerte kontrollierte
Operationen CU/_,, einfiihren:

ClU;_,, |00) = |0) ® |0),
ClU;_,, |01) = |0) ® [1),
ClU;_,, |10) = [1) @ U |0),
Cly_y, |11) = 1) @ U |1)




Wdh.: Verschrankte Zustande

Beispiel: | D) =L|OO)+L|11) ;"A((I>+)=l;é0
RS 2

Dieser Zustand wir auch der maximal verschrankte Zustand genannt

Erzeugung via Quirky:

Qubit2: |0

Fa R
1/

Qubit1: |0 | H *

Beweis:

CNOT;_,» (H® I) [00) = CNOT;_, (% 00) + |1o>) - % 100) + \[ 11)



Wdh.: Verschrankte Zustande

| ®*) gehdrt zu einer Familie von
4 Zustanden die Bell-Zustande

genannt werden Wir definieren folgende Operatlon

UBeII = CNOT,_,(H ® 1) und finden
1

o) = Ljooy+ L),
_\ﬁ| >_ﬁ| ) >=UBe11 01),
1 1
Yty =—|01) + — [10),
) \?I ) \?I ) &) — Uy [10)
“‘P_ — E 01) — E 110) > Ug. 11> :
CNOT;_, (H® I) [00) = CNOT;_5 (\% 00) + > |1o>> — % 100) + f 11)
Uggy = (H® DHCNOT, _; HIO)=|+),H|1)=]|-)
ﬁ2|0>=PI|+>=%<ﬁ|0>+ﬁ|1>>=%<|+>+|—>>=%<2|0>>=|0>

A A 1 . A | 1
H|1)=H|-)=—H|0)-H|1) =—(+) = | =N ==C|1)) = |0
) ) G ) ) ) ) > ) )

NG



Wdh.: Die Macht von Verschrankung

Superdense Coding = ubertrage 2 Bit Info mit einem Bit

Start: Bob und Alice teilen sich schon vorher den Zustand | (I)+),
d.h. Alice besitzt das erste Bit und Bob das zweite Bit dieses Zustandes

Ubungsaufgabe 3.14: Einen Bell Zustand in einen Anderen iiberfiihren

Zeige, dass Alice den maximal verschriankten Zustand |®™) in jeden anderen Bell Zustand
|®7), [¥7), oder |¥7) tiberfiihren kann mittels lokaler Operationen nur auf ihrem Qubit.

Alice andert nur das 1. Bit und kann damit alle 2 QuBit Bell-zustande erzeugen!

P+ = \i@ 100) + f 11y, 1. QuBit: il Dies wendet Alice im Fall {0,0} an

o) = % 100) — f 11), 1. QuBit: Zl Dies wendet Alice im Fall {0,1} an
n 1 A - - -

¥ =510+ \/ 19, 4, QuBit: NOT; Dies wendet Alice im Fall {1,0} an
1 R

¥ = 20~ f 0. 4, QuBit: Z,NOT; Dies wendet Alice im Fall {1,1} an

Dann sendet Alice lhr QBuit an Bob und der hat den gesamten Zustand
und kann des gesamten Zustand extrahieren (U 3.13)



Wdh.: Die Macht von Verschrankung

Klassisch: Maximal 75% Gewinnwahrscheinlichkeit - Beispiel fur Bell-Ungleichung
John Stewart Bell; 1928-1990; 1964 Ungleichung

Obiges Spiel: John Clauser, Michael Horne, Abner Shimoney, Richard Holt

QM: verletzt Bell-Ungleichung, mehr als 75%

- dies ist experimentell bewiesen, z.B. Alan Aspect

Alain Aspect
B B French
(b. 1947)
"for experiments with entangled photons,
John Clauser _ establishing the violation of Bell inequalities
2022 = American _ _ _ ,
(b. 1942) and pioneering quantum information
science"
Anton Zeilinger _
= Austrian
(b. 1945)

Kann auch als Beweis genutzt werden, dass man einen echten Quantencomputer hat!
Man spielt das Spiel und bei > 75% war es ein QC :-)



Wdh.: Quantenschaltungen

Bildliche Darstellung: welche Operation wird an welchen Qubit durchgefiihrt

{H ! Rx(=57) I Z}—o— Rx (=) I H}-

el Sl Ol

Beispiel: Simulation einer vereinfachten Theorie des Elektromagnetismus

Formal besteht eine Quantenschaltung aus 3 Teilen:

1. Initialzustand: typischerweise |0)
2. Quantenoperationen: meist 1 oder 2 QuBits gleichzeitig involviert
3. Messungen, um QuBits auszulesen

(Siehe Quirky)
Die Operationen werden oft auch als Gatter oder Gates bezeichnet

z.B.: Hadamard-Operation = Hadamard-Gatter = Hadamard-Gate



Wdh.: Viele Quantenbits

Beliebiger Zustand mit 7 QuBits: 2" Basis Elemente

[¥) = ¥00..00]00...00) + Poo.01]00...01) +... 4+ 41117 [11...11)

Es muss gelten:

2 2 2
¥00..00 T Poo..o1 +--- + Y1111 =1

Mogliche Darstellung als Vektor in einem 2" dimensionalen Vektorraum.

Bei n = 300 gibt es 2°%° ~ 2 - 10°! Amplitude (mehr als Atome im Universum)
d.h. sowas kann nicht klassisch gespeichert werden, aber als Quanten Computer
gebaut!



Wdh.: Viele Quantenbits

Mit dem Tensorprodukt konnen Zustande beschrieben werden, die zu kombinierten
QuBits gehéren, allgemein:

|a1,...,an)®|b1,...,bm> = |(11,...,(1n,b1,...,bm>.

Beispiel 1: [101) ® |01) = [10101)

1 QuBit-Operationen U wirken wie folgt:
U,lay,...,a,) =Ula;) @ lay,...,a,)

Analoge Definitionen fur l72, lA]3,...

Beispiel 2: |®T)® |1) = % ( |1001) + | 111))
1

H,| oY) @|1) =5(|001>+|011>+|101>—|111>)



Wdh.: Operationen

2 QuBit-Operationen CNbTHk wirken wie folgt:
CNOT,_.|a;,...,a...,a,) =a,...,a®a,...,a,)

The Quirky Quantum Simulator

Quest 4: Quantum composer

\ Reset H Undo H H Share ‘ ‘ Make U(0) ‘
¢ Operations Displays My Operations
2 | Al o | [Prob
O
2 | Z|H
Qubit 5: 10) ® Z
. N
Qubit 4: 10; U

Qubit 3: 0> H

Qubit 2: 10) * Z

Qubit 1: 10> * l



Wdh.: Die allgemeinsten Quantenoperationen

Die allgemeinste Quantenoperation hat folgende Eigenschaften:

1. Sie st linear

2. Sie bildet Quantenzustande auf Quantenzustande ab (Normierung)

3. Sie ist invertierter (reversibel)



Wdh.: Die allgemeinsten Quantenoperationen

Definiere die Toffoli-Operation auf drei Qubits durch
T |a,b,c) = |a,b,c @ ab)

x
auf Basiszustidnden (ab ist dabei das Produkt der zwei Bits a,b € {0,1}, und & wurde in % Bl A - |"’°"
ks

Gl. (3.20) definiert), und erweitere sie durch Linearitit auf beliebige Drei-Qubit-Zustinde. il
Zeige, dass T alle Quantenzustinde auf Quantenzustinde abbildet, und dass T invertierbar qubit3: 10—
1st. Qubit2:  10)
Bemerkung: T invertiert das dritte Bit genau dann, wenn beide ersten Bits beide eins sind qubit1: 10

— es ist also eine “zweifach-kontrollierte”-NOT-Operation.

The Quirky Quantum Simulator
Quest 4: Quantum composer

Reset Undo Share Make U(B)

Operations Displays My Operations

T kann auch als eine Reihe von 1- und 2 QuBit-Operationen geschrieben werden!

Lemma 6.1: For any unitary 2 x 2 matrix U, a N\(U) gate can be simulated by a

network of the form

U

https://arxiv.org/pdf/quant-ph/9503016

]

]

T .5

where V' is unitary.
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where A = Ry(7). In the above, the “=” indicates that the networks are not identical,
but differ at most in the phases of their amplitudes, which are all £+1 (the phase of

the |101) state is reversed in this case).

