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Wdh.: Operationen auf einem Qubit

NOT-Operation:     

Z-Operation:          Spiegelung an der  Achse 

Rotationen:  ;  

Allgemeinste Spiegelung  hat die Form:  

Hadamard Transformation     

̂ NOT |0⟩ = |1⟩ ̂ NOT |1⟩ = |0⟩

̂Z |0⟩ = |0⟩ ̂Z |1⟩ = − |1⟩ |0⟩

Û(θ)(1
0) = (cos θ

sin θ ) = |ψ(θ)⟩ Û(θ)(0
1) = (−sin θ

cos θ ) = |ψ(θ +
π
2

)⟩

̂V(θ) ̂V(θ) = NOT Û(θ) = Û(−θ) NOT

Ĥ Ĥ = ̂V ( π
4 ) = NOT Û ( π

4 )
| + ⟩ :=

|0⟩ + |1⟩

2

| − ⟩ :=
|0⟩ − |1⟩

2

Ĥ |0⟩ =
1

2
( |0⟩ + |1⟩) =: | + ⟩

Ĥ |1⟩ =
1

2
( |0⟩ − |1⟩) =: | − ⟩



Wdh.: Motivation 



 Wdh.: Parallele Operationen
Allgemeine Bemerkungen zum Tensorprodukt:

Û1
̂V2 = ̂V2Û1Damit lautet: Und somit als Spezialfall:

Reihenfolge von Operationen:
2 Drehungen:  
Drehungen vertauschen also

Û(θ)Û(θ′￼) = Û(θ + θ′￼) = Û(θ′￼+ θ) = Û(θ′￼)Û(θ)

Im Allgemeinen gilt aber:  Û ̂V ≠ ̂VÛ



 Wdh.:  Parallele Operationen

 ̂ZĤ |0⟩ = ̂Z
1

2
( |0⟩ + |1⟩) =

1

2
( |0⟩ − |1⟩) = | − ⟩

 Ĥ ̂Z |0⟩ = Ĥ |0⟩ =
1

2
( |0⟩ + |1⟩) = | + ⟩

 ̂ZĤ |1⟩ = ̂Z
1

2
( |0⟩ − |1⟩) =

1

2
( |0⟩ + |1⟩) = | + ⟩

 Ĥ ̂Z |1⟩ = − Ĥ |1⟩ = −
1

2
( |0⟩ − |1⟩) = − | − ⟩



 Wdh.: Kontrollierte Operationen
Um über Produktzustände hinauszugehen, benötigen wir Operationen bei denen die 

beiden QuBits interagieren

Kontrollierte NOT Operation: Kompakt:

Ebenso:

2 Kontrollierte NOT Operationen hintereinander macht nichts:

D.h.:



 Wdh.: Kontrollierte Operationen

Man kann für jede Ein QuBit Operation  verallgemeinerte kontrollierte  
Operationen   einführen: 

Û
CÛ1→2



 Wdh.: Verschränkte Zustände

Bisher Produktzustände: 
- Tensorprodukt von 2 Ein-QuBit-Zuständen 
- Anwendung von lokalen Operatoren auf |00⟩

Es gibt auch Zustände, die keine Produktzustände sind, diese nennt man verschränkt 

Betrachte einen allgemeinen Zustand  
 

Wir bestimmen wieder die Größe 

|ψ⟩
|ψ⟩ = ψ00 |00⟩ + ψ01 |01⟩ + ψ10 |10⟩ + ψ11 |11⟩

Δ(ψ) = ψ00ψ11 − ψ01ψ10

Es gilt:  ist ein Produktzustand  |ψ⟩ ⇔ Δ(ψ) = 0



 Wdh.: Verschränkte Zustände
Beispiel:    |Φ+⟩ =

1

2
|00⟩ +

1

2
|11⟩ ⇒ Δ(Φ+) =

1
2

≠ 0

Dieser Zustand wir auch der maximal verschränkte Zustand genannt

Erzeugung via Quirky:

Beweis:



 Wdh.: Verschränkte Zustände
 gehört zu einer Familie von 4 Zuständen die Bell-Zustände genannt werden|Φ+⟩

Wir definieren folgende Operation:  und findenÛBell := ̂CNOT1→2(Ĥ ⊗ 1̂)



 Wdh.: Verschränkte Zustände

ÛBell := ̂CNOT1→2(Ĥ ⊗ 1̂)



 Wdh.: Verschränkte Zustände

D.H.: Invertiere ÛBell := ̂CNOT1→2(Ĥ ⊗ 1̂)

