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Wdh.: Operationen auf einem Qubit

NOT-Operation: NOT|0) =|1) NOT|1) =|0)

Z-Operation: Z|10) = |0) Z| 1) = — | 1) Spiegelung an der | 0) Achse
n 1 cos A 0 —sin 6 T
Rotationen: U(6) = = |y (0)); U(O) = = |y(0+—))
0 sin & 1 cos 6 2

Allgemeinste Spiegelung \7(9) hat die Form: ‘A/(Q) = NOT U(H) = U(—H) NOT

A~ A AT N1
Hadamard Transformation 4 H=V (Z) = NOTU <Z>

. [0)+11) ﬁ|o>=i(|o>+|1>)=:|+>
|+ ) = 2
V2
|—) = |0>\/—§|1> FI|1>=%(|0>—|1>)=:|—>



Wdh.: Motivation

Beispiel: Zufallszahlengenerator [Bearbeiten | Quelltext bearbeiten |

Der einfachste Quantenalgorithmus ist ein Zufallszahlengenerator, der echte Zufallszahlen erzeugt. Ein klassischer
Rechner kann nur Pseudozufallszahlen berechnen.

Der folgende Quantenalgorithmus erzeugt eine Zufallszahl mit den Werten 0 oder 1. Er verwendet ein
Quantenregister mit einem Qubit, ein Quantengatter und eine Messung.[z]

1. Initialisiere das Quantenregister |x) mit dem Basiszustand |0):
) = |0)

2. Wende ein Hadamard-Gatter auf das Quantenregister |x) an. Das Hadamard-Gatter erzeugt eine
Superposition aus |0) und |1):
z) — H|z)

1
= —(10)+ 1))
V2
3. Messe das Quantenregister. Das Ergebnis |0) tritt mit der Wahrscheinlichkeit 1/2 auf. Das Ergebnis |1) tritt
ebenfalls mit der Wahrscheinlichkeit 1/2 auf.



Wdh.: Parallele Operationen

Allgemeine Bemerkungen zum Tensorprodukt:

U V)(UeV)=UuleVV,

Und somit als Spezialfall: Damit lautet: U,V, = V,U,
U, =U®I V,=1IQYV, (USN(I®V)=UQV=(IV)(URI)

Reihenfolge von Operationen:
2 Drehungen: UO)U(9") = U@+ 0') = U@ + 6) = U6 U(6)
Drehungen vertauschen also

Im Allgemeinen gilt aber: Uv + VU

Ubungsaufgabe 3.11: Die Reihenfolge ist wichtig

Zeige, dass HZ # ZH.




Wdh.: Parallele Operationen

Ubungsaufgabe 3.11: Die Reihenfolge ist wichtig

Zeige, dass HZ # ZH.

A ~ 1
2A10) = Z—— (10) + 1)) = — (10) = | 1)) = | )
V2 1 V2

HZ10)=H|0)=—— (|0 1)) =

10y = A]0) ﬁ(' Y+ 11))
A 1

HI|1 —([O)=]1 0 1)) =

1) = \@(” 1)) = ﬁ<|>+|>) )
A211y = — A1) = ——— (10) = 1)) = = | = )
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Wdh.: Kontrollierte Operationen

Um uber Produktzustande hinauszugehen, benotigen wir Operationen bei denen die
beiden QuBits interagieren

Kontrollierte NOT Operation: Kompakt:
CNOT;_,, |00) = |00), CNOT_,; |a,b) = |a,a® b).
CNOT;, [01) = |01), Ebenso:
CNOTq_,, [10) = [11), CNOT,1 |a,b) = |a & b, b)
CNOT1_,, [11) = [10),

2 Kontrollierte NOT Operationen hintereinander macht nichts:

CNOT;_,, CNOT;_,, |a,b) = CNOT_y, |a,a ® b) = |a,a Dad b) = |a, b)

D.h.: CNOT;}, = CNOT;_,,



Wdh.: Kontrollierte Operationen

Man kann fur jede Ein QuBit Operation U verallgemeinerte kontrollierte
Operationen CU/_,, einfiihren:

ClU;_,, |00) = |0) ® |0),
ClU;_,, |01) = |0) ® [1),
ClU;_,, |10) = [1) @ U |0),
Cly_y, |11) = 1) @ U |1)




Wdh.: Verschrankte Zustande

Bisher Produktzustande:
= Tensorprodukt von 2 Ein-QuBit-Zustanden

- Anwendung von lokalen Operatoren auf | 00)

Es gibt auch Zustande, die keine Produktzustande sind, diese nhennt man verschrankt

Betrachte einen allgemeinen Zustand |y)
[¥) = o1 00) + 4, [01) + w19 10) + 1y, [ 11)

Wir bestimmen wieder die GréBe A(y) = ywyoyi11 — Wo1¥io

Es gilt: |y) ist ein Produktzustand < A(y) =0



Wdh.: Verschrankte Zustande

Beispiel: | D) =L|OO)+L|11) ;"A((I>+)=l;é0
RS 2

Dieser Zustand wir auch der maximal verschrankte Zustand genannt

Erzeugung via Quirky:

Qubit2: |0

Fa R
1/

Qubit1: |0 | H *

Beweis:

CNOT;_,» (H® I) [00) = CNOT;_, (% 00) + |1o>) - % 100) + \[ 11)



Wdh.: Verschrankte Zustande

| ®*) gehdrt zu einer Familie von 4 Zustinden die Bell-Zustinde genannt werden

10),

) = = 100) + = 11),
o) = _%m,
¥*) = == 01) + f 10),
|qf—>:\% _ﬁm)'
Wir definieren folgende Operation: Uggj := CNOT;_,(H ® 1) und finden
d) = Uy |00), ®~) = Usen
Y) = Ugey |01), ¥™) = Upen

CNOT;_,, (H ® I) |00) = CNOT;_,, (\2 00) + = |1o>)

11).

J5100) + f 1)



Wdh.: Verschrankte Zustande

Ubungsaufgabe 3.12: Bell Zustinde vorbereiten

Zeichne, wie du die anderen drei Bell Zustande in QUIRKY konstruieren wiirdest: [®7),
'Y*), and [¥7).

_ 1 1
[¥7) = EIOD—EHO)-

Ugell := CNOT,_,(A® 1)

Qubit2: 100 —p DA °::=
Qubit1: 10 —P— H T A o::=




Wdh.: Verschrankte Zustande

Alices Roboteresel ist wahrend einer Entdeckungsmission abhandengekommen! Er will
Alice schnell seine Position wissen lassen, damit sie ihn retten kann. Der Esel ist in einer der
vier Gegenden um die Schule. Um mitzuteilen in welcher, sendet der Esel eine Zwei-Qubit
Quantennachricht |x, y), wobei x € {0,1} die x Koordinate und y € {0,1} die y Koordinate

der Lage beschreiben:
Y
4
Ll [U7) 59 [97)
© -§
of &%) | [&7)
> T
0 1

Leider hat Alices bose Klassenkameradin Eve das Signal blockiert, d.h. was Alice stattdessen
erhilt ist einer der vier Bell Zustdnde wie oben gezeigt. Hilf Alice dabei, korrekt das Signal
zu dekodieren und den Esel zu orten! D.h., finde eine Sequenz von Operationen, die jeden
der vier Bell Zustinde auf den entsprechenden Basiszustand |x, y) zuriickfiihrt.

