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Wdh.: Operationen auf einem Qubit

NOT-Operation:     

Z-Operation:          Spiegelung an der  Achse 

Rotationen:  ;  

Allgemeinste Spiegelung  hat die Form:  

Hadamard Transformation     

̂ NOT |0⟩ = |1⟩ ̂ NOT |1⟩ = |0⟩

̂Z |0⟩ = |0⟩ ̂Z |1⟩ = − |1⟩ |0⟩

Û(θ)(1
0) = (cos θ

sin θ ) = |ψ(θ)⟩ Û(θ)(0
1) = (−sin θ

cos θ ) = |ψ(θ +
π
2

)⟩

̂V(θ) ̂V(θ) = NOT Û(θ) = Û(−θ) NOT

Ĥ Ĥ = ̂V ( π
4 ) = NOT Û ( π

4 )
| + ⟩ :=

|0⟩ + |1⟩

2

| − ⟩ :=
|0⟩ − |1⟩

2

Ĥ |0⟩ =
1

2
( |0⟩ + |1⟩) =: | + ⟩

Ĥ |1⟩ =
1

2
( |0⟩ − |1⟩) =: | − ⟩



 Wdh.: Kontrollierte Operationen

Man kann für jede Ein QuBit Operation  verallgemeinerte kontrollierte  
Operationen   einführen: 

Û
CÛ1→2



 Wdh.: Verschränkte Zustände
Beispiel:    |Φ+⟩ =

1

2
|00⟩ +

1

2
|11⟩ ⇒ Δ(Φ+) =

1
2

≠ 0

Dieser Zustand wir auch der maximal verschränkte Zustand genannt

Erzeugung via Quirky:

Beweis:



 Wdh.: Verschränkte Zustände
 gehört zu einer Familie von 

 4 Zuständen die Bell-Zustände  
genannt werden

|Φ+⟩

Wir definieren folgende Operation: 
  und findenÛBell := ̂CNOT1→2(Ĥ ⊗ 1̂)

Û−1
Bell := (Ĥ ⊗ 1̂) ̂CNOT1→2 Ĥ |0⟩ = | + ⟩ , Ĥ |1⟩ = | − ⟩

Ĥ2 |0⟩ = Ĥ | + ⟩ =
1

2
(Ĥ |0⟩ + Ĥ |1⟩) =

1

2
( | + ⟩ + | − ⟩) =

1
2

(2 |0⟩) = |0⟩

Ĥ2 |1⟩ = Ĥ | − ⟩ =
1

2
(Ĥ |0⟩ − Ĥ |1⟩) =

1

2
( | + ⟩ − | − ⟩) =

1
2

(2 |1⟩) = |0⟩



 Wdh.: Die Macht von Verschränkung
Superdense Coding = übertrage 2 Bit Info mit einem Bit 

Start: Bob und Alice teilen sich schon vorher den Zustand ,  
d.h. Alice besitzt das erste Bit und Bob das zweite Bit dieses Zustandes

|Φ+⟩

1. QuBit:  1̂1

1. QuBit:  ̂Z1

1. QuBit:  ̂NOT1

1. QuBit:  ̂Z1 ̂NOT1

Dies wendet Alice im Fall  an{0,0}
Dies wendet Alice im Fall  an{0,1}

Dies wendet Alice im Fall  an{1,0}

Dies wendet Alice im Fall  an{1,1}

Dann sendet Alice Ihr QBuit an Bob und der hat den gesamten Zustand 
und kann des gesamten Zustand extrahieren (Ü 3.13)

Alice ändert nur das 1. Bit und kann damit alle 2 QuBit Bell-zustände erzeugen!



 Wdh.: Die Macht von Verschränkung
Klassisch: Maximal 75% Gewinnwahrscheinlichkeit - Beispiel für Bell-Ungleichung 

John Stewart Bell; 1928-1990; 1964 Ungleichung

Obiges Spiel: John Clauser, Michael Horne, Abner Shimoney, Richard Holt 

QM:  verletzt Bell-Ungleichung, mehr als 75% 
 - dies ist experimentell bewiesen, z.B. Alan Aspect 

Kann auch als Beweis genutzt werden, dass man einen echten Quantencomputer hat! 
Man spielt das Spiel und bei > 75% war es ein QC :-)



 Wdh.: Quantenschaltungen
Bildliche Darstellung: welche Operation wird an welchen Qubit durchgeführt