Û−1
Bell := (Ĥ ⊗ 1̂) ̂CNOT1→2

Ĥ |0⟩ = | + ⟩ , Ĥ |1⟩ = | − ⟩
Ĥ2 |0⟩ = Ĥ | + ⟩ =

1

2
(Ĥ |0⟩ + Ĥ |1⟩) =

1

2
( | + ⟩ + | − ⟩) =

1
2

(2 |0⟩) = |0⟩

Ĥ2 |1⟩ = Ĥ | − ⟩ =
1

2
(Ĥ |0⟩ − Ĥ |1⟩) =

1

2
( | + ⟩ − | − ⟩) =

1
2

(2 |1⟩) = |0⟩



 Wdh.: Verschränkung und Korrelationen
Es gibt ausgeprägte Ähnlichkeiten zwischen korrelierten 

Wahrscheinlichkeitsverteilungen und verschränkten Zuständen

Starte mit allgemeinem Ein QuBit zustand  
Messung: mit Wahrscheinlichkeit  ergibt sich  
Dies kann durch die Wahrscheinlichleitsverteilung  modelliert werden

|ψ⟩ = ψ0 |0⟩ + ψ1 |1⟩
ψ2

i | i⟩
ψ2

0[0] + ψ2
1[1]

Starte mit allgemeinem Zwei QuBit zustand 
 

Messung: mit Wahrscheinlichkeit  ergibt sich  
Dies kann durch die Wahrscheinlichkeitsverteilung 

 modelliert werden

|ψ⟩ = ψ00 |00⟩ + ψ01 |01⟩ + ψ10 |10⟩ + ψ11 |11⟩
ψ2

ij | ij⟩

ψ2
00[00] + ψ2

01[01] + ψ2
10[10] + ψ2

11[11]



 Wdh.: Verschränkung und Korrelationen
Erzeugen wir den maximal verschränkten Zustand  und messen ihn, dann 

erhalten wir ein perfekt korrelierten Paar von Zufallsbits 
|Φ+⟩

Test: 

Dasselbe gilt für  :  |Φ−⟩
1
2

[00] +
1
2

[11]

Für die Zustände    erhalten wir hingegen   welches anti-

korrelierte Bits beschreibt.

|Ψ±⟩
1
2

[01] +
1
2

[10]



 Wdh.: Verschränkung und Korrelationen
Vergleiche das Mass  mit  Δ(p) Δ( |ψ⟩)

d.h. ist , dann folgt daraus   Δ( |ψ⟩) = 0 Δ(p) = 0

Zu jeder gegeben Wahrscheinlichkeitsverteilung  können wir einfach einen 
Quantenzustand  finden, dass Messergebnis gemäß  verteilt ist.  

p
|ψ⟩ p

|ψ⟩ = p00 |00⟩ + p01 |01⟩ + p10 |10⟩ + p11 |11⟩

d.h. Quantenzustände können alles was Wahrscheinlichkeitsverteilungen können 



 Wdh.: Die Macht von Verschränkung
Quantenzustände können aber noch viel mehr!

Aufgabe 3.13: Esel an Position  mit  

              Dies wurde codiert mit den 4 Bell-Zuständen 

{a, b} a, b ∈ {0,1} |00⟩ →

|01⟩ →

|10⟩ →

|11⟩ →
{

Alice will die Info über den Ort des Esels an Bob weiterleiten 
Geld auf Quantum-Handy ist alle, d.h. Alice kann nur noch 1 Qubit übertragen

Kann Alice trotzdem die gesamte 2-QuBit Information übertragen? Klassisch: NEIN 
Einfaches Senden des ersten oder 2 QuBits reicht nicht aus 

Bob misst dies und danach ist der ursprüngliche Zustand verschwunden



 Wdh.: Die Macht von Verschränkung
Superdense Coding

Start: Bob und Alice teilen sich schon vorher den Zustand ,  
d.h. Alice besitzt das erste Bit und Bob das zweite Bit dieses Zustandes

|Φ+⟩

1. QuBit:  1̂1

1. QuBit:  ̂Z1

1. QuBit:  ̂NOT1

1. QuBit:  ̂Z1 ̂NOT1

Dies wendet Alice im Fall  an{0,0}
Dies wendet Alice im Fall  an{0,1}

Dies wendet Alice im Fall  an{1,0}

Dies wendet Alice im Fall  an{1,1}

Dann sendet Alice Ihr QBuit an Bob und der hat den gesamten Zustand 
und kann des gesamten Zustand extrahieren (Ü 3.13)
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 3.2.7 Die Macht von Verschränkung