D.H.: Invertiere 0Be|| .= CNOT,_,(H® 1) H|0)=[+), H[1)=]-)
5 ) 1 A 1 1
H*|0)=H|+)=—=H|0) +H|1)) =—=(+) + | =) = =(2]0)) = 0)
B " — (H® 1)CNOT1—>2 v2 v2 i
LIy = A=) = ——(F[0) = A1) = ——(|+)— [ =) = _
H*|1) =H| >_\/§(H|O> HI1>)—\/§(I )= 1= 2(2|1>) 10)



Wdh.: Verschrankung und Korrelationen

Es gibt ausgeprigte Ahnlichkeiten zwischen korrelierten
Wahrscheinlichkeitsverteilungen und verschrankten Zustanden

Starte mit allgemeinem Ein QuBit zustand |y) = y;|0) + ;| 1)
Messung: mit Wahrscheinlichkeit i/ ergibt sich | i)
Dies kann durch die Wahrscheinlichleitsverteilung l//g[()] + 1//12[1] modelliert werden

Starte mit allgemeinem Zwei QuBit zustand

[¥) = w0l 00) + 5, 101) + 01 10) + 3, | 11)
Messung: mit Wahrscheinlichkeit 1/15 ergibt sich | ij)

Dies kann durch die Wahrscheinlichkeitsverteilung
1/130[00] + l//gl [01] + 1/1120[10] + 1//121[1 1] modelliert werden



Wdh.: Verschrankung und Korrelationen

Erzeugen wir den maximal verschrinkten Zustand | ®") und messen ihn, dann
erhalten wir ein perfekt korrelierten Paar von Zufallsbits

1 1
E[OO] + 5[11].

Test: Qubit2: |0 (T

AT
Qubit1: |0 H T /7§ L

1 |
Dasselbe gilt fiir |D7): 5[00] + 5[1 1]

| |
Fiir die Zustinde |¥™*) erhalten wir hingegen 5[01] + 5[10] welches anti-

korrelierte Bits beschreibt.



Wdh.: Verschrankung und Korrelationen

Vergleiche das Mass A(p) mit A(|y))

A(p) = poop11 — Po1p10o = Poodts — Por¥o
= (PooP11 — Po1¥10) (PooP11 + Po1¢10)
= A(ly)) (Yootp11 + Yor9p10) = 0.

d.h. ist A(|y)) = 0, dann folgt daraus A(p) = 0

Zu jeder gegeben Wahrscheinlichkeitsverteilung p konnen wir einfach einen
Quantenzustand |y) finden, dass Messergebnis gemaB p verteilt ist.

[w) = /P00 100) +/po1 101) + /1 110) + /P11 [11)

d.h. Quantenzustande konnen alles was Wahrscheinlichkeitsverteilungen konnen



Wdh.: Die Macht von Verschrankung

Quantenzustande konnen aber noch viel mehr!

oW1

Aufgabe 3.13: Esel an Position {a, b} mita,b € {0,1} 100) > |&7) = =7 100) + \[ 11),
1

|01) - |[®) = —|00) — — |11),

Dies wurde codiert mit den 4 Bell-Zustanden \? \f

10) = %) = (o) + f 10),
o b

1) > |¥7) = ﬁ|01> \[‘10>'

Alice will die Info Uber den Ort des Esels an Bob weiterleiten
Geld auf Quantum-Handy ist alle, d.h. Alice kann nur noch 1 Qubit GUbertragen

Kann Alice trotzdem die gesamte 2-QuBit Information ubertragen? Klassisch: NEIN
Einfaches Senden des ersten oder 2 QuBits reicht nicht aus
Bob misst dies und danach ist der ursprungliche Zustand verschwunden



Wdh.: Die Macht von Verschrankung

Superdense Coding

Start: Bob und Alice teilen sich schon vorher den Zustand | CI)+),
d.h. Alice besitzt das erste Bit und Bob das zweite Bit dieses Zustandes

Ubungsaufgabe 3.14: Einen Bell Zustand in einen Anderen iiberfiithren

Zeige, dass Alice den maximal verschrinkten Zustand |[®") in jeden anderen Bell Zustand
|®7), [¥7), oder |¥7) tiberfiihren kann mittels lokaler Operationen nur auf ihrem Qubit.

¢+>:%|00>+%|n>, 1. QuBit: 1, Dies wendet Alice im Fall {0,0} an
N1 1 TR Dies wendet Alice im Fall {0,1} an

d) = ﬁ'oo) ﬁ|11>, 1. QuBit: Z,
N _L L “x. P . . .

¥+) = 5 101) + —=]10), 1. QuBit: NOT; Dies wendet Alice im Fall {1,0} an
1 1 A A

¥7) =751 -7510- 1. QuBit: Z, NOT; Dies wendet Alice im Fall {1,1} an

Dann sendet Alice lhr QBuit an Bob und der hat den gesamten Zustand
und kann des gesamten Zustand extrahieren (U 3.13)



3.2.7 Die Macht von Verschrankung

Hausaufgabe 3.7: Ein verschrianktes Spiel (anspruchsvoll)

Alice und Bob langweilen sich im Unterricht, also fragen sie ihren Lehrer fiir Quantenme-
chanik Ronald nach einem anspruchsvollen Puzzle. Nach nur einer kurzen Pause erklart
Ronald ihnen ein interessantes Spiel. Das Ziel des Spiels ist es, dass Alice und Bob so gut
wie moglich kooperieren (sie spielen nicht gegeneinander). Wiahrend des Spiels {iirfen sie
jedoch nicht miteinander kommunizieren. Die Regeln des Spiels sind wie folgt:

¢ Um anzufangen, wirft Ronald heimlich zwei faire Miinzen. Er nennt Alice das Er-
gebnis des ersten Wurfs (Bit x) und Bob das Ergebnis des zweiten Wurfs (Bit y). Wir
nennen diese Bits die Eingabebits.

¢ Nachdem die Beiden die Bits erhalten haben, miissen sowohl Alice als auch Bob sich

selbst ein Bit iiberlegen und dies angeben (Bits 2 und b). E S g i bt 4 M 69 li ch keiten

¢ Alice und Bob gewinnen das Spiel unter folgenden Bedingungen: Wennx =y =1,
dann gewinnen sie wenn a # b; ansonsten gewinnen sie, wenn a = b.

x Y x vy | Gewinnbedingung
0 0 a=1b
1 0 a="b

e b 1 1 a#b

Bevor das Spiel anfingt, diskutieren Alice und Bob kurz ihre Strategie. Zuerst erwigen
sie es, zwei Funktionen f, g : {0,1} — {0,1} auf ihre Bits x und y anzuwenden und ihre
Antworten wie folgt zu berechnen: a = f(x) und b = g(y).

