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Wdh.: Operationen auf einem Qubit

NOT-Operation:     

Z-Operation:          Spiegelung an der  Achse 

Rotationen:  ;  

Allgemeinste Spiegelung  hat die Form:  

Hadamard Transformation     

̂ NOT |0⟩ = |1⟩ ̂ NOT |1⟩ = |0⟩

̂Z |0⟩ = |0⟩ ̂Z |1⟩ = − |1⟩ |0⟩

Û(θ)(1
0) = (cos θ

sin θ ) = |ψ(θ)⟩ Û(θ)(0
1) = (−sin θ

cos θ ) = |ψ(θ +
π
2

)⟩

̂V(θ) ̂V(θ) = NOT Û(θ) = Û(−θ) NOT

Ĥ Ĥ = ̂V ( π
4 ) = NOT Û ( π

4 )
| + ⟩ :=

|0⟩ + |1⟩

2

| − ⟩ :=
|0⟩ − |1⟩

2

Ĥ |0⟩ =
1

2
( |0⟩ + |1⟩) =: | + ⟩

Ĥ |1⟩ =
1

2
( |0⟩ − |1⟩) =: | − ⟩



 Wdh.: Kontrollierte Operationen

Man kann für jede Ein QuBit Operation  verallgemeinerte kontrollierte  
Operationen   einführen: 

Û
CÛ1→2



 Wdh.: Verschränkte Zustände

Bisher Produktzustände: 
- Tensorprodukt von 2 Ein-QuBit-Zuständen 
- Anwendung von lokalen Operatoren auf |00⟩

Es gibt auch Zustände, die keine Produktzustände sind, diese nennt man verschränkt 

Betrachte einen allgemeinen Zustand  
 

Wir bestimmen wieder die Größe 

|ψ⟩
|ψ⟩ = ψ00 |00⟩ + ψ01 |01⟩ + ψ10 |10⟩ + ψ11 |11⟩

Δ(ψ) = ψ00ψ11 − ψ01ψ10

Es gilt:  ist ein Produktzustand  |ψ⟩ ⇔ Δ(ψ) = 0



 Wdh.: Verschränkte Zustände
Beispiel:    |Φ+⟩ =

1

2
|00⟩ +

1

2
|11⟩ ⇒ Δ(Φ+) =

1
2

≠ 0

Dieser Zustand wir auch der maximal verschränkte Zustand genannt

Erzeugung via Quirky:

Beweis:



 Wdh.: Verschränkte Zustände
 gehört zu einer Familie von 4 Zuständen die Bell-Zustände genannt werden|Φ+⟩

Wir definieren folgende Operation:  und findenÛBell := ̂CNOT1→2(Ĥ ⊗ 1̂)



 Wdh.: Verschränkte Zustände

D.H.: Invertiere ÛBell := ̂CNOT1→2(Ĥ ⊗ 1̂)

Û−1
Bell := (Ĥ ⊗ 1̂) ̂CNOT1→2

Ĥ |0⟩ = | + ⟩ , Ĥ |1⟩ = | − ⟩
Ĥ2 |0⟩ = Ĥ | + ⟩ =

1

2
(Ĥ |0⟩ + Ĥ |1⟩) =

1

2
( | + ⟩ + | − ⟩) =

1
2

(2 |0⟩) = |0⟩

Ĥ2 |1⟩ = Ĥ | − ⟩ =
1

2
(Ĥ |0⟩ − Ĥ |1⟩) =

1

2
( | + ⟩ − | − ⟩) =

1
2

(2 |1⟩) = |0⟩



 Wdh.: Die Macht von Verschränkung
Superdense Coding

Start: Bob und Alice teilen sich schon vorher den Zustand ,  
d.h. Alice besitzt das erste Bit und Bob das zweite Bit dieses Zustandes

|Φ+⟩

1. QuBit:  1̂1

1. QuBit:  ̂Z1

1. QuBit:  ̂NOT1

1. QuBit:  ̂Z1 ̂NOT1

Dies wendet Alice im Fall  an{0,0}
Dies wendet Alice im Fall  an{0,1}

Dies wendet Alice im Fall  an{1,0}

Dies wendet Alice im Fall  an{1,1}

Dann sendet Alice Ihr QBuit an Bob und der hat den gesamten Zustand 
und kann des gesamten Zustand extrahieren (Ü 3.13)