Beispiel:  Simulation einer vereinfachten Theorie des Elektromagnetismus

Formal besteht eine Quantenschaltung aus 3 Teilen: 
1. Initialzustand: typischerweise  
2. Quantenoperationen: meist 1 oder 2 QuBits gleichzeitig involviert 
3. Messungen, um QuBits auszulesen

|0⟩

(Siehe Quirky) 
Die Operationen werden oft auch als Gatter oder Gates bezeichnet 
z.B.: Hadamard-Operation  Hadamard-Gatter   Hadamard-Gate  ≡ ≡



 Wdh.: Viele Quantenbits
Beliebiger Zustand mit  QuBits:  Basis Elemente n 2n

Es muss gelten: 

Mögliche Darstellung als Vektor in einem  dimensionalen Vektorraum. 2n

Bei  gibt es  Amplitude (mehr als Atome im Universum) 
d.h. sowas kann nicht klassisch gespeichert werden, aber als Quanten Computer 

gebaut!

n = 300 2300 ≈ 2 ⋅ 1091



 Wdh.: Viele Quantenbits
Mit dem Tensorprodukt können Zustände beschrieben werden, die zu kombinierten 

QuBits gehören, allgemein: 

Beispiel 1: 

1 QuBit-Operationen  wirken wie folgt: 

 

Analoge Definitionen für , ,…

Û

Û1 |a1, . . . , an⟩ = Û |a1⟩ ⊗ |a2, . . . , an⟩

Û2 Û3

  |Φ+⟩ ⊗ |1⟩ =
1

2
( |001⟩ + |111⟩)

Ĥ2 |Φ+⟩ ⊗ |1⟩ =
1
2 ( |001⟩ + |011⟩ + |101⟩ − |111⟩)

Beispiel 2: 



 Wdh.: Operationen
2 QuBit-Operationen  wirken wie folgt: 

 

Quirky: Quest 4

̂CNOTi→k

̂CNOTi→k |a1, . . . , ak, . . . , an⟩ = |a1, . . . , ai ⊕ ak, . . . , an⟩



 Wdh.: Die allgemeinsten Quantenoperationen

Die allgemeinste Quantenoperation hat folgende Eigenschaften: 

1. Sie ist linear 

2. Sie bildet Quantenzustände auf Quantenzustände ab (Normierung) 

3. Sie ist invertierter (reversibel)



 Wdh.: Die allgemeinsten Quantenoperationen

T kann auch als eine Reihe von 1- und 2 QuBit-Operationen geschrieben werden! 
https://arxiv.org/pdf/quant-ph/9503016

Jede Quanten-Operation auf n Qu-Bits kann auch als eine Reihe von 1- und 2 QuBit-
Operationen geschrieben werden!

https://arxiv.org/pdf/quant-ph/9503016


 Wdh.: Regeln für Schaltungen
Es gibt Tricks zur Vereinfachung von Quantenschaltungen 

Einfachere Schaltungen sind meist auch schneller

Ĥ | + ⟩ =
1

2 (Ĥ |0⟩ + Ĥ |1⟩) =
1
2 ( |0⟩ + |1⟩ + |0⟩ − |1⟩) = |0⟩

Ĥ | − ⟩ =
1

2 (Ĥ |0⟩ − Ĥ |1⟩) =
1
2 ( |0⟩ + |1⟩ − |0⟩ + |1⟩) = |1⟩

Ĥ ̂ZĤ |0⟩ = Ĥ ̂Z | + ⟩ = Ĥ | − ⟩ = |1⟩ = ̂NOT |0⟩
Ĥ ̂ZĤ |1⟩ = Ĥ ̂Z | − ⟩ = Ĥ | + ⟩ = |0⟩ = ̂NOT |1⟩

Ĥ ̂NOTĤ |0⟩ = Ĥ ̂NOT | + ⟩ = Ĥ | + ⟩ = |0⟩ = ̂Z |0⟩

Ĥ ̂NOTĤ |1⟩ = Ĥ ̂NOT | − ⟩ = − Ĥ | − ⟩ = − |1⟩ = ̂Z |1⟩

̂V(θ) = ̂NOT Û(θ) = Û(−θ) ̂NOT
Definition:

̂V(θ2) ̂V(θ1) = Û(−θ2) ̂NOT ̂NOT Û(θ1) = Û(−θ2)Û(θ1) = Û(θ1 − θ2)



 Wdh.: Alle Qubits messen
Wenn wir  QuBits messen dann erhalten wir mit der Wahrscheinlichkeit 

 den Bit-String  
n

pa1....an
= ψ2

a1....an
a1 . . . . an

Quirky



 Wdh.: Einzelne Qubits messen
Annahme: Wir haben einen 3-QuBit Zustand  

 
  

Wenn wir das erste Bit messen, dann finden wir mit der Wahrscheinlichkeit 

 

den Wert . 

Beispiel: Messen wir das erste QuBit von                                                      so finden wir den Wert Null mit 

der Wahrscheinlichkeit 

|ψ⟩ = ψ000 |000⟩ + ψ001 |001⟩ + ψ010 |010⟩ + ψ100 |100⟩ + ψ011 |011⟩ + ψ101 |101⟩ + ψ110 |110⟩ + ψ111 |111⟩

ψ2
a00 + ψ2

a01 + ψ2
a10 + ψ2

a11

a ∈ {0,1}

1
8

+
2
8

=
3
8

Quirky:

̂CNOT1→3
̂CNOT1→2Ĥ1 |000⟩ =

1

2 ( ̂CNOT1→3
̂CNOT1→2 |000⟩ + ̂CNOT1→3

̂CNOT1→2 |100⟩) =
1

2
( |000⟩ + |111⟩)



 Wdh.: Einzelne Qubits messen
Zustand des 2. und 3. QuBit, nachdem das 1. gemessen wurde? 

Zu der Messung tragen folgende Zustände bei:  
 

Nach der Messung des 1. QuBits können wir dies auch weglassen 
 

Jetzt müssen wir noch sicherstellen, dass dieser Zustand auch normiert ist 
 

mit  

|ψ⟩ = ψa00 |a00⟩ + ψa01 |a01⟩ + ψa10 |a10⟩ + ψa11 |a11⟩

|ψ⟩ = ψa00 |00⟩ + ψa01 |01⟩ + ψa10 |10⟩ + ψa11 |11⟩

|ψ⟩ =
ψa00

c
|00⟩ +

ψa01

c
|01⟩ +

ψa10

c
|10⟩ +

ψa11

c
|11⟩

c = ψ2
a00 + ψ2

a01 + ψ2
a10 + ψ2

a11

Messe 1. QuBit von

dann ist die verbleibende unnormierte Wellenfunktion  

und die normierte Wellenfunktion lautet dann

1

2
|00⟩

|00⟩

Beispiel: und finde 0



 Wdh.: Einzelne Qubits messen
Messe 1. QuBit von 3 QuBit Zustand 

Dies kann man sich vorstellen als 

Oder (beachte: !)p0 + p1 = 1

Beispiel:

Hieraus kann man sofort die Wahrscheinlichkeiten ablesen



 Wdh.: Einzelne Qubits messen

Wir können auch die ersten zwei QuBits eines allgemeinen Drei QuBit zustand messen. 

Wir erhalten  mit der Wahrscheinlichkeit|ab⟩

Nach der Messung haben wir dann den Zustand:

1
2

: |00⟩

1
2

: |11⟩



 Wdh.: Einzelne Qubits messen
Wir können einzelne QuBits messen und abhängig vom Messergebnis die  

verbleibenden QuBits modifizieren 

Beispiel

Messe 1. QuBit: beim Ergebnis  wollen wir die verbleibenden QuBits auf  
zurücksetzen 

|1⟩ |00⟩

Kontroll-Bit ist hier 
ein klassisches Bit

Formal:



 Wdh.: Quanten-Überraschungen

Verschiedene interessante Phänomene,  
die beim Umgang mit QuBits auftreten



 Wdh.: Unklonbarkeit
Klassische Bits können einfach geklont werden:  

wir schauen es an und das was wir sehen, das kopieren wir

Kann man Qu-Bits auch klonen?

Annahme: Klonen geht, d.h. bei gegeben Zustand  gibt es die Operation ,  
die z.B. aus dem Zustand  den Zustand  macht . 

 

Diese Operation macht dann folgendes aus den Basis Operatoren 
  
 

Dies ist möglich und wäre z.B. die 

|ψ⟩ C
|0⟩ |ψ⟩

C ( |ψ⟩ ⊗ |0⟩) = |ψ⟩ ⊗ |ψ⟩

C ( |0⟩ ⊗ |0⟩) = |0⟩ ⊗ |0⟩
C ( |1⟩ ⊗ |0⟩) = |1⟩ ⊗ |1⟩

̂CNOT1→2



 Wdh.: Unklonbarkeit

Ĉ ( | + ⟩ ⊗ |0⟩)

= | + ⟩ ⊗ | + ⟩ =
1
2

|00⟩ +
1
2

|01⟩ +
1
2

|10⟩ +
1
2

|11⟩

=
1

2
Ĉ ( |00⟩ + |10⟩) =

1

2
|00⟩ +

1

2
|10⟩

C ( |0⟩ ⊗ |0⟩) = |0⟩ ⊗ |0⟩

C ( |1⟩ ⊗ |0⟩) = |1⟩ ⊗ |1⟩

Widerspruch zur 
Linearität



 Wdh.: Unklonbarkeit
No-Cloning Theorem

Ein unbekannter Quantenzustand kann nicht kopiert werden. 
Dieser beinhaltet im Allgemeinen unendlich viel Information!



 Wdh.: One-Time-Pad = Teleportation von probabilistischen Zuständen 
Problem:  Alice möchte eine Nachricht an Bob verschicken. 
Die Nachricht soll so verschlüsselt sein, dass nur Bob sie verstehen kann, 
insbesondere nicht Eve, auch wenn sie die Nachricht liest . 

Start: Alice und Bob treffen sich davor in einem Cafe 

2 Münzen im Zustand  - jeder nimmt eine Münze mit, die nun 

entweder Kopf oder Zahl zeigt und dies nicht mehr verändert. 

Alice will nun die Nachricht  an Bob schicken 

Der Gesamt-zustand aller Bits lautet dann 

r =
1
2

[00] +
1
2

[11]

m ∈ {0,1}
[m] ⊗ r =

1
2

[m00] +
1
2

[m11]
Alice besitzt die ersten beiden Bits von diesem Zustand, Bob das dritte. 

Protokoll:  1) Alice schaut sich ihr Bit von  an 
2a) sie schickt  an Bob.    2b) sie schickt  an Bob 
3) Wenn Eve diese Nachricht abfängt, dann erhält sie immer mit 50% 0 oder 1 
4) Bob schaut sich sein Bit von  an, wenn er  empfängt 
5a) Bob nimmt   5b) Bob nimmt 

r
r = 0 ⇒ m r = 1 ⇒ ̂NOT(m)

r m
r = 0 ⇒ m r = 1 ⇒ ̂NOT(m)

Formal werden folgende Operationen durchgeführt:
Bob Alice



 Wdh.: One-Time-Pad
Formal werden folgende Operationen durchgeführt:

AliceBob

Am Ende hat Bob das Bit m

Man kann nicht nur ein Basis-Bit 0 oder 1 verschicken, wegen Linearität kann 
man auch ein ganzes probabilistisches Bit  verschicken  

Das gesamte Bit ist dann 
p

p ⊗ r



 Wdh.: Quanten-Teleportation

QuBits können nicht geklont werden, aber sie können von einem Ort  
zu einem anderen gebracht werden!

Ausgangszustand:  
Alice und Bob teilen sich den maximal verschränkten Zustand , Alice hat das 
erste QuBit davon und Bob das zweite. 
Alice hat zusätzlich noch das Nachrichten-QuBit   

Insgesamt beschreibt dies den 3 QuBit Zustand  

Falls Alice den Zustand  senden will, sieht das so aus 

|Φ+⟩

|ψ⟩

|ψ⟩ ⊗ |Φ+⟩

|ψ⟩ = |1⟩

Wie machen wir weiter?



 Wdh.: Quanten-Teleportation
Wie machen wir weiter? Wir können  nicht klonen, vielleicht  muss Alice’s Zustand durch eine Messung zerstört 

werden? Einfache Messung reicht nicht, da  nicht aus einer einzigen Messung extrahiert werden kann.
|ψ⟩

|ψ⟩

Man wird finden: 

(Operation zur 

Unterscheidung 
der 4 Bell-
zustände) Alice findet alle 4 Basiszustände 


mit gleicher Wahrscheinlichkeit

Will Alice einen 
anderen Zustand 
schicken, dann 

findet man 
dasselbe 

Messergebnis

Û−1
Bell := (Ĥ ⊗ 1̂) ̂CNOT1→2



 Wdh.: Quanten-Teleportation

Der allgemeine Zustand vor Messung lautet  (Ĥ ⊗ 1̂ ⊗ 1̂)( ̂CNOT12 ⊗ 1̂)( |ψ⟩ ⊗ |Φ+⟩)

|ψ⟩



 Wdh.: Quanten-Teleportation

Die Wahrscheinlichkeiten , das Ergebnis  für die 
ersten beiden QuBits zu erhalten:

pab |ab⟩

Wie von Quirky behauptet, tritt jedes Ergebnis mit  auf
1
4



 Wdh.: Quanten-Teleportation

Bob’s Zustand hängt nun vom Ergebnis der Messung von Alice ab:

Alice: 00  Bob:    

Alice: 01  Bob:    

Alice: 10  Bob:    

Alice: 11  Bob:    

⇒ |ψ′￼00⟩ = ψ0 |0⟩ + ψ1 |1⟩
⇒ |ψ′￼01⟩ = ψ1 |0⟩ + ψ0 |1⟩
⇒ |ψ′￼10⟩ = ψ0 |0⟩ − ψ1 |1⟩
⇒ |ψ′￼11⟩ = − ψ1 |0⟩ + ψ0 |1⟩

Alice sendet nun Bob ihr Ergebnis , damit weiss Bob was er mit seinem Zustand machen muss[ab]

Alice: 00  Bob:             

Alice: 01  Bob:       

Alice: 10  Bob:             

Alice: 11  Bob:    

⇒ 1̂ |ψ′￼00⟩ = ψ0 |0⟩ + ψ1 |1⟩
⇒ ̂NOT  |ψ′￼01⟩ = ψ0 |0⟩ + ψ1 |1⟩
⇒ ̂Z |ψ′￼10⟩ = ψ0 |0⟩ + ψ1 |1⟩
⇒ ̂Z ̂NOT  |ψ′￼11⟩ = ψ0 |0⟩ + ψ1 |1⟩



 Wdh.: Quanten-Teleportation
Alice sendet nun Bob ihr Ergebnis , damit weiss Bob was er mit seinem Zustand machen muss[ab]

Alice: 00  Bob:             

Alice: 01  Bob:       

Alice: 10  Bob:             

Alice: 11  Bob:    

⇒ 1̂ |ψ′￼00⟩ = ψ0 |0⟩ + ψ1 |1⟩
⇒ ̂NOT  |ψ′￼01⟩ = ψ0 |0⟩ + ψ1 |1⟩
⇒ ̂Z |ψ′￼10⟩ = ψ0 |0⟩ + ψ1 |1⟩
⇒ ̂Z ̂NOT  |ψ′￼11⟩ = ψ0 |0⟩ + ψ1 |1⟩

Teleportationsschaltkreis:



 4.2.4 Ein Blick auf Quanten-Netzwerke
Wiederholte Quanten-Teleportation ->  Quanteninternet…..



 4.2.5 Die Unschärferelation
Heisenbergsche Unschärfe Relation….

Betrachten wir den Zustand |ψ⟩ = ψ0 |0⟩ + ψ1 |1⟩

p 0
=

ψ
2 0

Messergebnis:                                   |0⟩ |1⟩

p
1 =

ψ 21

Hier sind nur die beiden Zustände  und  mit keiner Ungewissheit (uncertainty) 
behaftet 

|0⟩ |1⟩

Führen wir vor der Messung z.B. eine Hadamard-Operation aus

Dann sind nur die Zustände  und  mit keiner Ungewissheit behaftet, denn  
macht daraus die beiden Zustände  und  

| + ⟩ | − ⟩ Ĥ
|0⟩ |1⟩

 Ĥ |ψ⟩ = ψ0Ĥ |0⟩ + ψ1Ĥ |1⟩ = . . . =
ψ0 + ψ1

2
|0⟩ +

ψ0 − ψ1

2
|1⟩

Jetzt finden wir mit   den Zustand  und mit   den Zustand q0 =
(ψ0 + ψ1)2

2
|0⟩ q1 =

(ψ0 − ψ1)2

2
|1⟩



 4.2.5 Die Unschärferelation
Heisenbergsche Unschärfe Relation….

Messung

Messung

=>  und  sind mit keiner Ungewissheit behaftet 
      und  schon

|0⟩ |1⟩
| + ⟩ | − ⟩

=>  und  sind mit keiner Ungewissheit behaftet 
      und  schon

| + ⟩ | − ⟩
|0⟩ |1⟩

Mass für die Ungewissheit: (p) = p0(1 − p0) = p0p1

Heisenbergsche Unschärfe Relation: (p) + (q) =
1
4

Es gibt keinen Zustand für den  
beide Ungewissheiten gleich 

 Null sind
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 5 Virtuose Algorithmen
Ziel: Quantencomputer, der (manche) Probleme (viel) schneller löst als jeder klassische 

Computer (benutzt klassische Physik, i.e. Elektrodynamik, und rechnet mit Bits) 

Wie misst man die Geschwindigkeit eines Algorithmus? 
Soll von expliziter Hardware unabhängig sein: 

Man zählt die Zahl der elementaren Operationen 

Genauer:  
wie skaliert die Zahl der notwendigen elementaren Operationen mit der Größe des 

Problems (Komplexitätstheorie)  

Quantenalgorithmen:  
- elementare Operation: Hadamard, CNOT, Messung…

Beispiel für  
2 elementare Operationen
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 5.1 Mit Quantenorakeln sprechen

Es gibt verschiedene Arten von elementaren Operationen, die langsamsten sind mit 
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Können wir auf Quantencomputern alles machen, was man auch auf klassischen 

Computern machen kann? 

Beachte: Quantenoperationen müssen invertierter sein!  
                 Das gilt nicht bei klassischen Operationen! 

Zeige: jede Berechnung kann umkehrbar gemacht werden 

Beispiel für unumkehrbar klassische Operation:

2 Eingangsbit und 1 Ausgangsbit: das kann niemals umkehrbar sein
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Es gibt also umkehrbare Erweiterungen der AND-Operation
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f : {0,1}n → {0,1}

Wir erweitern die  Eingangs-Bits auf  und definierenn n + 1

Diese Operation ist invertierbar (wieder die eigene Inverse)

D.h.: jede Berechnung, die auf einem  klassischen Computer läuft, kann prinzipiell auch 
auf einem Quanten-Computer laufen



 5.1.2 Bit-Orakel
Quantenversion von

lautet:



 5.1.2 Bit-Orakel
Quantenversion von

lautet:



 5.1.2 Bit-Orakel
Quantenversion von

lautet:

Wegen der Linearität reicht es aus, zu betrachten was  mit den Basis-Zuständen 
macht: Permutation der Basiszustände

𝒰̂f



 5.1.2 Bit-Orakel
Quantenversion von

lautet:

Wegen der Linearität reicht es aus, zu betrachten was  mit den Basis-Zuständen 
macht: Permutation der Basiszustände

𝒰̂f



 5.1.2 Bit-Orakel
Quantenversion von

lautet:

Wegen der Linearität reicht es aus, zu betrachten was  mit den Basis-Zuständen 
macht: Permutation der Basiszustände

𝒰̂f

Die Quantenoperation  heisst das Bit-Orakel für  
Name: “allmächtiges” Orakel gibt uns den Wert der Funktion für beliebige Eingaben….


Uns interessiert: wie oft müssen wir das Orakel befragen, um Eigenschaften von  zu bestimmen? 

𝒰̂f f

f
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• Freund/Freundin denkt sich Zahl  aus 
• Frage: Ist Deine Zahl ? 
• Antwort: Ja/Nein 

Wie kann man die Zahl der Fragen minimieren?

X
X

Beispiel 1: f(x1, x2) = AND(x1, x2) = x1x2

Bit-Orakel: Das ist das Toffoli-Gate!

Beispiel 2 : f(x) = x

Bit-Orakel: Das ist das CNOT-Gate!
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Zustände angewandt werden.

Frage: Was passiert, wenn wir das letzte Register auf  statt 0 oder 1 setzen?| − ⟩

Beachte:  statt 0 oder 1 setzen?̂NOT | − ⟩ = − | − ⟩

f(x1, . . . , xn) = 1 ⇒ − 1 f(x1, . . . , xn) = 0 ⇒ + 1
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 5.2 Quantenalgorithmen
Beispiel für Quantenalgorithmen, die ein Rechenproblem sehr viel schneller als ein 

klassischer Computer lösen 

Basiert auf Interferenz… 

Geschwindigkeitsmessung: wie viele Fragen müssen wir an das Orakel stellen? 
Wie oft müssen wir  auswerten, um die Eigenschaften von  zu bestimmen?𝒪̂f f
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 5.4 Deine Quanten-Reise
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