1. Zeige, dass Alice und Bob in diesem Fall das Spiel mit Wahrscheinlichkeit 75% gewin-
nen konnen, aber nicht hoher.
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gebnis des ersten Wurfs (Bit x) und Bob das Ergebnis des zweiten Wurfs (Bit y). Wir

nennen diese Bits die Eingabebits. I) f (O) — O, f ( 1 ) — O

¢ Nachdem die Beiden die Bits erhalten haben, miissen sowohl Alice als auch Bob sich

selbst ein Bit tiberlegen und dies angeben (Bits 2 und b). ") f(O) — 1 . f( 1 ) — O

¢ Alice und Bob gewinnen das Spiel unter folgenden Bedingungen: Wennx =y =1,
dann gewinnen sie wenn a # b; ansonsten gewinnen sie, wenn a = b. " I) f(O) —_ O, f( 1 ) — 1
& Y x y | Gewinnbedingung
R V) f(0)=1, /1) =1
1 0 a—b
a b 1 1 a#b
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Antworten wie folgt zu berechnen: a = f(x) und b = g(y).
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nen konnen, aber nicht hoher.



3.2.7 Die Macht von Verschrankung

Hausaufgabe 3.7: Ein verschranktes Spiel (anspruchsvoll)
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chanik Ronald nach einem anspruchsvollen Puzzle. Nach nur einer kurzen Pause erklart
Ronald ihnen ein interessantes Spiel. Das Ziel des Spiels ist es, dass Alice und Bob so gut

wie moglich kooperieren (sie spielen nicht gegeneinander). Wiahrend des Spiels {iirfen sie . " . =
jedoch nicht miteinander kommunizieren. Die Regeln des Spiels sind wie folgt: ES g I bt 4 M og I I Ch kelten
¢ Um anzufangen, wirft Ronald heimlich zwei faire Miinzen. Er nennt Alice das Er- I) f(O) — O f( 1 ) — O
gebnis des ersten Wurfs (Bit x) und Bob das Ergebnis des zweiten Wurfs (Bit y). Wir - ) -

nennen diese Bits die Eingabebits. 1)) f(O) =1 ) f ( 1) =0

¢ Nachdem die Beiden die Bits erhalten haben, miissen sowohl Alice als auch Bob sich

selbst ein Bit tiberlegen und dies angeben (Bits a und b). " I) f (O) — O f ( 1 ) — 1
=V, —

¢ Alice und Bob gewinnen das Spiel unter folgenden Bedingungen: Wennx =y =1,

dann gewinnen sie wenn a # b; ansonsten gewinnen sie, wenn a = b . IV) f(O) — 1 . f( 1 ) — 1
T Y (L) g Ge“'lll:;}):edblllgung EbenSO fur g, d.h_ 1 6 MainCh keiten

Sl L “= -> alle ausschreiben,
a b 1 1 a#b

Bevor das Spiel anfingt, diskutieren Alice und Bob kurz ihre Strategie. Zuerst erwigen
sie es, zwei Funktionen f, g : {0,1} — {0,1} auf ihre Bits x und y anzuwenden und ihre
Antworten wie folgt zu berechnen: a = f(x) und b = g(y).

1. Zeige, dass Alice und Bob in diesem Fall das Spiel mit Wahrscheinlichkeit 75% gewin-
nen konnen, aber nicht hoher.



3.2.7 Die Macht von Verschrankung

Hausaufgabe 3.7: Ein verschranktes Spiel (anspruchsvoll)

Alice und Bob langweilen sich im Unterricht, also fragen sie ihren Lehrer fiir Quantenme-
chanik Ronald nach einem anspruchsvollen Puzzle. Nach nur einer kurzen Pause erklart
Ronald ihnen ein interessantes Spiel. Das Ziel des Spiels ist es, dass Alice und Bob so gut
wie moglich kooperieren (sie spielen nicht gegeneinander). Wiahrend des Spiels {iirfen sie
jedoch nicht miteinander kommunizieren. Die Regeln des Spiels sind wie folgt:

¢ Um anzufangen, wirft Ronald heimlich zwei faire Miinzen. Er nennt Alice das Er-
gebnis des ersten Wurfs (Bit x) und Bob das Ergebnis des zweiten Wurfs (Bit y). Wir
nennen diese Bits die Eingabebits.

¢ Nachdem die Beiden die Bits erhalten haben, miissen sowohl Alice als auch Bob sich
selbst ein Bit tiberlegen und dies angeben (Bits 2 und b).

¢ Alice und Bob gewinnen das Spiel unter folgenden Bedingungen: Wennx =y =1,
dann gewinnen sie wenn a # b; ansonsten gewinnen sie, wenn a = b.

T Y x y | Gewinnbedingung
0 0 &=
1 0 a=>b

& b 1 1 a+#b

Bevor das Spiel anfingt, diskutieren Alice und Bob kurz ihre Strategie. Zuerst erwigen
sie es, zwei Funktionen f, g : {0,1} — {0,1} auf ihre Bits x und y anzuwenden und ihre
Antworten wie folgt zu berechnen: a = f(x) und b = g(y).

1. Zeige, dass Alice und Bob in diesem Fall das Spiel mit Wahrscheinlichkeit 75% gewin-
nen konnen, aber nicht hoher.

Es gibt 4 Moglichkeiten
) f(0)=0,/(1)=0
) f(0)=1,/1)=0
i £(0) =0, (1) =1

Iv) f(O)=1,/(1)=1
Ebenso fur g, d.h. 16 Moglichkeiten
-> alle ausschreiben,

zB. IR, IIQIV, IR 1]
liefern 75%



3.2.7 Die Macht von Verschrankung

Hausaufgabe 3.7: Ein verschranktes Spiel (anspruchsvoll)

Alice und Bob langweilen sich im Unterricht, also fragen sie ihren Lehrer fiir Quantenme-
chanik Ronald nach einem anspruchsvollen Puzzle. Nach nur einer kurzen Pause erklart
Ronald ihnen ein interessantes Spiel. Das Ziel des Spiels ist es, dass Alice und Bob so gut
wie moglich kooperieren (sie spielen nicht gegeneinander). Wiahrend des Spiels {iirfen sie
jedoch nicht miteinander kommunizieren. Die Regeln des Spiels sind wie folgt:

¢ Um anzufangen, wirft Ronald heimlich zwei faire Miinzen. Er nennt Alice das Er-
gebnis des ersten Wurfs (Bit x) und Bob das Ergebnis des zweiten Wurfs (Bit y). Wir
nennen diese Bits die Eingabebits.

¢ Nachdem die Beiden die Bits erhalten haben, miissen sowohl Alice als auch Bob sich
selbst ein Bit tiberlegen und dies angeben (Bits 2 und b).

* Alice und Bob gewinnen das Spiel unter folgenden Bedingungen: Wennx =y =1,
dann gewinnen sie wenn a # b; ansonsten gewinnen sie, wenn a = b.

x (] x vy | Gewinnbedingung
0 0 aE=y
1 0 a=>b

& b 1 1 a#b

Bevor das Spiel anfangt, diskutieren Alice und Bob kurz ihre Strategie. Zuerst erwigen
sie es, zwei Funktionen f, g : {0,1} — {0,1} auf ihre Bits x und y anzuwenden und ihre
Antworten wie folgt zu berechnen: a = f(x) und b = g(y).