Jede Quanten-Operation auf n Qu-Bits kann auch als eine Reihe von 1- und 2 QuBit-
Operationen geschrieben werden!


https://arxiv.org/pdf/quant-ph/9503016

Wdh.: Regeln fur Schaltungen

Es gibt Tricks zur Vereinfachung von Quantenschaltungen
Einfachere Schaltungen sind meist auch schneller

Ubungsaufgabe 4.5: Z und NOT

Aus Gl. (2.20) wissen wir, dass das Hadamard-Gate H sich wie folgt auswirkt:

=
V2

1. Priife, dass ein erneutes anwenden von H wieder zu den Zustinden |0) und |1) fiihrt.

81 = ([0 — [ = [

H|0) = 7

0 D)=

HiE =100, H|=) =)

2. Zeige, dass H Z H = NOT, wobei Z in Gl. (2.12) definiert ist.

3. Zeige, dass HNOTH = Z.

1

N

ﬁ|+>=%(ﬁ|o>+ﬁ1|1>)=
1

Al-)=

N

o
HZA|0)=HZ|+)=H|-)=|1)=NOT|0)

HZA|\)=HAZ|-)=H|+)=0)=NOT|1)

HNOTA|0) = ANOT|+)=H|+) = |0) = Z|0)
HNOTA|1) = ANOT|-)=-A|-)=—|1)=Z|1)

(10y + 1y + [0y — 1)) = |0)

A10) A1) =2 (10) +11) = 10) + 1)) = 1)

Ubungsaufgabe 4.6: Spiegelungen und Drehungen (optional)

Zeige, dass das Produkt zweier Spiegelungen eine Rotation ist. Zeige also, dass
V(62)V(61) = U(8),

fiir einen Winkel 6. Kannst du 0 relativ zu 6; und 6> bestimmen?

Hint: Nutze Gl. (2.19) und die Gleichung U(¢2)U(¢1) = U(¢1 + ¢2).

Definition:
V() = NOT U(0) = U(—0) NOT

V(0,)V(6)) = U(-0,)NOTNOT U(6)) = U(-0,)U(6,) = U(6, — 6,)



Wdh.: Alle Qubits messen

Wenn wir 7 QuBits messen dann erhalten wir mit der Wahrscheinlichkeit
Pa..a, = qulwan den Bit-String a,....q,

Quirky

Qubit3: |0

N
\}/

MRIR

Qubit 2: |0>

fa Y
Qubit 1: 0>—+H H T *




Wdh.: Einzelne Qubits messen

Annahme: Wir haben einen 3-QuBit Zustand

| ) = Wooo | 000) + wio; [001) + 401 010) + w09 100) + iy [011) + w101 [ 101) + 19| 110) + gy [ 111)

Wenn wir das erste Bit messen, dann finden wir mit der Wahrscheinlichkeit

2 2 2 2
Wao T Waor T Va0 T VWani
den Werta € {0,1}.

.. . ) 1 2 5 ] ] .
Beispiel: Messen wir das erste QuBit von 78 1000) + \/g |010) +|\[§ |111) so finden wir den Wert Null mit

1 2 3
der Wahrscheinlichkeit — + — = —
8 8 3

Quirky:

Qubit 3: |0)

Qubit 2: |0)

Qubit 1: 00—+ H

A A A 1 A A A A 1
CN0T1_>3CNOT1_>2H1 | OOO> = 7 (CNOT1_>3CNOT1_>2 | OOO> + CNOTI_,3CNOT1_)2| 100)) = 7 ( |OOO> + | 111>)
2 2



Wdh.: Einzelne Qubits messen

Zustand des 2. und 3. QuBit, nachdem das 1. gemessen wurde?

Zu der Messung tragen folgende Zustande bei:
|w) = w001 a00) + 01 |a01) +y 10| al0) + 1y [all)

Nach der Messung des 1. QuBits kdonnen wir dies auch weglassen
[¥) = Wa00100) + 01 [O1) + 7,101 10) +y,4, | 11)

Jetzt mussen wir noch sicherstellen, dass dieser Zustand auch normiert ist

) = ¥a00 100) + Y01 01) + Ya10 110) + Yal1 1)
C C C C

- _ 2 2 2 2
mit ¢ = \/l//aOO T WaOl T ll/alO T Wall

1

Beispiel: Messe 1. QuBit von 7 1000) + \% 1111) und finde O
dann ist die verbleibende unnormierte Wellenfunktion — | 00)

V2

und die normierte Wellenfunktion lautet dann | 00)



Wdh.: Einzelne Qubits messen

Messe 1. QuBit von 3 QuBit Zustand

Dies kann man sich vorstellen als

Pooo |00) + ¥oo1 |01) + P10 [10) + Po11 [11)

= /7|0
1P) Po|0) ® %o
100 |00) + P101 |01) + P10 |10) + 1171 |11)
1 -

Oder (beachte: p, + p; = 1)
¥) = VPol0) @ [¢o) + /P1]1) ® |¢1),

Beispiel:

1 1 1 1
75 1000) + - [111) = —[0) ©100) + = [1) ®[11),

Hieraus kann man sofort die Wahrscheinlichkeiten ablesen



Wdh.: Einzelne Qubits messen

Wir kdnnen auch die ersten zwei QuBits eines allgemeinen Drei QuBit zustand messen.

Wir erhalten | ab) mit der Wahrscheinlichkeit ., = ¥2,, + 21

lpabO |O + ll)abl |1>
\/ Yavo + Van

Nach der Messung haben wir dann den Zustand: |y,;,) =

Ubungsaufgabe 4.7: Zwei von Drei

Mit welchen Wahrscheinlichkeiten ergibt das Messen der ersten beiden Qubits des Drei-
Qubit-Zustands aus Gl. (4.7) welche Messergebnisse? Uberpriife dein Ergebnis mit QUIRKY.

The Quirky Quantum Simulator

1 Quest 4: Quantum composer

5 : | OO> Reset || Undo | Share | | Make U(®) |
% 1000) +% 111) | % ?f:‘ * | [P
—:|11) §
2 Qubit3:  10) C}
Qubit 2: 10 s /7< o.::
SEEE

Qubit 1: 100+ H




Wdh.: Einzelne Qubits messen

Wir konnen einzelne QuBits messen und abhangig vom Messergebnis die
verbleibenden QuBits modifizieren

Beispiel

1 1 P
— |000) + — [111
\/E | > \/i | > Qubit1: |00 H \T ¢ /7<=I

Qubit 3: |0)

N
WV

Qubit 2: |0>

Messe 1. QuBit: beim Ergebnis | 1) wollen wir die verbleibenden QuBits auf | 00)

zurucksetzen
Qubit3:  |0) |- s A =—=
Qubit2: |0 N N /7§=. I
Quoitt: [0 H T . ,7§=l T : Kontroll-Bit ist hier

ein klassisches Bit

Formal: CNOT1_2[a] ® |b,c) = [a] ® |[a b, c)



Wdh.: Quanten-Uberraschungen

Verschiedene interessante Phanomene,
die beim Umgang mit QuBits auftreten

421 Unklonbarkeit . . . . . ... ... ..
42.2 One-Time-Pad. ... ... .. ....
423 Quanten-Teleportation . . . . . . ..

42.4 FEin Blick auf Quantennetzwerke . .
4.2.5 Die Unscharferelation ... ... ..



Wdh.: Unklonbarkeit

Klassische Bits konnen einfach geklont werden:
wir schauen es an und das was wir sehen, das kopieren wir

0] — 00],
1] — [11].

Kann man Qu-Bits auch klonen?

Annahme: Klonen geht, d.h. bei gegeben Zustand |y) gibt es die Operation C,
die z.B. aus dem Zustand |0) den Zustand |y) macht.

C(ly)®10)) = |w) ® |w)

Diese Operation macht dann folgendes aus den Basis Operatoren

C(10)®10)) =10)® |0)
C(IH®10))=1)®|1)

Dies ist méglich und wire z.B. die CNOT,_,



Wdh.: Unklonbarkeit

In dieser Hausaufgabe wollen wir beweisen, dass es keine Quantenoperation C geben kann,
die Gl. (4.16) erfiillt. Wir nutzen dafiir einen Trick, der sich Widerspruchsbeweis nennt. Das
bedeutet, wir werden zeigen, dass die Existenz einer Klon-Operation C etwas impliziert,
von dem wir wissen, dass es nicht stimmt (z.B. “0 = 1”). Daraus konnen wir dann schliefden,
dass kein solches C existieren kann.