 Wdh.: Die Macht von Verschränkung
Klassisch: Maximal 75% Gewinnwahrscheinlichkeit - Beispiel für Bell-Ungleichung 

John Stewart Bell; 1928-1990; 1964 Ungleichung

Obiges Spiel: John Clauser, Michael Horne, Abner Shimoney, Richard Holt 

QM:  verletzt Bell-Ungleichung, mehr als 75% 
 - dies ist experimentell bewiesen, z.B. Alan Aspect 

Kann auch als Beweis genutzt werden, dass man einen echten Quantencomputer hat! 
Man spielt das Spiel und bei > 75% war es ein QC :-)



 Wdh.: Quantenschaltungen
Bildliche Darstellung: welche Operation wird an welchen Qubit durchgeführt

Beispiel:  Simulation einer vereinfachten Theorie des Elektromagnetismus

Formal besteht eine Quantenschaltung aus 3 Teilen: 
1. Initialzustand: typischerweise  
2. Quantenoperationen: meist 1 oder 2 QuBits gleichzeitig involviert 
3. Messungen, um QuBits auszulesen

|0⟩

(Siehe Quirky) 
Die Operationen werden oft auch als Gatter oder Gates bezeichnet 
z.B.: Hadamard-Operation  Hadamard-Gatter   Hadamard-Gate  ≡ ≡



 Wdh.: Viele Quantenbits
Beliebiger Zustand mit  QuBits:  Basis Elemente n 2n

Es muss gelten: 

Mögliche Darstellung als Vektor in einem  dimensionalen Vektorraum. 2n

Bei  gibt es  Amplitude (mehr als Atome im Universum) 
d.h. sowas kann nicht klassisch gespeichert werden, aber als Quanten Computer 

gebaut!

n = 300 2300 ≈ 2 ⋅ 1091



 Wdh.: Viele Quantenbits
Mit dem Tensorprodukt können Zustände beschrieben werden, die zu kombinierten 

QuBits gehören, allgemein: 

Beispiel 1: 

Beispiel 2: 



 Wdh.: Operationen
1 QuBit-Operationen  wirken wie folgt: 

 

Analoge Definitionen für , ,…

Û

Û1 |a1, . . . , an⟩ = Û |a1⟩ ⊗ |a2, . . . , an⟩

Û2 Û3

  |Φ+⟩ ⊗ |1⟩ =
1

2
( |001⟩ + |111⟩)

Ĥ2 |Φ+⟩ ⊗ |1⟩ =
1
2 ( |001⟩ + |011⟩ + |101⟩ − |111⟩)



 Wdh.: Operationen
2 QuBit-Operationen  wirken wie folgt: 

 

Quirky: Quest 4

̂CNOTi→k

̂CNOTi→k |a1, . . . , ak, . . . , an⟩ = |a1, . . . , ai ⊕ ak, . . . , an⟩

Auf den ersten Blick: wie vorher   
aber wenn man auf Operation klickt, dann erscheint 3. Linie



 Wdh.: Operationen



 Wdh.: Operationen

 ̂CNOT2→1
1

2
( |000⟩ − |011⟩)

=
1

2
( |000⟩ − |111⟩)



 Wdh.: Die allgemeinsten Quantenoperationen
Die allgemeinste Quantenoperation hat folgende Eigenschaften: 

1. Sie ist linear 
2. Sie bildet Quantenzustände auf Quantenzustände ab (Normierung) 
3. Sie ist invertierter (reversibel)

CCNOT



 Wdh.: Die allgemeinsten Quantenoperationen
T kann auch als eine Reihe von Ein- und  

Zwei QuBit-Operationen geschrieben werden! 
https://arxiv.org/pdf/quant-ph/9503016 

Jede Quanten-Operation auf n QuBits 
kann auch als eine Reihe von Ein- und  

Zwei QuBit-Operationen geschrieben werden!

https://arxiv.org/pdf/quant-ph/9503016


 Wdh.: Regeln für Schaltungen
Es gibt Tricks zur Vereinfachung von Quantenschaltungen 