1. Zeige, dass Alice und Bob in diesem Fall das Spiel mit Wahrscheinlichkeit 75% gewin-
nen konnen, aber nicht hoher.

Als Nachstes erwiédgen sie es, ihre Antworten zu berechnen mittels geteiltem Zufall. Bob
schlagt vor, kompliziertere Funktionen f und ¢ mit einem zusitzlichen bindren Eingabebit
zu verwenden und die Antworten wie folgt zu berechnen: a = f(x,r) und b = g(y,s).
Hier sind r und s zwei zufillige Bits die gemeinsam einer Zwei-Bit Zufallsverteilung
entsprangen.

2. Zeige, dass die Beiden noch immer nicht mit einer Wahrscheinlichkeit von mehr als
75% gewinnen konnen, egal welche Funktionen f und ¢ sie benutzen und was die
Zufallsverteilung fiir r und s ist.

Langsam wird den Beiden bewusst, dass Ronald sicherlich eine quantenmechanische
Strategie im Kopf hatte. Alice hat eine geniale Idee und schldgt vor, dass sie und Bob sich
einen maximal verschriankten Zustand |®*) bevor das Spiel startet teilen. Sie schldgt vor,
dass wenn sie ihre Bits erhalten, sie ihr Qubit rotiert mittels einem Winkel 6, (welcher von
ihrem Eingabebit x abhidngt) und dann misst um ihre Antwort a zu erhalten. Bob stattdessen
soll anhand eines anderen Winkels wy, rotieren (welcher von seinem Eingabebit i abhidngt)
und dann messen um seine Antwort b zu erhalten.

3. Schreibe den Zustand nach den Rotationen von Alice und Bob auf. Der Zustand
soll von der Form (3.30) sein. Bestétige, dass die Gewinnwahrscheinlichkeit von der
folgenden Form ist:

(COSZ(GO = wo) + COSZ(GO = wl) + COSz(ol —wp) + sin2(91 = w1)) -

I

Hinweis: Benutze die trigonometrischen Formeln aus Gl. (2.16) und (2.22).

Alice und Bob finden schnell heraus, dass 6y = 0, 6; = 7/4, und w, = 71/8 gute Wahlen
sind. Sie haben jedoch Probleme mit dem letzten Winkel und die Zeit lauft ab.

4. Finde eine Winkel wj, sodass die Beiden mit einer Wahrscheinlichkeit gewinnen, die

hoher als 75% ist.




3.2.7 Die Macht von Verschrankung

Klassisch: Maximal 75% Gewinnwahrscheinlichkeit - Beispiel fur Bell-Ungleichung
John Stewart Bell; 1928-1990; 1964 Ungleichung



3.2.7 Die Macht von Verschrankung

Klassisch: Maximal 75% Gewinnwahrscheinlichkeit - Beispiel fur Bell-Ungleichung
John Stewart Bell; 1928-1990; 1964 Ungleichung
Obiges Spiel: John Clauser, Michael Horne, Abner Shimoney, Richard Holt



3.2.7 Die Macht von Verschrankung

Klassisch: Maximal 75% Gewinnwahrscheinlichkeit - Beispiel fur Bell-Ungleichung
John Stewart Bell; 1928-1990; 1964 Ungleichung

Obiges Spiel: John Clauser, Michael Horne, Abner Shimoney, Richard Holt

QM: verletzt Bell-Ungleichung, mehr als 75%



3.2.7 Die Macht von Verschrankung

Klassisch: Maximal 75% Gewinnwahrscheinlichkeit - Beispiel fur Bell-Ungleichung
John Stewart Bell; 1928-1990; 1964 Ungleichung

Obiges Spiel: John Clauser, Michael Horne, Abner Shimoney, Richard Holt

QM: verletzt Bell-Ungleichung, mehr als 75%

- dies ist experimentell bewiesen, z.B. Alan Aspect



3.2.7 Die Macht von Verschrankung

Klassisch: Maximal 75% Gewinnwahrscheinlichkeit - Beispiel fur Bell-Ungleichung

John Stewart Bell; 1928-1990; 1964 Ungleichung
Obiges Spiel: John Clauser, Michael Horne, Abner Shimoney, Richard Holt

QM: verletzt Bell-Ungleichung, mehr als 75%
- dies ist experimentell bewiesen, z.B. Alan Aspect

Alain Aspect
B B French
(b. 1947)
"for experiments with entangled photons,
John Clauser , establishing the violation of Bell inequalities
2022 == American _ _ _ _
(b. 1942) and pioneering quantum information
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3.2.7 Die Macht von Verschrankung

Klassisch: Maximal 75% Gewinnwahrscheinlichkeit - Beispiel fur Bell-Ungleichung
John Stewart Bell; 1928-1990; 1964 Ungleichung

Obiges Spiel: John Clauser, Michael Horne, Abner Shimoney, Richard Holt

QM: verletzt Bell-Ungleichung, mehr als 75%

- dies ist experimentell bewiesen, z.B. Alan Aspect

Alain Aspect
B B French
(b. 1947)
"for experiments with entangled photons,
John Clauser _ establishing the violation of Bell inequalities
2022 = American _ _ _ ,
(b. 1942) and pioneering quantum information
science"
Anton Zeilinger _
= Austrian
(b. 1945)

Kann auch als Beweis genutzt werden, dass man einen echten Quantencomputer hat!
Man spielt das Spiel und bei > 75% war es ein QC :-)



4 Quantenkompositionen

Bisher:
1 und 2 QuBits, jetzt viele QuBits

Verschrankte Zustande:
- effektivere Kommunikation
- Bessere Gewinnstrategien
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1. Initialzustand: typischerweise |0)
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1. Initialzustand: typischerweise |0)
2. Quantenoperationen: meist 1 oder 2 QuBits gleichzeitig involviert
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P H P-1HHS P gt
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4.1 Quantenschaltungen

Bildliche Darstellung: welche Operation wird an welchen Qubit durchgefiihrt

S H P-1HHS P gt
- H T Rx(=1) T A Rx (=£1) T g

\JD H é H S\Lu St

Beispiel: Simulation einer vereinfachten Theorie des Elektromagnetismus

Formal besteht eine Quantenschaltung aus 3 Teilen:

1. Initialzustand: typischerweise |0)
2. Quantenoperationen: meist 1 oder 2 QuBits gleichzeitig involviert
3. Messungen, um QuBits auszulesen

(Siehe Quirky)
Die Operationen werden oft auch als Gatter oder Gates bezeichnet

z.B.: Hadamard-Operation = Hadamard-Gatter = Hadamard-Gate
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Beliebiger Zustand mit drei QuBits

[¥) = Pooo [000) + o1 |001) + o190 |010) + 9011 |011)
+ Y100 |100) + 101 [101) + 110 |110) + 3111 |111),



4.1.1 Viele Quantenbits

Beliebiger Zustand mit drei QuBits

%) = Pooo [000) + Poo1 [001) + o010 [010) + o171 [011)
+ 100 |100) + 101 |101) + 9110 [110) + 9197 |111),

Es muss gelten:

P00 + Yoo1 + Y10 + Y11 + Pioo + Vion + Yho + Yinn = 1.
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Beliebiger Zustand mit drei QuBits

%) = Pooo [000) + Poo1 [001) + o010 [010) + o171 [011)
+ 100 |100) + 101 |101) + 9110 [110) + 9197 |111),

Es muss gelten:

P00 + Yoo1 + Y10 + Y11 + Pioo + Vion + Yho + Yinn = 1.