Lass uns also zu Beginn annehmen, dass es eine Quantenoperation C gibt, die GI. (4.16)
erfiillt. Nun kannst du C(|+) ® |0)) auf zwei verschiedene Arten berechnen:

1. Nutze zuerst Gl. (4.16) und schreibe das Ergebnis dann in der Form von Gl. (3.30).

2. Schreibe erst |[4+) ® |0) in der Form von Gl. (3.30), nutze dann die Linearitit von C
und wende abschliefend Gl. (4.16) an.

Erhiltst du in beiden Féllen das gleiche Ergebnis? Wenn nicht, was kannst du daraus
schliefden?

N
pe 1 1 1 1
7 =14 @1 +) = 2100) +=[01) + —[10) + [ 1)

1, 1 1
Widerspruch zur B ﬁc ( |OO> + | 10>) - ﬁ | OO> t ﬁ | 10>

Linearitat C(10)®10)) = 0) ® |0)

C(IH®I0)=11)®]1)



Wdh.: Unklonbarkeit

No-Cloning Theorem

Ein unbekannter Quantenzustand kann nicht kopiert werden.
Dieser beinhaltet im Allgemeinen unendlich viel Information!
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A single quantum cannot be cloned on an incoming photon with polarization state |s):
W. K. W " |Ao)ls) > |Alss) (1)
. K. Wootters : g

Here |A,) is the ‘ready’ state of the apparatus, and |A,) is its

Center for Theoretical Physics, The University of Texas at Austin, final state, _WhiCh may or may not depend on the polarization

Austin, Texas 78712, USA of the original photon. The symbol |ss) refers to the state of
the radiation field in which there are two photons each having

W. H. Zurek the polarization |s). Let us suppose that such an amplification
can in fact be accomplished for the vertical polarization | )

Theoretical Astrophysics 130-33, California Institute of Technology, and for the horizontal polarization |«»). That is,

Pasadena, California 91125, USA
A T) > |Ave)|TT) (2)




Wdh.: One-Time-Pad = Teleportation von probabilistischen Zustanden

Problem: Alice mochte eine Nachricht an Bob verschicken.
Die Nachricht soll so verschlusselt sein, dass nur Bob sie verstehen kann,
Insbesondere nicht Eve, auch wenn sie die Nachricht liest .

Start: Alice und Bob treffen sich davor in einem Cafe
2 Miinzen im Zustand r = E[OO] + 5[1 1] - jeder nimmt eine Miinze mit, die nun

entweder Kopf oder Zahl zeigt und dies nicht mehr verandert.

Alice will nun die Nachricht m € {0,1} an Bob schicken

|
Der Gesamt-zustand aller Bits lautet dann [m]| @ r = E[mOO] + E[ml 1]

Alice besitzt die ersten beiden Bits von diesem Zustand, Bob das dritte.

Protokoll: 1) Alice schaut sich ihr Bit von 7 an

2a) r = (0 = sie schickt m an Bob. 2b) r = 1 = sie schickt NOT(/) an Bob
3) Wenn Eve diese Nachricht abfangt, dann erhalt sie immer mit 50% 0 oder 1

4) Bob schaut sich sein Bit von r an, wenn er m empfangt
5a) r = 0 = Bob nimmt m 5b) r = 1 = Bob nimmt NOT(m)

Bob Alice
Formal werden folgende Operationen durchgefuhrt: CNOT3_,1 CNOT,_1([m] ®7).



Wdh.: One-Time-Pad

Formal werden folgende Operationen durchgefihrt:

CNOT3_,1 CNOT,_1 ([m] @ 7).
Bob Alice

1 1
CNOT; 1 CNOTy41 5([m,0,0] + [m,1,1]) = CNOTs 41 -([m,0,0] + [NOT(m), 1,1])

- %([m,O, 0] + [NOT(NOT(m)),1,1]) = %([m, 0,0] + [m,1,1]) = [m| ®@r.

Am Ende hat Bob das Bit m

Man kann nicht nur ein Basis-Bit 0 oder 1 verschicken, wegen Linearitat kann
man auch ein ganzes probabilistisches Bit p verschicken
Das gesamte Bitistdann p @ r



Wdh.: Quanten-Teleportation

QuBits konnen nicht geklont werden, aber sie konnen von einem Ort
zu einem anderen gebracht werden!

Ausgangszustand:
Alice und Bob teilen sich den maximal verschrinkten Zustand | @), Alice hat das

erste QuBit davon und Bob das zweite.
Alice hat zusatzlich noch das Nachrichten-QuBit |y)
Insgesamt beschreibt dies den 3 QuBit Zustand |y) ® | D™)

Falls Alice den Zustand |y) = | 1) senden will, sieht das so aus

Bob ' Qubit 3: |0)

(M
Qubit 2: 004 H T

Qubit 1: |0y

Alice

4 A
L/

Wie machen wir weiter?



Wdh.: Quanten-Teleportation

Wie machen wir weiter? Wir kénnen |y) nicht klonen, vielleicht muss Alice’s Zustand durch eine Messung zerstort
werden? Einfache Messung reicht nicht, da |y) nicht aus einer einzigen Messung extrahiert werden kann.

Man wird finden: Bob Qubit 3:
(Operation zur

Unterscheidung
der 4 Bell- Qubit 2:
zustande)  Alice
Qubit 1:

B " — (H® 1)CNOT1—>2

Will Alice einen  Bop ‘Qublts:

anderen Zustand
schicken, dann
findet man .
dasselbe Alice

Messergebnis Qubit 1:

Qubit 2:

0>

0> —

0>

/)
H T (N AR
""" Alice findet alle 4 Basiszustande
TN f7< 0% mit gleicher Wahrscheinlichkeit
\l/ . 0%
0) (1
00— H T i /7{
|0) —U(0.42) T e /7§




Wdh.: Quanten-Teleportation

Bob ' Qubit3: |0 rdh\
Qubit2:  |0) - H T - AHE—
5.0%
Alice s
Qubit 1: |l//> ® H -f7§ o

Der allgemeine Zustand vor Messung lautet (H @ 1 ® i)(CNAOTl2 Q i)( ly) & |CI)+))

(HR®I®I)(CNOT12 1) (|9) ® |[&F))

. % (H®T®I) (CNOT;_,, ® I) (0 [000) + o [011) + 1 [100) + ; [111))

— \i@ (H®I®1I) (40]000) + 1o [011) + 41 [110) + 1 [101))

- - (%0 [000) + 1o [100) + 4o [011) + 1o [111) + 1 |010) — 11 |110) + 1 [001) — 91 [101))

=2
— ooy @ 210+ 911D | 157y g P |0>;L‘P° )

+10) ®



Wdh.: Quanten-Teleportation

(HRI®I) (CNOT1. ®I) (|§) ® |®+))

_ L H®I®I) (CNOTL, @ I) (30 [000) + g [011) + 1 [100) + i [111))

(H@I®I) (0 |000) + 9o 011) + 91 [110) + ¢4 [101))

S-S

($01000) + o [100) + o [011) + o [111) + 1 [010) — 1 [110) + 1 [001) — 1 [101))
o0y & IO HHI) | oy #1100 + ol

oy PRI | gy o 0110+ 4o 1)

N[ —

Die Wahrscheinlichkeiten p ,, das Ergebnis | ab) fiir die
ersten beiden QuBits zu erhalten:

me () +(5) - -4
m=(2) +(3)' =5
() +() -4
= (1) +(3) -

1
Wie von Quirky behauptet, tritt jedes Ergebnis mit Z auf



Wdh.: Quanten-Teleportation

(HRI®I)(CNOT1,, ®I) (|p) ® |®F))
1

Bob (aubts: [0 Ja = 3 (HOI® D) (CNOT12 8 1) (0 [000) + 1o [011) + 1 [100) + 17 |111))
iz | H j O— A = 75 (H®I®1) ($0000) + Yo 011) + 1 110) + 42 [101)
Alice =
= " iR = 2 (#1000} + o [100) + o 011) + Yo [111) + g1 [010) — 1 [110) + y1001) — y [101))

- |OO> Q Po |0> ;‘4’1 |1> - |Ol> ® P1 |0> ';‘ Po |1>
i |10> ® lpO |O> ;ll)l |1> n |11> Q —lP1 |0>2+ lPo |1>

Bob’s Zustand hangt nun vom Ergebnis der Messung von Alice ab:

Alice: 00 = Bob: | yy) =¥, |0) +yq| 1)
Alice: 01 = Bob:  |yy) = 1//1 0) +ypl 1)
Alice: 10 = Bob:  |yiy) =y, 0) —yq| 1)
Alice: 11 = Bob:  |yq) = l//l 10) +ypl 1)

Alice sendet nun Bob ihr Ergebnis [ab], damit weiss Bob was er mit seinem Zustand machen muss

A

Alice: 00 = Bob: L ywlo) =wpl0) +yq | 1)
Alice: 01 = Bob:  NOT |y} = w10} + ;| 1)
Alice: 10 = Bob: Zlw)) =yl 0) + | 1)
Alice: 11 = Bob:  ZNOT |y ,) = yq|0) 4+ ;| 1)



Wdh.: Quanten-Teleportation

Alice sendet nun Bob ihr Ergebnis [ab], damit weiss Bob was er mit seinem Zustand machen muss

Alice: 00 = Bob: 1wi) = vyl 0) + | 1)
Alice: 01 = Bob:  NOT |y} = w10} + ;| 1)
Alice: 10 = Bob: Z Wio) = ¥l 0) +yq] 1)

Alice: 11 = Bob:  ZNOT |y ,) =y |0) 4+ y; | 1)

Diese vier Félle konnen einfach zusammengefasst werden:
1. schaue das Bit b and und wenn b = 1, wende NOT an,

2. schaue das Bit 4 und wenn a = 1, wende Z an.

Teleportationsschaltkreis:

: N AN
Bob ' Qubit3: | N NP Z
. (]
Qubit 2: 10> H ® Ny ®

Alice

) [k

o o o o
e o o o

. Y -
Qubit 1: |0) 1 * H




4.2.4 Ein Blick auf Quanten-Netzwerke

Wiederholte Quanten-Teleportation -> Quanteninternet.....

: fan o
Bob ' Qubit 3: |0) N \N P 24
. — [4-\ 5.0%
Qubit2: 004 H —e——1 A —®
Alice 5.0%
Qubit1: |0 —13 . H -/7< .08

Bob ‘ Qubitd:  |0)

+—D

Qubit 3: 0> H

Alice

+—D
S

Qubit 2: 004 H

T

Donkey ' Qubit1: |0



4.2.5 Die Unscharferelation

Heisenbergsche Unscharfe Relation....

Betrachten wir den Zustand |y) =y |0) +yq | 1)

RN

Messergebnis: |0) | 1)

Hier sind nur die beiden Zustédnde |0) und | 1) mit keiner Ungewissheit (uncertainty)
behaftet

FlUhren wir vor der Messung z.B. eine Hadamard-Operation aus

+4 HHA
Dann sind nur die Zustinde | + ) und | — ) mit keiner Ungewissheit behaftet, denn H
macht daraus die beiden Zustinde |O) und | 1)
A A A Yo + — ¥
Aly) = w10y +y A1) = =27 o) 4 1)
V2 \/5
(wp + v’ | (wo — v’

Jetzt finden wir mit g, = » den Zustand |0) und mit g, = > den Zustand | 1)



4.2.5 Die Unscharferelation

Heisenbergsche Unscharfe Relation....

Messung
4 A => |0) und | 1) sind mit keiner Ungewissheit behaftet
| + ) und | — ) schon
Messung
1 H HAA => | + ) und | — ) sind mit keiner Ungewissheit behaftet

|0) und | 1) schon

Mass fiir die Ungewissheit: (p) = py(1 — py) = poP;

A
1
1

[NCT Ul E P S
[EY

0

Es gibt keinen Zustand fur den

Heisenbergsche Unscharfe Relation: (p) + (g) = 2 beide Ungewissheiten gleich
Null sind
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5 Virtuose Algorithmen

Ziel: Quantencomputer, der (manche) Probleme (viel) schneller 10st als jeder klassische
Computer (benutzt klassische Physik, i.e. Elektrodynamik, und rechnet mit Bits)

Wie misst man die Geschwindigkeit eines Algorithmus?
Soll von expliziter Hardware unabhangig sein:

Man zahlt die Zahl der elementaren Operationen
Genauer:

wie skaliert die Zahl der notwendigen elementaren Operationen mit der GroBBe des
Problems (Komplexitatstheorie)

Quantenalgorithmen:
- elementare Operation: Hadamard, CNOT, Messung...

fd Y

Beispiel fur ‘ CNOT q1 -> q2;
2 elementare Operationen i H L H q1;
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5.1 Mit Quantenorakeln sprechen

Es gibt verschiedene Arten von elementaren Operationen, die langsamsten sind mit
einem Zugriff auf Daten (Speicher, Festplatte, Internet,..) verbunden

1. Abschatzung der Laufzeit: Zahl der Operationen mit Datenzugriff

Orakel = Subroutine die Datenzugriff beschreibt (Daten auslesen, aus internet runterladen
oder selber erzeugen...)

Klassisches Orakel: Funktion f: {0,1}" — {0,1}
Eingabe x € {0,1}" = Menge aller Bitstrings der Lange 7 - entspricht der Frage
Ausgabe f(x) € {0,1} - entspricht der Antwort

Beispiel: 4 Bit Speicher kann durch f: {0,1}> — {0,1} modelliert werden
Um alle vier Bits rauszukriegen, muss man f viermal anwenden, und man erhailt die

vier Bitwerte £(0,0), /(0,1), /(1,0) und f(1,1).

Wichtig: uns interessiert nicht der Wert von f fiir eine bestimmte Eingabe

Wir sind an den Eigenschaften von f interessiert, wobei wir f so selten wie moglich auswerten
wollen

Beispiel: wir wollen wissen, ob f(x) = O fiir alle x € {0,1}"
Mogliche Losung: Frage Orakel fiir zufallige Werte von x, bis wir f(x) = 1 finden
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>
Z
O

=l

) 1,X2)
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5.1.1 Umkehrbare Berechnungen

Koénnen wir auf Quantencomputern alles machen, was man auch auf klassischen
Computern machen kann?

Beachte: Quantenoperationen missen invertierter sein!
Das gilt nicht bei klassischen Operationen!

Zeige: jede Berechnung kann umkehrbar gemacht werden

Beispiel fur unumkehrbar klassische Operation:

o
>
Z,
O

=l

e— 1,x2)

(x1, x2] — [AND(x1,x2)].

_ - O O

_0 O O

0
1
0
1

2 Eingangsbit und 1 Ausgangsbit: das kann niemals umkehrbar sein
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(X1, x2] — [x1, AND(x1, x2)].

Schon besser, aber 00 und 01 fuhren zum selben Ergebnis 00...

Erweiterung auf 3 Bits:
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5.1.1 Umkehrbare Berechnungen

| | % e A & Xz seRdx;)
Die Abbildung  [x1,x2,y] — [x1, X2,y & AND(x1, x2)], ©o oo| oo o
@ \ O © \ @
i1 O ©O ! O (&)
1 Yy O 1) )
Q O 1\ o O L\
- t I - h - - [ ] - O \ l O \ l
ist gleichzeitig ihre eigene Inverse e N \
V) \ V') Q

[x1, %2, y] = [x1, X2,y & AND(x1, x2)]
— [x1, X2,y & AND(x1, x2) & AND(x1, x2)] = [x1, x2, y].



5.1.1 Umkehrbare Berechnungen

% e A & Xz seRdx;)
Die Abbildung  [x1,x2,y] — [x1, X2,y & AND(x1, x2)], © o 0| oo o
@ \ O o \ @)
! O O ! O (]
1 Yy O 1) )
Q O 1\ o O L\
- - [ ] [ ] [ ] - O \ l O \ ‘
ist gleichzeitig ihre eigene Inverse S BN \
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[x1, %2, y] = [x1, X2,y & AND(x1, x2)]
— [x1, X2,y & AND(x1, x2) & AND(x1, x2)] = [x1, x2, y].