Einfachere Schaltungen sind meist auch schneller

Ĥ | + ⟩ =
1

2 (Ĥ |0⟩ + Ĥ |1⟩) =
1
2 ( |0⟩ + |1⟩ + |0⟩ − |1⟩) = |0⟩

Ĥ | − ⟩ =
1

2 (Ĥ |0⟩ − Ĥ |1⟩) =
1
2 ( |0⟩ + |1⟩ − |0⟩ + |1⟩) = |1⟩

Ĥ ̂ZĤ |0⟩ = Ĥ ̂Z | + ⟩ = Ĥ | − ⟩ = |1⟩ = ̂NOT |0⟩ Ĥ ̂ZĤ |1⟩ = Ĥ ̂Z | − ⟩ = Ĥ | + ⟩ = |0⟩ = ̂NOT |1⟩

Ĥ ̂NOTĤ |0⟩ = Ĥ ̂NOT | + ⟩ = Ĥ | + ⟩ = |0⟩ = ̂Z |0⟩ Ĥ ̂NOTĤ |1⟩ = Ĥ ̂NOT | − ⟩ = − Ĥ | − ⟩ = − |1⟩ = ̂Z |1⟩



 Wdh.: Regeln für Schaltungen
Es gibt Tricks zur Vereinfachung von Quantenschaltungen 

Einfachere Schaltungen sind meist auch schneller

̂V(θ) = ̂NOT Û(θ) = Û(−θ) ̂NOTDefinition:

̂V(θ2) ̂V(θ1) = Û(−θ2) ̂NOT ̂NOT Û(θ1) = Û(−θ2)Û(θ1) = Û(θ1 − θ2)



 Wdh.: Alle Qubits messen
Wenn wir  QuBits messen dann erhalten wir mit der Wahrscheinlichkeit 

 den Bit-String  
n

pa1....an
= ψ2

a1....an
a1 . . . . an

Quirky



 Wdh.: Einzelne Qubits messen
Annahme: Wir haben einen 3-QuBit Zustand  

 
  

Wenn wir das erste Bit messen, dann finden wir mit der Wahrscheinlichkeit 

 

den Wert . 

Beispiel: Messen wir das erste QuBit von                                                      so finden wir den Wert Null mit 

der Wahrscheinlichkeit 

|ψ⟩ = ψ000 |000⟩ + ψ001 |001⟩ + ψ010 |010⟩ + ψ100 |100⟩ + ψ011 |011⟩ + ψ101 |101⟩ + ψ110 |110⟩ + ψ111 |111⟩

ψ2
a00 + ψ2

a01 + ψ2
a10 + ψ2

a11

a ∈ {0,1}

1
8

+
2
8

=
3
8

Quirky:

̂CNOT1→3
̂CNOT1→2Ĥ1 |000⟩ =

1

2 ( ̂CNOT1→3
̂CNOT1→2 |000⟩ + ̂CNOT1→3

̂CNOT1→2 |100⟩) =
1

2
( |000⟩ + |111⟩)



 4.1.6 Einzelne Qubits messen

In welchem Zustand befindet sich das 2. und 3. QuBit,  
nachdem wir das erste gemessen haben? 
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In welchem Zustand befindet sich das 2. und 3. QuBit,  
nachdem wir das erste gemessen haben? 

Zu der Messung tragen folgende Zustände bei:  
 |ψ⟩ = ψa00 |a00⟩ + ψa01 |a01⟩ + ψa10 |a10⟩ + ψa11 |a11⟩
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In welchem Zustand befindet sich das 2. und 3. QuBit,  
nachdem wir das erste gemessen haben? 

Zu der Messung tragen folgende Zustände bei:  
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 4.1.6 Einzelne Qubits messen

In welchem Zustand befindet sich das 2. und 3. QuBit,  
nachdem wir das erste gemessen haben? 

Zu der Messung tragen folgende Zustände bei:  
 

Nach der Messung des 1. QuBits können wir dies auch weglassen 
 

Jetzt müssen wir noch sicherstellen, dass dieser Zustand auch normiert ist 

|ψ⟩ = ψa00 |a00⟩ + ψa01 |a01⟩ + ψa10 |a10⟩ + ψa11 |a11⟩

|ψ⟩ = ψa00 |00⟩ + ψa01 |01⟩ + ψa10 |10⟩ + ψa11 |11⟩



 4.1.6 Einzelne Qubits messen

In welchem Zustand befindet sich das 2. und 3. QuBit,  
nachdem wir das erste gemessen haben? 