Es gibt 4 Möglichkeiten 
I)  
II)   
III)  
IV)   
Ebenso für g, d.h. 16 Möglichkeiten 
-> alle ausschreiben,  

z.B.  , ,   
liefern 75%  

f(0) = 0, f(1) = 0
f(0) = 1, f(1) = 0
f(0) = 0, f(1) = 1
f(0) = 1, f(1) = 1

I ⊗ III II ⊗ IV II ⊗ III
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 3.2.7 Die Macht von Verschränkung
Klassisch: Maximal 75% Gewinnwahrscheinlichkeit - Beispiel für Bell-Ungleichung 

John Stewart Bell; 1928-1990; 1964 Ungleichung

Obiges Spiel: John Clauser, Michael Horne, Abner Shimoney, Richard Holt 

QM:  verletzt Bell-Ungleichung, mehr als 75% 
 - dies ist experimentell bewiesen, z.B. Alan Aspect 

Kann auch als Beweis genutzt werden, dass man einen echten Quantencomputer hat! 
Man spielt das Spiel und bei > 75% war es ein QC :-)



 4 Quantenkompositionen

Bisher: 
1 und 2 QuBits, jetzt viele QuBits 

Verschränkte Zustände:  
- effektivere Kommunikation 
- Bessere Gewinnstrategien
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 4.1 Quantenschaltungen
Bildliche Darstellung: welche Operation wird an welchen Qubit durchgeführt

Beispiel:  Simulation einer vereinfachten Theorie des Elektromagnetismus

Formal besteht eine Quantenschaltung aus 3 Teilen: 
1. Initialzustand: typischerweise  
2. Quantenoperationen: meist 1 oder 2 QuBits gleichzeitig involviert 
3. Messungen, um QuBits auszulesen

|0⟩

(Siehe Quirky) 
Die Operationen werden oft auch als Gatter oder Gates bezeichnet 
z.B.: Hadamard-Operation  Hadamard-Gatter   Hadamard-Gate  ≡ ≡
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 4.1.1 Viele Quantenbits
Beliebiger Zustand mit  QuBits:  Basis Elemente n 2n

Es muss gelten: 

Mögliche Darstellung als Vektor in einem  dimensionalen Vektorraum. 2n

Bei  gibt es  Amplitude (mehr als Atome im Universum) 
d.h. sowas kann nicht klassisch gespeichert werden, aber als Quanten Computer 

gebaut!

n = 300 2300 ≈ 2 ⋅ 1091
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 4.1.2 Operationen
1 QuBit-Operationen  wirken wie folgt: 

 

Û

Û1 |a1, . . . , an⟩ = Û |a1⟩ ⊗ |a2, . . . , an⟩
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Û
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 4.1.2 Operationen
1 QuBit-Operationen  wirken wie folgt: 

 

Analoge Definitionen für , ,…

Û

Û1 |a1, . . . , an⟩ = Û |a1⟩ ⊗ |a2, . . . , an⟩

Û2 Û3

  |Φ+⟩ ⊗ |1⟩ =
1

2
( |001⟩ + |111⟩)

Ĥ2 |Φ+⟩ ⊗ |1⟩ =
1
2 ( |001⟩ + |011⟩ + |101⟩ − |111⟩)



 4.1.2 Operationen
2 QuBit-Operationen  wirken wie folgt: 

 

̂CNOTi→k

̂CNOTi→k |a1, . . . , ak, . . . , an⟩ = |a1, . . . , ai ⊕ ak, . . . , an⟩
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 4.1.2 Operationen
2 QuBit-Operationen  wirken wie folgt: 

 

Quirky: Quest 4

̂CNOTi→k

̂CNOTi→k |a1, . . . , ak, . . . , an⟩ = |a1, . . . , ai ⊕ ak, . . . , an⟩

Auf den ersten Blick: wie vorher   
aber wenn man auf Operation klickt, dann erscheint 3. Linie
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 4.1.2 Operationen

 ̂CNOT2→1
1

2
( |000⟩ − |011⟩)

=
1

2
( |000⟩ − |111⟩)
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 4.1.3 Die allgemeinsten Quantenoperationen
T kann auch als eine Reihe von Ein- und  

Zwei QuBit-Operationen geschrieben werden! 
https://arxiv.org/pdf/quant-ph/9503016 

Jede Quanten-Operation auf n QuBits 
kann auch als eine Reihe von Ein- und  

Zwei QuBit-Operationen geschrieben werden!

https://arxiv.org/pdf/quant-ph/9503016
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̂V(θ) = ̂NOT Û(θ) = Û(−θ) ̂NOTDefinition:
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̂CNOT1→2Ĥ1 |000⟩ =

1

2 ( ̂CNOT1→3
̂CNOT1→2 |000⟩ + ̂CNOT1→3

̂CNOT1→2 |100⟩) =
1

2
( |000⟩ + |111⟩)