Mogliche Darstellung:

(o

Poo1
Yoo
| Yonn
|lP> T lPlOO

Y101
Y110
\4’111)
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4.1.1 Viele Quantenbits

Beliebiger Zustand mit 7 QuBits: 2" Basis Elemente

) = $00..00[00...00) + o001 [00...01) +... + g 11 [11...11)

Es muss gelten:

2 2 2
¥00..00 T Poo..o1 +--- + Y1111 =1

Mogliche Darstellung als Vektor in einem 2" dimensionalen Vektorraum.

Bei n = 300 gibt es 2°%° ~ 2 - 10°! Amplitude (mehr als Atome im Universum)
d.h. sowas kann nicht klassisch gespeichert werden, aber als Quanten Computer
gebaut!
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4.1.1 Viele Quantenbits

Mit dem Tensorprodukt konnen Zustande beschrieben werden, die zu kombinierten
QuBits gehéren, allgemein:

|a1,...,an)®|b1,...,bm> = |a1,...,an,b1,...,bm).

Beispiel 1: 1101) ® |01) = [10101)
Beispiel 2: |T) @ [®T)
e 1
= (710 + f“”) (\f|00> f””)
11
\/—\/— 00) ®[00) + 77 00) ®[11) + 77 11) ®00) + 77 11) @ [11)

== = - + 2 [1111).
2|0000> 2|0011> 2]1100) 2| )



4.1.1 Viele Quantenbits

Mit dem Tensorprodukt konnen Zustande beschrieben werden, die zu kombinierten
QuBits gehoren, allgemein:

|a1,...,an)®|b1,...,bm) = |(11,...,[Zn,b1,...,bm>.

Beispiel 1: 1101) ® |01) = |10101)
Beispiel 2: |T) @ [®T)
_ (1 1
= (510 + 5 m) & (7100 + J5m)
_ 11 11 11 LR
_\ﬁ\/_|00>®|00>+\f\/_|00>®|11>+ff|11>®|00>+\ff|11>®|11>

Ubungsaufgabe 4.1: Tensorprodukt der Bell-Zustinde

Berechne das Tensorprodukt |®7) ® |¥Y ™) der zwei Bell-Zustiande aus Gl. (3.53) und (3.55).
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U,lay,...,a,)=Ula;) @ lay,...,a,)

Analoge Definitionen fur lA]2, 03,...

Ubungsaufgabe 4.2: Eine Ein-Qubit-Operation anwenden

Berechne das Ergebnis der Anwendung der Hadamard-Operation auf das zweite Qubit des
Drei-Qubit-Zustands |®7) ®@ |1). Anders gesagt, berechne H; (|®7) @ |1)). Schreibe dein
Ergebnis in der Form aus Gl. (4.1).
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1 QuBit-Operationen U wirken wie folgt:
U,lay,...,a,)=Ula;) @ lay,...,a,)

Analoge Definitionen fur lA]2, 03,...

Ubungsaufgabe 4.2: Eine Ein-Qubit-Operation anwenden

Berechne das Ergebnis der Anwendung der Hadamard-Operation auf das zweite Qubit des
Drei-Qubit-Zustands |®7) ®@ |1). Anders gesagt, berechne H; (|®7) @ |1)). Schreibe dein
Ergebnis in der Form aus GL. (4.1).

PN ®|1) = (1001) + | 111))

1
V2




4.1.2 Operationen

1 QuBit-Operationen U wirken wie folgt:
U,lay,...,a,)=Ula;) @ lay,...,a,)

Analoge Definitionen fur lA]2, 03,...

Ubungsaufgabe 4.2: Eine Ein-Qubit-Operation anwenden

Berechne das Ergebnis der Anwendung der Hadamard-Operation auf das zweite Qubit des
Drei-Qubit-Zustands |®7) ®@ |1). Anders gesagt, berechne H; (|®7) @ |1)). Schreibe dein
Ergebnis in der Form aus GL. (4.1).

1
Oy @ |1) = — (001) + [111
[@T) ® | 1) \/E(l )+ |111))
1

H,| oY ®|1) =5(|001>+ |011) +|101) — | 111))
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4.1.2 Operationen

2 QuBit-Operationen CI\IAOT,-_>k wirken wie folgt:
CNOT,_|a,...,q,...,a,) =|a,,...,a; P aq,...,a,)
Quirky: Quest 4

The Quirky Quantum Simulator

Quest 4: Quantum composer

Share Make U(0)
% Operations Displays My Operations
2 | Al o | [Prob
3
= Z H




4.1.2 Operationen

2 QuBit-Operationen CI\IAOT,-_>k wirken wie folgt:
CNOT,_|a,...,q,...,a,) =|a,,...,a; P aq,...,a,)
Quirky: Quest 4

The Quirky Quantum Simulator

Quest 4: Quantum composer

Share Make U(O)
% Operations Displays My Operations
_8 EB /7< ° Prob
8
= Z H
Qubit 2: 10>
Qubit 1: 10>

Auf den ersten Blick: wie vorher
aber wenn man auf Operation klickt, dann erscheint 3. Linie



4.1.2 Operationen

The Quirky Quantum Simulator

Quest 4: Quantum composer

’ Reset ’ ‘ Undo ‘ ‘ ’ ‘ Share ’ ‘ Make U(6)
% Operations Displays My Operations
2| Al o | [Prob
o
2 | Z|H
Qubit 5: 10) * Z
Qubita:  10) +

Qubit 3: 04 H

Qubit 2: 10’ * Z

Qubit 1: 10 * l
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4.1.2 Operationen

Wenn Operationen auf verschiedene QuBits wirken,
konnen wir sie parallel ausfuhren

(U@V) |a1,...,an,b1,...,bm> —_ U|a1,...,an>®V|b1,...,bm>,

(UV)(la) @) = Ula) @V [B),

Beispiele:

1. I®I®U®Q I ist die selbe Vier-Qubit-Operation wie Us,
2. I® CNOT1, ® I ® I ist die kontrollierte-NOT-Operation CNOT),_,3 fiir fiinf Qubits,

3. Z® I Q® X ist die Quantenoperation, welche Z auf das erste Qubit, und parallel X auf das
dritte Qubit anwendet (wir konnten die Operation auch als Z1 X3 oder X3Z; schreiben).



4.1.2 Operationen

Betrachte den Drei-Qubit-Zustand (CNOT,_,1 @ I)(|0) ® |D7)).
1. Wie kannst du diesen Zustand mit QUIRKY erstellen?

2. Schreibe den Zustand in der Form aus Gl. (4.1).




4.1.2 Operationen

Betrachte den Drei-Qubit-Zustand (CNOT,_,1 ® I)(]|0) ® |[D7)).
1. Wie kannst du diesen Zustand mit QUIRKY erstellen?

2. Schreibe den Zustand in der Form aus Gl. (4.1).
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4.1.2 Operationen

Betrachte den Drei-Qubit-Zustand (CNOT,_,1 ® I)(]|0) ® |[D7)).
1. Wie kannst du diesen Zustand mit QUIRKY erstellen?

2. Schreibe den Zustand in der Form aus Gl. (4.1).

The Quirky Quantum Simulator CNAOTZ_A% (1000) —|011))
2

1
= —(1000) — | 111
\/E(l ) = 111))

Quest 4: Quantum composer

‘ Reset H Undo H H Share ’ ‘ Make U(0) J

% Operations Displays My Operations
2 @r«- o
3
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Qubit3:  10) AN
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4.1.3 Die allgemeinsten Quantenoperationen

Die allgemeinste Quantenoperation hat folgende Eigenschaften:

1. Sie ist linear
2. Sie bildet Quantenzustiande auf Quantenzustande ab (Normierung)
3. Sie ist invertierter (reversibel)

Ubungsaufgabe 4.4: Toffoli

Definiere die Toffoli-Operation auf drei Qubits durch
T |a,b,c) = |a,b,c & ab)

auf Basiszustidnden (ab ist dabei das Produkt der zwei Bits a,b € {0,1}, und & wurde in
Gl. (3.20) definiert), und erweitere sie durch Linearitit auf beliebige Drei-Qubit-Zustiande.
Zeige, dass T alle Quantenzustinde auf Quantenzustinde abbildet, und dass T invertierbar

1st.

Bemerkung: T invertiert das dritte Bit genau dann, wenn beide ersten Bits beide eins sind
— es ist also eine “zweifach-kontrollierte”-NOT-Operation.




4.1.3 Die allgemeinsten Quantenoperationen

Die allgemeinste Quantenoperation hat folgende Eigenschaften:

1. Sie ist linear
2. Sie bildet Quantenzustiande auf Quantenzustande ab (Normierung)

3. Sie ist invertierter (reversibel)

Ubungsaufgabe 4.4: Toffoli

Definiere die Toffoli-Operation auf drei Qubits durch
T |a,b,c) = |a,b,c & ab)

auf Basiszustidnden (ab ist dabei das Produkt der zwei Bits a,b € {0,1}, und & wurde in
Gl. (3.20) definiert), und erweitere sie durch Linearitit auf beliebige Drei-Qubit-Zustiande.
Zeige, dass T alle Quantenzustinde auf Quantenzustinde abbildet, und dass T invertierbar

ist.
Bemerkung: T invertiert das dritte Bit genau dann, wenn beide ersten Bits beide eins sind
— es ist also eine “zweifach-kontrollierte”-NOT-Operation.

The Quirky Quantum Simulator

Quest 4: Quantum composer
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Operations Displays My Operations
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Lemma 6.1: For any unitary 2 x 2 matrix U, a Ao(U) gate can be simulated by a

network of the form

TS50

U Vi |74

where V' is unitary.
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4.1.3 Die allgemeinsten Quantenoperationen

T kann auch als eine Reihe von Ein- und
Zwei QuBit-Operationen geschrieben werden!
https://arxiv.org/pdf/quant-ph/9503016

Lemma 6.1: For any unitary 2 x 2 matrix U, a Ao(U) gate can be simulated by a ® ®
network of the form
L 4 & I I
JdhY JA
N A—~pD Ao 1A DO A

TS50

U Vi |74

where A = Ry(7). In the above, the “=” indicates that the networks are not identical,

but differ at most in the phases of their amplitudes, which are all £+1 (the phase of

where V' is unitary.
the [101) state is reversed in this case).
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4.1.3 Die allgemeinsten Quantenoperationen

T kann auch als eine Reihe von Ein- und
Zwei QuBit-Operationen geschrieben werden!
https://arxiv.org/pdf/quant-ph/9503016

Lemma 6.1: For any unitary 2 x 2 matrix U, a A(U) gate can be simulated by a ® ®
network of the form
L &
* JdhY N
Jh Jh N Ar—~o— Ao AT DA
R B
U 14 Vi V

where A = Ry(7). In the above, the “=” indicates that the networks are not identical,

but differ at most in the phases of their amplitudes, which are all £+1 (the phase of

where V' is unitary.
the [101) state is reversed in this case).

Jede Quanten-Operation auf n QuBits
kann auch als eine Reihe von Ein- und
Zwei QuBit-Operationen geschrieben werden!


https://arxiv.org/pdf/quant-ph/9503016
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Es gibt Tricks zur Vereinfachung von Quantenschaltungen
Einfachere Schaltungen sind meist auch schneller

Ubungsaufgabe 4.5: Z und NOT

Aus Gl. (2.20) wissen wir, dass das Hadamard-Gate H sich wie folgt auswirkt:
e 1
V2 V2

1. Priife, dass ein erneutes anwenden von H wieder zu den Zustinden |0) und |1) fiihrt.

B = (U [0 = ms. - Bl = ([0 =10 = =
llery =10, sl=) = [

2. Zeige, dass H Z H = NOT, wobei Z in Gl. (2.12) definiert ist.

3. Zeige, dass HNOTH = Z.
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Ubungsaufgabe 4.5: Z und NOT

Aus Gl. (2.20) wissen wir, dass das Hadamard-Gate H sich wie folgt auswirkt:
e 1
V2 V2

1. Priife, dass ein erneutes anwenden von H wieder zu den Zustinden |0) und |1) fiihrt.

B = (U [0 = ms. - Bl = ([0 =10 = =
llery =10, sl=) = [

2. Zeige, dass H Z H = NOT, wobei Z in Gl. (2.12) definiert ist.

3. Zeige, dass HNOTH = Z.

Al+)=—= (A10)+ A11)) = (10)+ 1) +10) = 1)) = 0

b
2



4.1.4 Regeln fur Schaltungen

Es gibt Tricks zur Vereinfachung von Quantenschaltungen
Einfachere Schaltungen sind meist auch schneller

Ubungsaufgabe 4.5: Z und NOT

Aus Gl. (2.20) wissen wir, dass das Hadamard-Gate H sich wie folgt auswirkt:
e 1
V2 V2

1. Priife, dass ein erneutes anwenden von H wieder zu den Zustidnden |0) und |1) fiihrt.

B = W) =l b= (0= ) = |
llery =10, sl=) = [

2. Zeige, dass H Z H = NOT, wobei Z in Gl. (2.12) definiert ist.

3. Zeige, dass HNOTH = Z.

1

Al+)=—(A10)+A11)) == (10 +1D)+10) = 1) = |0)

H|-)=

N | — N

(A10) = H11)) == (10) + 1) = 10) + 1)) = 1)

S-Sl -



4.1.4 Regeln fur Schaltungen

Es gibt Tricks zur Vereinfachung von Quantenschaltungen
Einfachere Schaltungen sind meist auch schneller

Ubungsaufgabe 4.5: Z und NOT

Aus Gl. (2.20) wissen wir, dass das Hadamard-Gate H sich wie folgt auswirkt:
e 1
V2 V2

1. Priife, dass ein erneutes anwenden von H wieder zu den Zustidnden |0) und |1) fiihrt.

B = W) =l b= (0= ) = |
llery =10, sl=) = [

2. Zeige, dass H Z H = NOT, wobei Z in Gl. (2.12) definiert ist.

3. Zeige, dass HNOTH = Z.

1

Al+)=—(A10)+A11)) == (10 +1D)+10) = 1) = |0)

H|-)=

1
2
1

2

N | — N

(A10) = H11)) == (10) + 1) = 10) + 1)) = 1)

HZA|0Y=AZ|+)=H|-)=|1) = NOT|0)



4.1.4 Regeln fur Schaltungen

Es gibt Tricks zur Vereinfachung von Quantenschaltungen
Einfachere Schaltungen sind meist auch schneller

Ubungsaufgabe 4.5: Z und NOT

Aus Gl. (2.20) wissen wir, dass das Hadamard-Gate H sich wie folgt auswirkt:
e 1
V2 V2

1. Priife, dass ein erneutes anwenden von H wieder zu den Zustidnden |0) und |1) fiihrt.

B = W) =l b= (0= ) = |
llery =10, sl=) = [

2. Zeige, dass H Z H = NOT, wobei Z in Gl. (2.12) definiert ist.

3. Zeige, dass HNOTH = Z.

1

Al+)=—(A10)+A11)) == (10 +1D)+10) = 1) = |0)

H|-)=

1
2
1

2

N | — N

(A10) = H11)) == (10) + 1) = 10) + 1)) = 1)

HZA|0Y=AZ|+)=H|-)=|1) = NOT|0) HZA|1)=AZ|-)=H|+)=|0) = NOT|1)



4.1.4 Regeln fur Schaltungen

Es gibt Tricks zur Vereinfachung von Quantenschaltungen
Einfachere Schaltungen sind meist auch schneller

Ubungsaufgabe 4.5: Z und NOT

Aus Gl. (2.20) wissen wir, dass das Hadamard-Gate H sich wie folgt auswirkt:
e 1
V2 V2

1. Priife, dass ein erneutes anwenden von H wieder zu den Zustidnden |0) und |1) fiihrt.

B = W) =l b= (0= ) = |
llery =10, sl=) = [

2. Zeige, dass H Z H = NOT, wobei Z in Gl. (2.12) definiert ist.

3. Zeige, dass HNOTH = Z.

A 1 /A A 1
H|+>=$(H|0>+H|1>)=5(|0>+|1>+|0>—|1>)=|0>

A 1 /4 A 1

A=) =—= (A10) = A1) =5 (10 + 11 =10 +]1) =11)
HZA|0)=HZ|+)=H|-)=|1)=NOT|0) HZA|1)=HZ|-)=H|+)=|0) = NOT|1)

HNOTA|0) = ANOT|+)=H|+) = |0) = Z|0)



4.1.4 Regeln fur Schaltungen

Es gibt Tricks zur Vereinfachung von Quantenschaltungen
Einfachere Schaltungen sind meist auch schneller

Ubungsaufgabe 4.5: Z und NOT

Aus Gl. (2.20) wissen wir, dass das Hadamard-Gate H sich wie folgt auswirkt:
e
V2

ik

H|0) = 7

Wiarll) =laeis - BHIUE= {1l ==

1. Priife, dass ein erneutes anwenden von H wieder zu den Zustidnden |0) und |1) fiihrt.
llery =10, sl=) = [

2. Zeige, dass H Z H = NOT, wobei Z in Gl. (2.12) definiert ist.

3. Zeige, dass HNOTH = Z.

A 1 /A A 1
H|+>=$(H|0>+H|1>)=5(|0>+|1>+|0>—|1>)=|0>

A 1 /4 A 1

A=) =—= (A10) = A1) =5 (10 + 11 =10 +]1) =11)
HZA|0)=HZ|+)=H|-)=|1)=NOT|0) HZA|1)=HZ|-)=H|+)=|0) = NOT|1)

ANOTH|0) = ANOT |+ ) = H| + ) = |0) = Z|0) HANOTA|1) = ANOT|-)=-A|-)=—|1)=Z|1)



4.1.4 Regeln fur Schaltungen

Es gibt Tricks zur Vereinfachung von Quantenschaltungen
Einfachere Schaltungen sind meist auch schneller

Ubungsaufgabe 4.6: Spiegelungen und Drehungen (optional)

Zeige, dass das Produkt zweier Spiegelungen eine Rotation ist. Zeige also, dass
V(6)V(6,) =U(0),

fiir einen Winkel 6. Kannst du 6 relativ zu 67 und 6, bestimmen?

Hint: Nutze Gl. (2.19) und die Gleichung U (¢2)U(¢p1) = U(@1 + ¢2).
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Zeige, dass das Produkt zweier Spiegelungen eine Rotation ist. Zeige also, dass
V(6)V(6,) =U(0),

fiir einen Winkel 6. Kannst du 6 relativ zu 67 und 6, bestimmen?

Hint: Nutze GL. (2.19) und die Gleichung U(¢2)U(¢p1) = U(¢1 + ¢2).

Definition:  V(9) = NOT U(9) = U(-9) NOT



4.1.4 Regeln fur Schaltungen

Es gibt Tricks zur Vereinfachung von Quantenschaltungen
Einfachere Schaltungen sind meist auch schneller

Ubungsaufgabe 4.6: Spiegelungen und Drehungen (optional)

Zeige, dass das Produkt zweier Spiegelungen eine Rotation ist. Zeige also, dass
V(6)V(6,) =U(0),

fiir einen Winkel 6. Kannst du 6 relativ zu 67 und 6, bestimmen?

Hint: Nutze GL. (2.19) und die Gleichung U(¢2)U(¢p1) = U(¢1 + ¢2).

Definition:  V(9) = NOT U(9) = U(-9) NOT

V(0,)V(6)) =



4.1.4 Regeln fur Schaltungen

Es gibt Tricks zur Vereinfachung von Quantenschaltungen
Einfachere Schaltungen sind meist auch schneller

Ubungsaufgabe 4.6: Spiegelungen und Drehungen (optional)

Zeige, dass das Produkt zweier Spiegelungen eine Rotation ist. Zeige also, dass
V(6)V(6,) =U(0),

fiir einen Winkel 6. Kannst du 6 relativ zu 67 und 6, bestimmen?

Hint: Nutze GL. (2.19) und die Gleichung U(¢2)U(¢p1) = U(¢1 + ¢2).

Definition:  V(9) = NOT U(9) = U(-9) NOT

V(0,)V(0,) = U(-6,) NOT NOT U(0,)



4.1.4 Regeln fur Schaltungen

Es gibt Tricks zur Vereinfachung von Quantenschaltungen
Einfachere Schaltungen sind meist auch schneller

Ubungsaufgabe 4.6: Spiegelungen und Drehungen (optional)

Zeige, dass das Produkt zweier Spiegelungen eine Rotation ist. Zeige also, dass
V(6)V(6,) =U(0),

fiir einen Winkel 6. Kannst du 6 relativ zu 67 und 6, bestimmen?

Hint: Nutze Gl. (2.19) und die Gleichung U (¢2)U(¢p1) = U(@1 + ¢2).

Definition:  V(9) = NOT U(9) = U(-9) NOT

V(ez)v(el) — 0(—92) NbT NOT 0(91) — U(—ez)ﬁ(eﬁ



4.1.4 Regeln fur Schaltungen

Es gibt Tricks zur Vereinfachung von Quantenschaltungen
Einfachere Schaltungen sind meist auch schneller

Ubungsaufgabe 4.6: Spiegelungen und Drehungen (optional)

Zeige, dass das Produkt zweier Spiegelungen eine Rotation ist. Zeige also, dass
V(6)V(6,) =U(0),

fiir einen Winkel 6. Kannst du 6 relativ zu 67 und 6, bestimmen?

Hint: Nutze Gl. (2.19) und die Gleichung U (¢2)U(¢p1) = U(@1 + ¢2).

Definition:  V(9) = NOT U(9) = U(-9) NOT

V(ez)v(el) — 0(—92) NbT NOT 0(91) — U(—ez)ﬁ(eﬂ — 0(91 — ‘92)



4.1.5 Alle Qubits messen

Wenn wir 7 QuBits messen dann erhalten wir mit der Wahrscheinlichkeit
Pa,..a, = wgl...oan den Bit-String a,....q,
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Pa,..a, = t/fgl_man den Bit-String a,....q,

Quirky
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4.1.6 Einzelne Qubits messen

Annahme: Wir haben einen 3-QuBit Zustand

[ ) = W00 | 000) + w01 1 001) + 4191 010) + 1001 100) + w1 [011) + w0 [ 101) + 10 110) + gy [ 111)
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den Werta € {0,1}.



4.1.6 Einzelne Qubits messen

Annahme: Wir haben einen 3-QuBit Zustand

[ ) = w00 | 000) + w01 1 001) + 4191 010) + w1001 100) + w1 [011) + w30 [ 101) 4+ 10 110) + gy [ 111)
Wenn wir das erste Bit messen, dann finden wir mit der Wahrscheinlichkeit
Waoo + Vaor + Va0 + Vo

den Werta € {0,1}.

. i i 1 2 5
Beispiel: Messen wir das erste QuBit von 7 |000) + \[g 1010) +|\/g |111)



4.1.6 Einzelne Qubits messen

Annahme: Wir haben einen 3-QuBit Zustand

[ ) = W00 | 000) + w501 1 001) + 4191 010) + 1001 100) + w1 [011) + w0 [ 101) +yy16 [ 110) + gy [ 111)

Wenn wir das erste Bit messen, dann finden wir mit der Wahrscheinlichkeit

2 2 2 2
Waoo T Vao1 T ¥aio T Varn
den Werta € {0.11}.
1 2 5
o _ . —— 000 +\/j010 +\/j111 . . .
Beispiel: Messen wir das erste QuBitvon /38 000) 5 1010) g 1D so finden wir den Wert Null mit

der Wahrscheinlichkeit



4.1.6 Einzelne Qubits messen

Annahme: Wir haben einen 3-QuBit Zustand

| ) = Wooo | 000) + wio; [001) + 401 010) + w09 100) + iy [011) + w101 [ 101) + 19| 110) + gy [ 111)

Wenn wir das erste Bit messen, dann finden wir mit der Wahrscheinlichkeit

2 2 2 2
Wao T Waor T Va0 T VWani
den Werta € {0,1}.

.. . ) 1 2 5 ] ] .
Beispiel: Messen wir das erste QuBit von 78 1000) + \/g |010) +|\[§ |111) so finden wir den Wert Null mit

1 2 3
der Wahrscheinlichkeit — + — = —
8 8 3



4.1.6 Einzelne Qubits messen

Annahme: Wir haben einen 3-QuBit Zustand

| W) = wooo 1 000) + wor | 001) + 45101 010) + w99 100) + w1 [011) + 01 | 101) + o[ 110) +yq 4 [ 111)
Wenn wir das erste Bit messen, dann finden wir mit der Wahrscheinlichkeit
Waoo + Vaor + Varo + Ve

den Werta € {0,1}.

.. . ) 1 2 5 ] ] .
Beispiel: Messen wir das erste QuBit von 78 1000) + \/; |010) +|\[§ |111) so finden wir den Wert Null mit

1 2 3
der Wahrscheinlichkeit — + — = —
3 3 3
Quirky:
: - Jan
Qubit 3: |0) &
Qubit2: |0 1
[ iz E

Qubit 1: 00—+ H




4.1.6 Einzelne Qubits messen

Annahme: Wir haben einen 3-QuBit Zustand

| W) = wooo 1 000) + wor | 001) + 45101 010) + w99 100) + w1 [011) + 01 | 101) + o[ 110) +yq 4 [ 111)
Wenn wir das erste Bit messen, dann finden wir mit der Wahrscheinlichkeit
Waoo + Vaor + Varo + Ve

den Werta € {0,1}.

.. . ) 1 2 5 ] ] .
Beispiel: Messen wir das erste QuBit von 78 1000) + \/g |010) +|\/g |111) so finden wir den Wert Null mit

1 2 3
der Wahrscheinlichkeit — + — = —
3 3 3
Quirky:
. ) Jd R
Qubit 3: |0; &
Qubit2: |0 1
T — AR

Qubit 1: 00—+ H

CNOT,_;CNOT,_,H, | 000)



4.1.6 Einzelne Qubits messen

Annahme: Wir haben einen 3-QuBit Zustand

| ) = Wooo | 000) + wio; [001) + 401 010) + w09 100) + iy [011) + w101 [ 101) + 19| 110) + gy [ 111)
Wenn wir das erste Bit messen, dann finden wir mit der Wahrscheinlichkeit
Waoo + Vaor + Varo + Ve

den Werta € {0,1}.

.. . ) 1 2 5 ] ] .
Beispiel: Messen wir das erste QuBit von 78 1000) + \/g |010) +|\[§ |111) so finden wir den Wert Null mit

1 2 3
der Wahrscheinlichkeit — + — = —
8 8 3
Quirky:
: ) fd Y
Qubit 3: |0; _—
Qubit2: |0 1
Qubit 1: 00—+ H \T ® /ﬂ A lj. 0%

S0, 0%

CNOT,_;CNOT,_,A, |000) = — ( CNOT,_,CNOT,_,|000) + CNOT,_;CNOT, _, | 100))

1
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4.1.6 Einzelne Qubits messen

Annahme: Wir haben einen 3-QuBit Zustand

| ) = Wooo | 000) + wio; [001) + 401 010) + w09 100) + iy [011) + w101 [ 101) + 19| 110) + gy [ 111)
Wenn wir das erste Bit messen, dann finden wir mit der Wahrscheinlichkeit
Waoo + Vaor + Varo + Ve

den Werta € {0,1}.

.. . ) 1 2 5 ] ] .
Beispiel: Messen wir das erste QuBit von 78 1000) + \/g |010) +|\[§ |111) so finden wir den Wert Null mit

1 2 3
der Wahrscheinlichkeit — + — = —
8 8 3
Quirky:
: ) fd Y
Qubit 3: |0; _—
Qubit2: |0 1
Qubit 1: 00—+ H \T ® /ﬂ A lj. 0%

S0, 0%

A A A 1 A A A A 1
CN0T1_>3CNOT1_>2H1 | OOO> = 7 (CNOT1_>3CNOT1_>2 | OOO> + CNOTI_,3CNOT1_)2| 100)) = 7 ( |OOO> + | 111>)
2 2