Zu der Messung tragen folgende Zustände bei:  
 

Nach der Messung des 1. QuBits können wir dies auch weglassen 
 

Jetzt müssen wir noch sicherstellen, dass dieser Zustand auch normiert ist 
 

|ψ⟩ = ψa00 |a00⟩ + ψa01 |a01⟩ + ψa10 |a10⟩ + ψa11 |a11⟩

|ψ⟩ = ψa00 |00⟩ + ψa01 |01⟩ + ψa10 |10⟩ + ψa11 |11⟩

|ψ⟩ =
ψa00

c
|00⟩ +

ψa01

c
|01⟩ +

ψa10

c
|10⟩ +

ψa11

c
|11⟩



 4.1.6 Einzelne Qubits messen

In welchem Zustand befindet sich das 2. und 3. QuBit,  
nachdem wir das erste gemessen haben? 

Zu der Messung tragen folgende Zustände bei:  
 

Nach der Messung des 1. QuBits können wir dies auch weglassen 
 

Jetzt müssen wir noch sicherstellen, dass dieser Zustand auch normiert ist 
 

mit  

|ψ⟩ = ψa00 |a00⟩ + ψa01 |a01⟩ + ψa10 |a10⟩ + ψa11 |a11⟩

|ψ⟩ = ψa00 |00⟩ + ψa01 |01⟩ + ψa10 |10⟩ + ψa11 |11⟩

|ψ⟩ =
ψa00

c
|00⟩ +

ψa01

c
|01⟩ +

ψa10

c
|10⟩ +

ψa11

c
|11⟩

c = ψ2
a00 + ψ2

a01 + ψ2
a10 + ψ2

a11



 4.1.6 Einzelne Qubits messen

Messe 1. QuBit von

Beispiel:



 4.1.6 Einzelne Qubits messen

Messe 1. QuBit von

Finde 0   

Beispiel:



 4.1.6 Einzelne Qubits messen

Messe 1. QuBit von

Finde 0   

dann ist die verbleibende unnormierte Wellenfunktion  
1

2
|00⟩

Beispiel:



 4.1.6 Einzelne Qubits messen

Messe 1. QuBit von

Finde 0   

dann ist die verbleibende unnormierte Wellenfunktion  

und die normierte Wellenfunktion lautet dann

1

2
|00⟩

|00⟩

Beispiel:



 4.1.6 Einzelne Qubits messen
Messe 1. QuBit von 3 QuBit Zustand 
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 4.1.6 Einzelne Qubits messen
Messe 1. QuBit von 3 QuBit Zustand 

Dies kann man sich vorstellen als 

Oder (beachte: !)p0 + p1 = 1



 4.1.6 Einzelne Qubits messen
Messe 1. QuBit von 3 QuBit Zustand 

Dies kann man sich vorstellen als 

Oder (beachte: !)p0 + p1 = 1

Beispiel:



 4.1.6 Einzelne Qubits messen
Messe 1. QuBit von 3 QuBit Zustand 

Dies kann man sich vorstellen als 

Oder (beachte: !)p0 + p1 = 1

Beispiel:

Hieraus kann man sofort die Wahrscheinlichkeiten ablesen
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Wir können auch die ersten zwei QuBits eines allgemeinen Drei QuBit zustand messen. 
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 4.1.6 Einzelne Qubits messen

Wir können auch die ersten zwei QuBits eines allgemeinen Drei QuBit zustand messen. 

Wir erhalten  mit der Wahrscheinlichkeit|ab⟩

Nach der Messung haben wir dann den Zustand:

1
2

: |00⟩



 4.1.6 Einzelne Qubits messen

Wir können auch die ersten zwei QuBits eines allgemeinen Drei QuBit zustand messen. 

Wir erhalten  mit der Wahrscheinlichkeit|ab⟩

Nach der Messung haben wir dann den Zustand:

1
2

: |00⟩

1
2

: |11⟩



 4.1.6 Einzelne Qubits messen

Wir können auch die ersten zwei QuBits eines allgemeinen Drei QuBit zustand messen. 