Es gibt also umkehrbare Erweiterungen der AND-Operation



5.1.2 Bit-Orakel

Obiger Ansatz zur Erweiterung einer nicht-reversiblen Operation auf eine reversible
funktioniert nicht nur fur die AND Operation, sondern fir jede beliebige Funktion

f:1{0,1}" - {0,1}
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5.1.2 Bit-Orakel

Obiger Ansatz zur Erweiterung einer nicht-reversiblen Operation auf eine reversible
funktioniert nicht nur fur die AND Operation, sondern fir jede beliebige Funktion

Jf:10,1}" = {0,1}
Wir erweitern die n Eingangs-Bits auf # + 1 und definieren

[x].l' : -/xn/y] —> [x1/° : -/xn/y@f(xlr- : -/xn)]



5.1.2 Bit-Orakel

Obiger Ansatz zur Erweiterung einer nicht-reversiblen Operation auf eine reversible
funktioniert nicht nur fur die AND Operation, sondern fir jede beliebige Funktion

Jf:10,1}" = {0,1}
Wir erweitern die n Eingangs-Bits auf # + 1 und definieren

[xlz- : -/xn/y] —> [x1/° : -/xn/y@f<x1/ . -/xn)]

Diese Operation ist invertierbar (wieder die eigene Inverse)



5.1.2 Bit-Orakel

Obiger Ansatz zur Erweiterung einer nicht-reversiblen Operation auf eine reversible
funktioniert nicht nur fur die AND Operation, sondern fir jede beliebige Funktion

S 10,1} = {0,1}
Wir erweitern die n Eingangs-Bits auf # + 1 und definieren

X1, X Y = (X, X, YD f(X, e, X))

Diese Operation ist invertierbar (wieder die eigene Inverse)

D.h.: jede Berechnung, die auf einem klassischen Computer lauft, kann prinzipiell auch
auf einem Quanten-Computer laufen



5.1.2 Bit-Orakel

Quantenversion von
X1, X, Y (X, X, YD (X, X)) ]

lautet:



5.1.2 Bit-Orakel

Quantenversion von
X1, X, Y (X, X, YD (X, X)) ]

lautet:

Uf \xl,...,xn,y) — ‘xl,---;xn/y@f(xll'”lxn))



5.1.2 Bit-Orakel

Quantenversion von

X1, X, Y = (X1, X, Y B f(X, ., Xy)]

Uf |x1,...,xn,y> = |x1,...,xn,y@f(x1,---,xn>>

Wegen der Linearitat reicht es aus, zu betrachten was ‘ZAlf mit den Basis-Zustanden
macht: Permutation der Basiszustande



5.1.2 Bit-Orakel

Quantenversion von
X1, X Y = (X, X, YD (X, X))

lautet:

Uy X1, .o, X0, y) = X1, 0, X0, YD f(X1,..., %))

Wegen der Linearitat reicht es aus, zu betrachten was CZA[f mit den Basis-Zustanden
macht: Permutation der Basiszustande

Ubungsaufgabe 4.4: Toffoli

Definiere die Toffoli-Operation auf drei Qubits durch
T|a,b,c)y=|ab,cDab)

auf Basiszustinden (ab ist dabei das Produkt der zwei Bits a,b € {0,1}, und & wurde in
Gl. (3.20) definiert), und erweitere sie durch Linearitit auf beliebige Drei-Qubit-Zustdnde.

Zeige, dass T alle Quantenzustiande auf Quantenzustiande abbildet, und dass T invertierbar
ist.

Bemerkung: T invertiert das dritte Bit genau dann, wenn beide ersten Bits beide eins sind
- es ist also eine “zweifach-kontrollierte”-NOT-Operation.




5.1.2 Bit-Orakel

Quantenversion von
X1, X, Y = (X1, X, Y B f(X, ., Xy)]

lautet:

Uf |x1,...,xn,y> = ‘xl,---,xn,y@f(xlz---/xn»

Wegen der Linearitat reicht es aus, zu betrachten was ‘ZAlf mit den Basis-Zustanden
macht: Permutation der Basiszustande

Ubungsaufgabe 4.4: Toffoli

Definiere die Toffoli-Operation auf drei Qubits durch
T|a,b,c)y=|ab,cDab)

auf Basiszustinden (ab ist dabei das Produkt der zwei Bits a,b € {0,1}, und & wurde in
Gl. (3.20) definiert), und erweitere sie durch Linearitit auf beliebige Drei-Qubit-Zustdnde.

Zeige, dass T alle Quantenzustiande auf Quantenzustiande abbildet, und dass T invertierbar
ist.

Bemerkung: T invertiert das dritte Bit genau dann, wenn beide ersten Bits beide eins sind
- es ist also eine “zweifach-kontrollierte”-NOT-Operation.

Die Quantenoperation CZAlf heisst das Bit-Orakel fiir f

Name: “allmachtiges” Orakel gibt uns den Wert der Funktion fir beliebige Eingaben....
Uns interessiert: wie oft missen wir das Orakel befragen, um Eigenschaften von f zu bestimmen?



5.1.2 Bit-Orakel

Vergleiche: ‘Rate meine Zahl’-Spiel

e Freund/Freundin denkt sich Zahl X aus

e Frage: Ist Deine Zahl X?
e Antwort: Ja/Nein

Wie kann man die Zahl der Fragen minimieren?
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Beispiel 1:f(x1, .XZ) — AND(XI, .X2) = X1X9»
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Vergleiche: ‘Rate meine Zahl’-Spiel

e Freund/Freundin denkt sich Zahl X aus

e Frage: Ist Deine Zahl X?
e Antwort: Ja/Nein
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Vergleiche: ‘Rate meine Zahl’-Spiel

e Freund/Freundin denkt sich Zahl X aus

e Frage: Ist Deine Zahl X?
e Antwort: Ja/Nein

Wie kann man die Zahl der Fragen minimieren?

Beispiel 1:f(x1, .XZ) — AND(XI, .X2) = X1X9»

Bit-Orakel: Uxnpla,b,c) = |a,b,c @ ab) Das ist das Toffoli-Gate!



5.1.2 Bit-Orakel

Vergleiche: ‘Rate meine Zahl’-Spiel

e Freund/Freundin denkt sich Zahl X aus

e Frage: Ist Deine Zahl X?
e Antwort: Ja/Nein

Wie kann man die Zahl der Fragen minimieren?

Beispiel 1:f(x1, .XZ) — AND(XI, .X2) = X1X9»

Bit-Orakel: Uxnpla,b,c) = |a,b,c @ ab) Das ist das Toffoli-Gate!

Beispiel 2: f(x) = x

Bit-Orakel:



5.1.2 Bit-Orakel

Vergleiche: ‘Rate meine Zahl’-Spiel

e Freund/Freundin denkt sich Zahl X aus

e Frage: Ist Deine Zahl X?
e Antwort: Ja/Nein

Wie kann man die Zahl der Fragen minimieren?

Beispiel 1:f(x1, .XZ) — AND(XI, .X2) = X1X9»

Bit-Orakel: Uxnpla,b,c) = |a,b,c @ ab) Das ist das Toffoli-Gate!

Beispiel 2: f(x) = x

Bit-Orakel: U |a,b) =|a,b®a).



5.1.2 Bit-Orakel

Vergleiche: ‘Rate meine Zahl’-Spiel

e Freund/Freundin denkt sich Zahl X aus

e Frage: Ist Deine Zahl X?
e Antwort: Ja/Nein

Wie kann man die Zahl der Fragen minimieren?

Beispiel 1:f(x1, .XZ) — AND(XI, .X2) = X1X9»

Bit-Orakel: Uxnpla,b,c) = |a,b,c @ ab) Das ist das Toffoli-Gate!

Beispiel 2: f(x) = x

Bit-Orakel: Uy |a,b) =|a,b®a). Das ist das CNOT-Gate!



5.1.2 Bit-Orakel

Das Konzept Bit-Orakel beinhaltet also mehrere Quanten-Operationen,
die wir zuvor per Hand eingefuhrt hatten

Ubungsaufgabe 5.1: Bit-Orakel fiir Ein-Bit-Funktionen

Sei f : {0,1} — {0, 1} eine Funktion mit einem einzelnen Fingabe- und Ausgabe-Bit. Eine
solche Funktion ist vollstindig durch die Werte f(0), (1) € {0,1} definiert. Das sind zwei
Bits, also gibt es genau vier solcher Funktionen. Wir haben gerade besprochen, wie man die
das Bit-Orakel Uy fiir die Funktion f(x) = x implementiert. Kannst du die Bit-Orakel Uy
fiir die anderen drei Funktionen in QUIRKY implementieren?

Losung Ubungsaufgabe 5.1

Die anderen drei Funktionen sind f = NOT sowie die zwei konstanten Funktionen f(0) = * Fir die Alles-Null-Funktion £(0) = f(1) = 0 gil:
f(1)=0und f(0) = f(1) =1. Uy |a,b) = |a,b),
e Fiir die NOT-Funktion gilt:

also miissen wir gar nichts machen:

Unor |a,b) = |a,b & NOT(a)) = |a,bBa®d1) = |a, NOT(bFa)),

was wie als Zusammensetzung einer kontrollierten-NOT-Operation und einer NOT-
Operation auf dem zweiten Qubit geschrieben werden kann, also,

Unor = (I ® NOT) CNOT;;». e Fiir die Alles-Eins-Funktion f(0) = f(1) = 1 gilt:
In QUIRKY sieht das dann so aus: Uy |a,b) = |a,b® 1) = |a,NOT(b)),

also miissen wir nur das zweite Qubit invertieren:

i
L

! —




5.1.3 Phasen-Orakel

Das Bit-Orakel kann nicht nur auf Basiszustande, sondern auch auf allgemeine
Zustande angewandt werden.
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5.1.3 Phasen-Orakel

Das Bit-Orakel kann nicht nur auf Basiszustande, sondern auch auf allgemeine
Zustande angewandt werden.

Frage: Was passiert, wenn wir das letzte Register auf | — ) statt 0 oder 1 setzen?

Beachte: NOT| — ) = — | — ) statt 0 oder 1 setzen?

u]f(|x1,...,x;1>®|_>)
1 1
= U X1,...,%Xn,0) — —|x1,...,%x;,,1
f(\/‘l 1 n > \/il 1 n >)

1 1
E |x1/'°°/xn/f(x1/°°°/xn)> =z |x1/°--/xn/f(xlz---/xn) @1>

V2
= [31, e 20) @ (1 (51 oo ) = [f(31 . 20) BT))

= (=1 ) 1y x) ® |-



5.1.3 Phasen-Orakel

Das Bit-Orakel kann nicht nur auf Basiszustande, sondern auch auf allgemeine
Zustande angewandt werden.

Frage: Was passiert, wenn wir das letzte Register auf | — ) statt 0 oder 1 setzen?

Beachte: NOT| — ) = — | — ) statt 0 oder 1 setzen?

u]f(|x1,...,x;1>®|_>)
1 1
= U X1,...,%Xn,0) — —|x1,...,%x;,,1
f(\/‘l 1 n > \/il 1 n >)

1 1
E |x1/'°°/xn/f(x1/°°°/xn)> =z |x1/°--/xn/f(xlz---/xn) @1>

V2
= [31, e 20) @ (1 (51 oo ) = [f(31 . 20) BT))

= (=1 ) 1y x) ® |-

Jop,.oox)=1=>—1 fxp..x)=0=>+1



5.1.3 Phasen-Orakel

Somit hat sich das 7 + 1-te QuBit im Zustand | — ) einfach reproduziert und
die ersten 7 QuBits transformieren sich wie folgt:

Of ‘xl, . .,Xn> — (—1)f(xl""’x") |X1, . .,xn> ,



5.1.3 Phasen-Orakel

Somit hat sich das 7 + 1-te QuBit im Zustand | — ) einfach reproduziert und
die ersten 7 QuBits transformieren sich wie folgt:

Of le, .o .,Xn> — (_1)f(x1,...,x,1) |X1, .. .,xn) ,

@f heisst das Phasen-Orakel fiir f - allgemeines Vorzeichen hat keine Auswirkung :-(



5.1.3 Phasen-Orakel

Somit hat sich das 7 + 1-te QuBit im Zustand | — ) einfach reproduziert und
die ersten 7 QuBits transformieren sich wie folgt:
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@f heisst das Phasen-Orakel fiir f - allgemeines Vorzeichen hat keine Auswirkung :-(
Phasen-Orakel kann auch relative Vorzeichen erzeugen! :-)



5.1.3 Phasen-Orakel

Somit hat sich das 7 + 1-te QuBit im Zustand | — ) einfach reproduziert und
die ersten 7 QuBits transformieren sich wie folgt:

Of |X1, .. .,Xn> — (_1)f(x1,...,x,,) |X1, .. .,x,,) ,

@f heisst das Phasen-Orakel fiir f - allgemeines Vorzeichen hat keine Auswirkung :-(
Phasen-Orakel kann auch relative Vorzeichen erzeugen! :-)

Wirkung des Phasen-Orakels auf einen allgemeinen 2-QuBit zustand

[¥) = o0 |00) + ¢o1 |01) + 910 [10) + 11 [11)



5.1.3 Phasen-Orakel

Somit hat sich das 7 + 1-te QuBit im Zustand | — ) einfach reproduziert und
die ersten 7 QuBits transformieren sich wie folgt:

Of |X1, . .,Xn> — (_1)f(x1,...,x,,) |X1, . .,X,-,> ,

@f heisst das Phasen-Orakel fiir f - allgemeines Vorzeichen hat keine Auswirkung :-(
Phasen-Orakel kann auch relative Vorzeichen erzeugen! :-)

Wirkung des Phasen-Orakels auf einen allgemeinen 2-QuBit zustand

[¥) = 100 [00) + o1 [01) + 310 [10) + ¢1 [11)

Of |9) = (=1)/ @Dy [00) + (—1) OV gy [01) + (=1) Dy [10) + (—1) Ty |11).



5.1.3 Phasen-Orakel

Somit hat sich das 7 + 1-te QuBit im Zustand | — ) einfach reproduziert und
die ersten 7 QuBits transformieren sich wie folgt:

Of |X1, . .,Xn> — (_1)f(x1,...,x,,) |X1, . .,xn) ,

@f heisst das Phasen-Orakel fiir f - allgemeines Vorzeichen hat keine Auswirkung :-(
Phasen-Orakel kann auch relative Vorzeichen erzeugen! :-)

Wirkung des Phasen-Orakels auf einen allgemeinen 2-QuBit zustand

[¥) = 100 [00) + o1 [01) + 310 [10) + ¢1 [11)

Of ) = (=170 [00) + (—1)/ODygy [01) + (—1)F PO ypy0 |10) + (—1)/ WDy [11).

Es stellt sich heraus, dass das Phasen-Orakel O niitzlicher und meist einfacher in Quantenalgo-
rithmen anzuwenden ist als das Bit-Orakel Uy, weswegen wir das Bit-Orakel nicht mehr weiter
benutzen.



5.1.3 Phasen-Orakel

Ubungsaufgabe 5.2: Phasen-Orakel fiir eine Ein-Qubit-Funktion

Erinnere dich an Ubungsaufgabe 5.1, wo die vier Funktionen f : {0,1} — {0,1} mit einem
Eingabe- und Ausgabe-Bit vorgestellt wurden. Kannst du das Phasen-Orakel Oy fiir jede
davon in QUIRKY implementieren?

- o

Losung Ubungsaufgabe 5.2

Es gibt vier Funktionen: die ‘Identitits’-Funktion f(x) = x, die NOT-Funktion, die Alles-
Null-Funktion und die Alles-Eins-Funktion.

e Fiir die Identitdts-Funktion f(x) = x kann GL. (5.6) gelesen werden als

Of [x) = (=1)" [x),
also ist das genau das Z-Gatter:

daher miissen wir nichts tun:

e Fiir die NOT-Funktion f(x) = NOT(x) soll gelten, dass

Of |x) = (_1)N0T(x) |x) = NOT ZNOT |x), e Fiir die Alles-Eins-Funktion f(0) = f(1) = 1 gilt:

was folgender Reihe an Operationen entspricht: Oflx) = =%,

e

was wir erreichen, indem wir die ersten beiden Orakel nacheinander schalten:

{z}a{z}a

e Fiir die Alles-Null-Funktion f(0) = f(1) = 0 gilt:
Tatsachlich fligt das erste Orakel ein Minuszeichen hinzu, wenn x = 1 ist, wahrend
das zweite Orakel ein Minuszeichen hinzuzuftigt, wenn x = 0 ist, also erhalten wir
immer eines:

Of |x) = |x),

NOT ZNOT Z |0) = NOTZNOT |0) = — |0),
NOT ZNOT Z |1) = NOT ZNOT(— |1)) = —NOTZNOT [1) = — |1).

Im vorletzten Schritt haben wir dabei die Linearitit ausgenutzt, um das Minuszeichen
nach vorne zu bringen.




5.1.3 Phasen-Orakel

Hausaufgabe 5.1: Bestimme die Funktion anhand ihres Phasen-Orakels

Betrachte den folgenden Zwei-Qubit-Schaltkreis (wie iiblich ist der untere Draht das erste
Qubit):

_H\ff\H_

Fiir welche Funktion f: {0,1}* — {0, 1} stellt der Schaltkreis das Phasen-Orakel dar?

Hinweis: Benutze, dass H NOT H = Z, was aus Ubungsaufgabe 4.5 folgt.

Lass uns kurz zusammenfassen, was wir bisher erreicht haben: Mit Bit-Orakeln konnen wir
Quantencomputer eine Funktion f: {0,1}" — {0,1} genau so auswerten lassen, wie mit einem
klassischen Computern, der umkehrbar agiert (vergleiche Gl. (5.4) und (5.5)). Das ist wichtig,
da wir also nicht Apfel mit Birnen vergleichen wenn wir zihlen, wie viele Fragen man das
Bit-Orakel U f fragen muss, um eine Eigenschaft tiber f zu lernen, im Vergleich zu wie oft man
f auf einem klassischen Computer auswerten muss, um die gleiche Eigenschaft zu lernen. Und
da wir gerade gezeigt haben, dass man das Phasen-Orakel Oy immer mit einem Bit-Orakel Uy
bauen kann, macht es keinen Unterschied wenn wir stattdessen das Phasen-Orakel O f fragen



5.2 Quantenalgorithmen

Beispiel fur Quantenalgorithmen, die ein Rechenproblem sehr viel schneller als ein
klassischer Computer I6sen

Basiert auf Interferenz...

Geschwindigkeitsmessung: wie viele Fragen mussen wir an das Orakel stellen?
Wie oft mussen wir O auswerten, um die Eigenschaften von f zu bestimmen?

5.2.1 Der Algorithmus von Deutsch . . . .. ... ..
5.2.2 Die Hadamard-Transformation und Interferenz
5.2.3 Der Deutsch-Jozsa-Algorithmus . . ... .. ..
5.24 Bernstein-Vazirani-Algorithmus . . ... .. ..
53 SuchenmitGrover . . ... ... . . ... .. ......
53.1 Winkelverstarkung . . . .. .. ... ... ....




5.2.1 Der Algorithmus von Deutsch

Es ist ein spater Sonntagabend. Alice und Bob haben gerade eben ihre Hausaufgaben fiir den
Quantencomputerkurs gemacht und wollen jetzt einen 3D-Film schauen. Als sie ihren hologra-
fischen Fernseher anschalten, stellen sie fest, dass der Film wegen unerwarteter dramatischer
Neuigkeiten von der Internationalen Transgalaktischen Station verschoben wurde. Es gab einen
schrecklichen Unfall: ein Modul mit den zwei Crew-Mitgliedern Hila und Iman hat sich vom
Hauptschiff getrennt. Die letzte empfangene Nachricht vom Modul war, dass Iman verletzt
wurde und blutete — er braucht dringend eine Bluttransfusion. Leider stehen sowohl Hila als
auch Iman unter Schock und haben ihren eigenen Blutgruppen vergessen — sie konnen sich
nur daran erinnern, dass sie jeweils entweder Blutgruppe A oder B hatten. Die Moderation der
Sendung appelliert an alle Zuschauende, Vorschldage zu machen, wie Hila und Iman herausfin-
den konnten, ob sie die selbe Blutgruppe haben, dann konnte Hila namlich ihr Blut an Iman
tibertragen um sein Leben zu retten. An Bord befindet sich namlich ein Lympho-Transcoder,
der die beiden Blutgruppen in den jeweils anderen umwandeln kann. Selbst wenn sie also nicht
die gleiche Blutgruppe haben, konnte Hila den Transcoder nutzen um ihr Blut zum richtigen
Typ umzuwandeln.



5.2.1 Der Algorithmus von Deutsch

Nachdem sie diese Nachrichten gehort haben, entscheiden sich Alice und Bob zu tiberlegen,
wie man Hila und Iman helfen konnte, anstelle den Film zu schauen. Die Nachrichtensendung
setzt fort mit weiteren Informationen. Gliicklicherweise hat das Modul einen Datenbank-Chip,

auf dem Hila und Imans Blutgruppe gespeichert ist. Wir kénnen diesen durch eine Funktion
f:{0,1} — {0,1} modellieren, wobei

O {‘1’ j

F1) = {‘1’ |

Nun muss herausgefunden werden, ob f(0) = f(1) gilt oder nicht!



5.2.1 Der Algorithmus von Deutsch

Die Losung scheint einfach: Hila und Iman fragen die Datenbank einfach zweimal ab um ihre
jeweiligen Blutgruppen f(0) und f (1) herauszufinden und vergleichen anschlieflend die Werte.
Ungliicklicherweise wurde der Chip bei dem Unfall beschddigt und die Nachrichtensendung
berichtet, dass die Datenbank hochstwahrscheinlich nach einer einzigen Abfrage vollig zerstort
sein wirde.

Unsere beiden Protagonisten befinden sich in einer Pattsituation. Offensichtlich muss jeder
klassische Algorithmus f genau zweimal auswerten um herauszufinden, ob f(0) = f(1). Wenn
wir den Wert von f(0) kennen hiangt f(0) = f(1) immer noch von f(1) ab und lésst sich nicht
bestimmen, aufler man berechnet f(1). Genauso ldsst sich ein bekanntes f(1) nicht mit einem
unbekannten f(0) vergleichen. Egal welchen Ansatz man verfolgt, man muss sowohl den Wert
von f(0) als auch von f(1) kennen, um f(0) = f(1) zu bestimmen. Gibt es da wirklich keinen
Ausweg?



5.2.1 Der Algorithmus von Deutsch (1985)

Nachdem Bob ein paar Bedienungsanleitungen durchblittert hat, stellt Bob fest, dass der
Datenbank-Chip auch einen Quantenmodus besitzt. Wenn dieser aktiviert ist, wertet die Daten-
bank die Funktion nicht mehr klassisch aus, sondern nutzt stattdessen das Phasen-Orakel O £
Konnte das vielleicht dabei helfen, das Problem zu l6sen? Alice tliberlegt eine Weile und stellt
dann tiberrascht fest, dass es genau fiir dieses Problem den Algorithmus von Deutsch gibt! Die
beiden priifen mit ein paar Berechnungen noch schnell, dass alles funktioniert und senden dann
eine intergalaktische E-Mail mit Anweisungen zum l6sen des Dilemmas an Hila und Iman. Ihre
Instruktionen sind die folgenden:

David Deutsch mit DNA-Modell =



5.2.1 Der Algorithmus von Deutsch

1. Bereitet ein Qubit im Zustand |+) = (|0) + [1))/+/2 vor.

2. Nutzt den Datenbank-Chip im Quantenmodus um die Operation Of auf das Qubit
anzuwenden.

3. Wendet das Hadamard-Gatter H auf das Ausgabe-Qubit an und messt anschliefSend.

4. Wenn das Messergbnis 0 ist, haben Hila und Iman die gleiche Blutgruppe, ansonsten
haben sie unterschiedliche.

Beachte, dass bei dieser Prozedur der Datenbank-Chip nur einmal abgefragt wird, um zu
bestimmen, ob sie die gleiche Blutgruppe haben. Hier ist eine Implementierung des Algorithmus
in QUIRKY:

0+ H HChipH H H/ AFms

Das Bild zeigt, dass das Ergebnis 1 ist, also haben Hila und Iman unterschiedliche Blutgruppen.



5.2.1 Der Algorithmus von Deutsch

Aber wieso funktioniert der Algorithmus von Deutsch? Lass uns den Algorithmus Schritt fiir
Schritt analsysieren. Das erste Hadamard-Gatter erstellt den Zustand |+) = H |0). Anschlief3end
wenden wir das Phasen-Orakel O £ an, was zum folgenden Zustand fiihrt

1 1
Of |[+) = Vo 0) + N 1)
1

1 0
= /00 + (1)

Nach dem anwenden des zweiten Hadamard-Gatters, erhalten wir den Zustand:

M1y,

Z5(I/OH[0) +

\/—( 1)/¢
1 0
= ﬁ(—l)ﬂ M+ +

f( 1)/®]-)
1

— 5(—1)f<°) (10) + [1)) + %(—l)f‘” (10) —11))

—1)f(0) 1 (—1)f(1) —1)f(0) —_ (—1)f(1)
YOy Oy 57

HOf|-|-> = H|1>




5.2.1 Der Algorithmus von Deutsch

Beachte, dass die beiden Vorzeichen (—1)/© und (—1)f(!) in der ersten Amplitude addiert,
in der zweiten aber subtrahiert werden. Je nach den Werten von f(0) und f(1) sehen wir fiir
jede Amplitude entweder konstruktive oder destruktive Interferenz (siehe §2.6.1). Tatsachlich
bestimmt sich nur daran, ob f(0) und f(1) gleich sind oder nicht, welche Amplitude tibrig

bleibt:
f(0)=f(1):  HOg|+) ==*|0),
f0)#f(1):  HOf|+) = £(1).

Es ist eine gute Ubung, dies explizit zu verifizieren:

(5.8)

Ubungsaufgabe 5.3: Den Algorithmus von Deutsch verifizieren

Erinnere dich aus Ubungsaufgabe 5.1 daran, dass es vier Funktionen f : {0,1} — {0,1}
gibt. Berechne fiir jede Funktion den Zustand HO¢ |+) mit Gl. (5.7).




5.2.1 Der Algorithmus von Deutsch

GL. (5.8) zeigt, dass die abschlieffende Messung nur dann das Ergebnis 0 ergibt, wenn f(0) =

f(1) gilt. Also bestimmt der Algorithmus ob f(0) = f(1). Dabei evaluiert der Algorithmus die
Funktion f : {0,1} — {0,1} nur ein einziges Mal mit dem Phasen-Orakel. Im Gegensatz dazu
hatten wir gesehen, dass ein klassischer Algorithmus notwendigerweise beide Funktionswerte

f(0) und f(1) getrennt auswerten muss.

Eine weitere Interpretation des Algorithmus von Deutsch ist, dass er die Summe der beiden
Bits f(0) und f(1) modulo zwei berechnet. Das liegt daran, dass f(0) & f(1) = 0 nur genau
dann gilt, wenn f(0) = f(1). Aus GI. (3.20) erinnern wir uns an die Definition von Addition

modulo zwei:

X1 X2 | X1 X2

0O O 0

0 1 1 (5.9)
1 O 1

1 1 0

Aus diesem Grund ist die Summe modulo zwei auch als XOR (engl. Abkiirzung fiir “exklusives
Oder”) der beiden Bits, da sie 1 genau dann ergibt, wenn nur eines der beiden Bits gesetzt ist.



5.4 Deine Quanten-Reise
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Diese Vorlesungsreibe gibt eine Einfihrung in die Grundlagen des Quanten Computing,

2025 feiern wir das 100-jhrige Jubildum der Entdeckung der Quantentheorie. Lange Zeit
war Quar ie reinste welche zum
fundamentalen Verstdndnis unserer Welt diente, aber keinerlei praktische Anwendung
hatte. Sie einigen Jahren zeichnet sich nun ein immenses Patential von Quanten
Computing ab, welches bei manchen Anwendungen, herkdmmliche Supercomputer bei
Weitem Ubertreffen kann. An der Universitét Siegen wurde 2010 der erste deutsche
Quantencomputer in Betrieb genommen.

In dieser Vorlesung wird PInP elementare Einfihrung in Quﬁnten Computing gegeben und
es werden auch Ubungen an Qi llatoren g 3
Die Vorlesung ist fir Schilerinnen und Schiler ab der 10, Klasse geeignet, ebenso fir
Studierende und Lenhrkrifte, sowie mathematisch interessierte Laien, die Gber Mathematix
Kenntnisse auf dem Oberstufen-Niveau verfigen.

10 Termine im Wintersemester 25/26, mittwochs 16-18:

19.11., 26.11,, 3.12,, 1012, 17.12,, 7.1, 14.1,, 21.1,, 281, 4.2
Emmy Noether Campus ENC-D-114, 57072 Siegen
Kontakt: alexander.lenz@uni-siegen.de
Weitere Informationen unter:

https://tp1.physik ad
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Das theoretische Minimum |
Mechanik - von Newton iiber Emmy Noether zu Heisenberg

Prof. Dr. Alexander Lenz. 4PHY00011V

e
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Deosa gibt ene inde dor Physik.
im 2024725 wir uns u.a mit enfachen

den Newtonschen der
theoretischen Mechanik vorgestellt, aus der spiter dve Quantenmechani dirext abgeleitet
werden kann - dies wird der Lagrange- und Hamiltol sein.
Weiter werden diskutiert - das zum
Veranstaltungsort passende Noether-Theorem -, auf dessen Veraligemeinerung de
heutige Bementartelchenphysik und unser gesamtes Verstandnis der Welt berunt.
N - - m ., y
L = L(z,z)= Exin— Epu = 2 #* -U(z),

Die Vorlesung richtet sich an und -schller,
Lehvkrafte, Physikenthusiasten mit einem groBen mmmmmmmm
Physik. Es werden mathematische Konzepte (auf dem Nwmauqymmmlon Oberstufe)
eingefihnt und benutzt. Die Vorlesung ist an die
“The theoretical Minimum® von Leonard Susskind angelehnt, welche auf dieselbe

susgerichtet war. Vom Niveau her wird sich die Veranstaltung auf dom

9 Termine im Wintersemester 24/25:
20,11, 27.11,, 4.12., 11.12, 18.12. 8.1, 16.1,, 22.1,,20.1
Mittwochs 16-18
Ememy Noether Campus ENC-D-114
Infos unter: alexanderlenz@uni-siegen.de
hitps//to1 physik.uni-siegen. de/mittwochsak ademie/
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Ankindigung fur das Sommersemester 2025
Das theoretische Minimum Il
Quantenmechanik - Prof. Dr. Alexander Lenz, 4PHY00011V

Vi AN

Diese Vorlesungsreihe gibt eine Einfilhrung in die Grundprinzipen der theoretischen Physik.

2025 wird weltweit das 100 jahrige Jubildum der Entdeckung der Quantenmechanik

gefeiert. Urspriinglich war dies Uber viele Jahrzehnte lang reinste Grundlagenforschung

ohne jegliche Hinweise auf potentielle Anwendungen. 100 Jahre spéter finden wir, dass ein
der technologischen Errungenschaften der Menschheit im letzten Jahrhundert auf

der Quantenmechanik basiert - zuletzt gipfelte dies in den ersten Quantencomputern.

Im Sommersemester 2025 beschaftigen wir uns daher mit einer Einfiihrung in die
Grundprinzipien der Quantenmechanik:

v = | 2a+ v van
a T | 2m ’

Die Vorlesung richtet sich an Mittwoct niker, Oberstuf innen und -schiler,
Lehrkrafte und Physikenthusiasten mit einem groBen Interesse an aktuellen Themen der
Physik. Es werden mathematische Konzepte (auf dem Niveau der gymnasialen Oberstufe)
eingefiihrt und benutzt. Die Vorlesung ist an die erfolgreiche Vorlesungs- und Buchreihe
"The theoretical Minimum" von Leonard Susskind angelehnt, welche auf dieselbe
Zielgruppe ausgerichtet war. Vom Niveau her wird sich die Veranstaltung auf dem
schmalen Grat zwischen einer rein populérwissenschaftlichen Bildershow und einer
theoretischen Physikvorlesung im Bachelorstudium bewegen.

11 Termine im Sommersemester 25:
7.5.,145,215,285.,46.,116.,186,,256.,2.7.,9.7.,, 16.7.
Mittwochs 16-18
Emmy Noether Campus ENC-D-114
Infos unter: alexander.lenz@uni- smgsn de

https://tp1.physik.uni-si o




Die glorreiche Vergangenheit der
Physik-Mittwochsakademie

Claus Grupen Farewell

Wednesday Feb 4, 2026, 5:00 PM — 8:00 PM Europe/Berlin
@ D-114->B-127 (ENC)

Description

Claus Grupen obtained his PhD in Physics in 1970 from Kiel University. After spending time as Visiting Fellow of the Royal Society at Durham
University (UK) he became Professor at the University of Siegen in 1978 and during his career he made numerous important contributions to the
field of experimental particle physics.

Besides his research he also put a significant effort in the popularisation of science, in particular with lecture courses for pupils and for the
interested public. A lot of the material he created is collected on his webpage: https://www.hep.physik.uni-siegen.de/~grupen/ .

Finally Prof. Grupen authored several textbooks and he is a very talented cartoonist - his drawings were also regularly published..

To celebrate his achievements we cordially invite you to attend our farewell event on Wednesday, 4th February 2026, at 17:00 in the big physics
lecture hall (ENC D 114) at the Emmy Noether Campus. Drinks will be served later on in the seminar room and in the coffee room of TP1 (ENC B
127&128)