Wir erhalten  mit der Wahrscheinlichkeit|ab⟩

Nach der Messung haben wir dann den Zustand:

1
2

: |00⟩

1
2

: |11⟩
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Wir können einige QuBits messen und abhängig vom Messergebnis die  

verbleibenden QuBits modifizieren 
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Wir können einige QuBits messen und abhängig vom Messergebnis die  

verbleibenden QuBits modifizieren 

Beispiel

Messe 1. QuBit: beim Ergebnis  wollen wir die verbleibenden QuBits auf  
zurücksetzen 

|1⟩ |00⟩



 4.1.6 Einzelne Qubits messen
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 4.1.6 Einzelne Qubits messen
Wir können einige QuBits messen und abhängig vom Messergebnis die  

verbleibenden QuBits modifizieren 

Beispiel

Messe 1. QuBit: beim Ergebnis  wollen wir die verbleibenden QuBits auf  
zurücksetzen 

|1⟩ |00⟩

Kontroll-Bit ist hier 
ein klassisches Bit



 4.1.6 Einzelne Qubits messen
Wir können einige QuBits messen und abhängig vom Messergebnis die  

verbleibenden QuBits modifizieren 

Beispiel

Messe 1. QuBit: beim Ergebnis  wollen wir die verbleibenden QuBits auf  
zurücksetzen 

|1⟩ |00⟩

Kontroll-Bit ist hier 
ein klassisches Bit

Formal:



 4.2 Quanten-Überraschungen

Verschiedene interessante Phänomene,  
die beim Umgang mit QuBits auftreten
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 4.2.1 Unklonbarkeit
Klassische Bits können einfach geklont werden:  

wir schauen es an und das was wir sehen, das kopieren wir

Kann man Qu-Bits auch klonen?

Annahme: Klonen geht, d.h. bei gegeben Zustand  gibt es die Operation ,  
die z.B. aus dem Zustand  den Zustand  macht . 

 

Diese Operation macht dann folgendes aus den Basis Operatoren 
  
 

Dies ist möglich und wäre z.B. die 

|ψ⟩ C
|0⟩ |ψ⟩

C ( |ψ⟩ ⊗ |0⟩) = |ψ⟩ ⊗ |ψ⟩

C ( |0⟩ ⊗ |0⟩) = |0⟩ ⊗ |0⟩
C ( |1⟩ ⊗ |0⟩) = |1⟩ ⊗ |1⟩

̂CNOT1→2
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Dieser beinhaltet im Allgemeinen unendlich viel Information!
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Formal werden folgende Operationen durchgeführt:

AliceBob

Am Ende hat Bob das Bit m

Man kann nicht nur ein Basis-Bit 0 oder 1 verschicken, wegen Linearität kann 
man auch ein ganzes probabilistisches Bit  verschicken  

Das gesamte Bit ist dann 
p

p ⊗ r
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 4.2.3 Quanten-Teleportation

Die Wahrscheinlichkeiten , das Ergebnis  für die 
ersten beiden QuBits zu erhalten:

pab |ab⟩



 4.2.3 Quanten-Teleportation

Die Wahrscheinlichkeiten , das Ergebnis  für die 
ersten beiden QuBits zu erhalten:

pab |ab⟩



 4.2.3 Quanten-Teleportation

Die Wahrscheinlichkeiten , das Ergebnis  für die 
ersten beiden QuBits zu erhalten:

pab |ab⟩



 4.2.3 Quanten-Teleportation

Die Wahrscheinlichkeiten , das Ergebnis  für die 
ersten beiden QuBits zu erhalten:

pab |ab⟩



 4.2.3 Quanten-Teleportation

Die Wahrscheinlichkeiten , das Ergebnis  für die 
ersten beiden QuBits zu erhalten:

pab |ab⟩



 4.2.3 Quanten-Teleportation

Die Wahrscheinlichkeiten , das Ergebnis  für die 
ersten beiden QuBits zu erhalten:

pab |ab⟩

Wie von Quirky behauptet, tritt jedes Ergebnis mit  auf
1
4
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Alice sendet nun Bob ihr Ergebnis , damit weiss Bob was er mit seinem Zustand machen muss[ab]

Alice: 00  Bob:             

Alice: 01  Bob:       


⇒ 1̂ |ψ′￼00⟩ = ψ0 |0⟩ + ψ1 |1⟩
⇒ ̂NOT  |ψ′￼01⟩ = ψ0 |0⟩ + ψ1 |1⟩



 4.2.3 Quanten-Teleportation

Bob’s Zustand hängt nun vom Ergebnis der Messung von Alice ab:

Alice: 00  Bob:    

Alice: 01  Bob:    

Alice: 10  Bob:    

Alice: 11  Bob:    

⇒ |ψ′￼00⟩ = ψ0 |0⟩ + ψ1 |1⟩
⇒ |ψ′￼01⟩ = ψ1 |0⟩ + ψ0 |1⟩
⇒ |ψ′￼10⟩ = ψ0 |0⟩ − ψ1 |1⟩
⇒ |ψ′￼11⟩ = − ψ1 |0⟩ + ψ0 |1⟩

Alice sendet nun Bob ihr Ergebnis , damit weiss Bob was er mit seinem Zustand machen muss[ab]

Alice: 00  Bob:             

Alice: 01  Bob:       

Alice: 10  Bob:             


⇒ 1̂ |ψ′￼00⟩ = ψ0 |0⟩ + ψ1 |1⟩
⇒ ̂NOT  |ψ′￼01⟩ = ψ0 |0⟩ + ψ1 |1⟩
⇒ ̂Z |ψ′￼10⟩ = ψ0 |0⟩ + ψ1 |1⟩



 4.2.3 Quanten-Teleportation

Bob’s Zustand hängt nun vom Ergebnis der Messung von Alice ab:

Alice: 00  Bob:    

Alice: 01  Bob:    

Alice: 10  Bob:    

Alice: 11  Bob:    

⇒ |ψ′￼00⟩ = ψ0 |0⟩ + ψ1 |1⟩
⇒ |ψ′￼01⟩ = ψ1 |0⟩ + ψ0 |1⟩
⇒ |ψ′￼10⟩ = ψ0 |0⟩ − ψ1 |1⟩
⇒ |ψ′￼11⟩ = − ψ1 |0⟩ + ψ0 |1⟩

Alice sendet nun Bob ihr Ergebnis , damit weiss Bob was er mit seinem Zustand machen muss[ab]

Alice: 00  Bob:             

Alice: 01  Bob:       

Alice: 10  Bob:             

Alice: 11  Bob:    

⇒ 1̂ |ψ′￼00⟩ = ψ0 |0⟩ + ψ1 |1⟩
⇒ ̂NOT  |ψ′￼01⟩ = ψ0 |0⟩ + ψ1 |1⟩
⇒ ̂Z |ψ′￼10⟩ = ψ0 |0⟩ + ψ1 |1⟩
⇒ ̂Z ̂NOT  |ψ′￼11⟩ = ψ0 |0⟩ + ψ1 |1⟩



 4.2.3 Quanten-Teleportation
Alice sendet nun Bob ihr Ergebnis , damit weiss Bob was er mit seinem Zustand machen muss[ab]

Alice: 00  Bob:             

Alice: 01  Bob:       

Alice: 10  Bob:             

Alice: 11  Bob:    

⇒ 1̂ |ψ′￼00⟩ = ψ0 |0⟩ + ψ1 |1⟩
⇒ ̂NOT  |ψ′￼01⟩ = ψ0 |0⟩ + ψ1 |1⟩
⇒ ̂Z |ψ′￼10⟩ = ψ0 |0⟩ + ψ1 |1⟩
⇒ ̂Z ̂NOT  |ψ′￼11⟩ = ψ0 |0⟩ + ψ1 |1⟩



 4.2.3 Quanten-Teleportation
Alice sendet nun Bob ihr Ergebnis , damit weiss Bob was er mit seinem Zustand machen muss[ab]

Alice: 00  Bob:             

Alice: 01  Bob:       

Alice: 10  Bob:             

Alice: 11  Bob:    

⇒ 1̂ |ψ′￼00⟩ = ψ0 |0⟩ + ψ1 |1⟩
⇒ ̂NOT  |ψ′￼01⟩ = ψ0 |0⟩ + ψ1 |1⟩
⇒ ̂Z |ψ′￼10⟩ = ψ0 |0⟩ + ψ1 |1⟩
⇒ ̂Z ̂NOT  |ψ′￼11⟩ = ψ0 |0⟩ + ψ1 |1⟩

Teleportationsschaltkreis:


