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Wdh.: Operationen auf einem Qubit

NOT-Operation:     

Z-Operation:          Spiegelung an der  Achse 

Rotationen:  ;  

Allgemeinste Spiegelung  hat die Form:  

Hadamard Transformation     

̂ NOT |0⟩ = |1⟩ ̂ NOT |1⟩ = |0⟩

̂Z |0⟩ = |0⟩ ̂Z |1⟩ = − |1⟩ |0⟩

Û(θ)(1
0) = (cos θ

sin θ ) = |ψ(θ)⟩ Û(θ)(0
1) = (−sin θ

cos θ ) = |ψ(θ +
π
2

)⟩

̂V(θ) ̂V(θ) = NOT Û(θ) = Û(−θ) NOT

Ĥ Ĥ = ̂V ( π
4 ) = NOT Û ( π

4 )
| + ⟩ :=

|0⟩ + |1⟩

2

| − ⟩ :=
|0⟩ − |1⟩

2

Ĥ |0⟩ =
1

2
( |0⟩ + |1⟩) =: | + ⟩

Ĥ |1⟩ =
1

2
( |0⟩ − |1⟩) =: | − ⟩



 Wdh.: Operationen auf 2 (Qu)Bits

oder kompakt: Mit Linearität erhalten wir: SWAP:

CNOT: oder kompakt: 



 Wdh.: Produktzustände



 Wdh.: lokale Operationen



 Wdh.: Lokale Operationen

Hadamard -SpiegelunĝZ

̂Z1Ĥ1 ̂NOT2 |00⟩ = ̂Z1Ĥ1 |01⟩ =
1

2
̂Z1 ( |01⟩ + |11⟩) =

1

2
( |01⟩ − |11⟩)

50% 50%



 Wdh.: Parallele Operationen



 Wdh.: Parallele Operationen
Beispiel: Ĥ ⊗ Ĥ

Uniforme Superposition

Test:
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 3.2.3 Parallele Operationen

1
2 [ |0⟩ ⊗ ( |0⟩ + |1⟩) − |1⟩ ⊗ ( |0⟩ + |1⟩)] =

|0⟩ − |1⟩

2
⊗

| |0⟩ + |1⟩

2



 3.2.3 Parallele Operationen

1
2 [ |0⟩ ⊗ ( |0⟩ + |1⟩) − |1⟩ ⊗ ( |0⟩ + |1⟩)] =

|0⟩ − |1⟩

2
⊗

| |0⟩ + |1⟩

2

Ĥ2Ĥ1 ̂NOT1 |00⟩
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1
2 [ |0⟩ ⊗ ( |0⟩ + |1⟩) − |1⟩ ⊗ ( |0⟩ + |1⟩)] =

|0⟩ − |1⟩

2
⊗

| |0⟩ + |1⟩

2

Ĥ2Ĥ1 ̂NOT1 |00⟩
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1
2 [ |0⟩ ⊗ ( |0⟩ + |1⟩) − |1⟩ ⊗ ( |0⟩ + |1⟩)] =

|0⟩ − |1⟩

2
⊗

| |0⟩ + |1⟩

2

Ĥ2Ĥ1 ̂NOT1 |00⟩

Û(ϕ)2Û(θ)1 |00⟩
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Allgemeine Bemerkungen zum Tensorprodukt:

Û1
̂V2 = ̂V2Û1Damit lautet: Und somit als Spezialfall:

Reihenfolge von Operationen:
2 Drehungen:  Û(θ)Û(θ′￼)
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Û1
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 3.2.3 Parallele Operationen
Allgemeine Bemerkungen zum Tensorprodukt:

Û1
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 ̂ZĤ |0⟩ =



 3.2.3 Parallele Operationen

 ̂ZĤ |0⟩ = ̂Z
1

2
( |0⟩ + |1⟩) =

1

2
( |0⟩ − |1⟩) = | − ⟩



 3.2.3 Parallele Operationen

 ̂ZĤ |0⟩ = ̂Z
1

2
( |0⟩ + |1⟩) =

1

2
( |0⟩ − |1⟩) = | − ⟩

 Ĥ ̂Z |0⟩ =
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 ̂ZĤ |0⟩ = ̂Z
1

2
( |0⟩ + |1⟩) =

1

2
( |0⟩ − |1⟩) = | − ⟩

 Ĥ ̂Z |0⟩ = Ĥ |0⟩ =
1

2
( |0⟩ + |1⟩) = | + ⟩



 3.2.3 Parallele Operationen

 ̂ZĤ |0⟩ = ̂Z
1

2
( |0⟩ + |1⟩) =

1

2
( |0⟩ − |1⟩) = | − ⟩

 Ĥ ̂Z |0⟩ = Ĥ |0⟩ =
1

2
( |0⟩ + |1⟩) = | + ⟩

 ̂ZĤ |1⟩ =



 3.2.3 Parallele Operationen

 ̂ZĤ |0⟩ = ̂Z
1

2
( |0⟩ + |1⟩) =

1

2
( |0⟩ − |1⟩) = | − ⟩

 Ĥ ̂Z |0⟩ = Ĥ |0⟩ =
1

2
( |0⟩ + |1⟩) = | + ⟩

 ̂ZĤ |1⟩ = ̂Z
1

2
( |0⟩ − |1⟩) =

1

2
( |0⟩ + |1⟩) = | + ⟩
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 ̂ZĤ |0⟩ = ̂Z
1

2
( |0⟩ + |1⟩) =

1

2
( |0⟩ − |1⟩) = | − ⟩

 Ĥ ̂Z |0⟩ = Ĥ |0⟩ =
1

2
( |0⟩ + |1⟩) = | + ⟩

 ̂ZĤ |1⟩ = ̂Z
1

2
( |0⟩ − |1⟩) =

1

2
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 ̂ZĤ |0⟩ = ̂Z
1

2
( |0⟩ + |1⟩) =

1

2
( |0⟩ − |1⟩) = | − ⟩

 Ĥ ̂Z |0⟩ = Ĥ |0⟩ =
1

2
( |0⟩ + |1⟩) = | + ⟩

 ̂ZĤ |1⟩ = ̂Z
1

2
( |0⟩ − |1⟩) =

1

2
( |0⟩ + |1⟩) = | + ⟩

 Ĥ ̂Z |1⟩ = − Ĥ |1⟩ = −
1

2
( |0⟩ − |1⟩) = − | − ⟩
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 3.2.4 Kontrollierte Operationen
Um über Produktzustände hinauszugehen, benötigen wir Operationen bei denen die 

beiden QuBits interagieren

Kontrollierte NOT Operation: Kompakt:

Ebenso:

2 Kontrollierte NOT Operationen hintereinander macht nichts:

D.h.:



 3.2.4 Kontrollierte Operationen

Man kann für jede Ein QuBit Operation  verallgemeinerte kontrollierte  
Operationen   einführen: 

Û
CÛ1→2
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Bisher Produktzustände: 
- Tensorprodukt von 2 Ein-QuBit-Zuständen 
- Anwendung von lokalen Operatoren auf |00⟩

Es gibt auch Zustände, die keine Produktzustände sind, diese nennt man verschränkt 

Betrachte einen allgemeinen Zustand  
 

Wir bestimmen wieder die Größe 

|ψ⟩
|ψ⟩ = ψ00 |00⟩ + ψ01 |01⟩ + ψ10 |10⟩ + ψ11 |11⟩

Δ(ψ) = ψ00ψ11 − ψ01ψ10



 3.2.5 Verschränkte Zustände

Bisher Produktzustände: 
- Tensorprodukt von 2 Ein-QuBit-Zuständen 
- Anwendung von lokalen Operatoren auf |00⟩

Es gibt auch Zustände, die keine Produktzustände sind, diese nennt man verschränkt 

Betrachte einen allgemeinen Zustand  
 

Wir bestimmen wieder die Größe 

|ψ⟩
|ψ⟩ = ψ00 |00⟩ + ψ01 |01⟩ + ψ10 |10⟩ + ψ11 |11⟩

Δ(ψ) = ψ00ψ11 − ψ01ψ10

Es gilt:  ist ein Produktzustand  |ψ⟩ ⇔ Δ(ψ) = 0
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 3.2.5 Verschränkte Zustände
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 3.2.5 Verschränkte Zustände

D.H.: Invertiere ÛBell := ̂CNOT1→2(Ĥ ⊗ 1̂) Ĥ |0⟩ = | + ⟩ , Ĥ |1⟩ = | − ⟩
Ĥ2 |0⟩ = Ĥ | + ⟩ =

1

2
(Ĥ |0⟩ + Ĥ |1⟩) =

1

2
( | + ⟩ + | − ⟩) =

1
2

(2 |0⟩) = |0⟩

Ĥ2 |1⟩ = Ĥ | − ⟩ =
1

2
(Ĥ |0⟩ − Ĥ |1⟩) =

1

2
( | + ⟩ − | − ⟩) =

1
2

(2 |1⟩) = |0⟩



 3.2.5 Verschränkte Zustände

D.H.: Invertiere ÛBell := ̂CNOT1→2(Ĥ ⊗ 1̂)

Û−1
Bell := (Ĥ ⊗ 1̂) ̂CNOT1→2

Ĥ |0⟩ = | + ⟩ , Ĥ |1⟩ = | − ⟩
Ĥ2 |0⟩ = Ĥ | + ⟩ =

1

2
(Ĥ |0⟩ + Ĥ |1⟩) =

1

2
( | + ⟩ + | − ⟩) =

1
2

(2 |0⟩) = |0⟩

Ĥ2 |1⟩ = Ĥ | − ⟩ =
1

2
(Ĥ |0⟩ − Ĥ |1⟩) =

1

2
( | + ⟩ − | − ⟩) =

1
2

(2 |1⟩) = |0⟩
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Starte mit allgemeinem Ein QuBit zustand  
Messung: mit Wahrscheinlichkeit  ergibt sich  
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|ψ⟩ = ψ0 |0⟩ + ψ1 |1⟩
ψ2

i | i⟩
ψ2

0[0] + ψ2
1[1]
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Es gibt ausgeprägte Ähnlichkeiten zwischen korrelierten 

Wahrscheinlichkeitsverteilungen und verschränkten Zuständen

Starte mit allgemeinem Ein QuBit zustand  
Messung: mit Wahrscheinlichkeit  ergibt sich  
Dies kann durch die Wahrscheinlichleitsverteilung  modelliert werden

|ψ⟩ = ψ0 |0⟩ + ψ1 |1⟩
ψ2

i | i⟩
ψ2

0[0] + ψ2
1[1]

Starte mit allgemeinem Zwei QuBit zustand 
 

Messung: mit Wahrscheinlichkeit  ergibt sich  
Dies kann durch die Wahrscheinlichkeitsverteilung 

 modelliert werden

|ψ⟩ = ψ00 |00⟩ + ψ01 |01⟩ + ψ10 |10⟩ + ψ11 |11⟩
ψ2

ij | ij⟩

ψ2
00[00] + ψ2

01[01] + ψ2
10[10] + ψ2

11[11]
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 3.2.6 Verschränkung und Korrelationen
Erzeugen wir den maximal verschränkten Zustand  und messen ihn, dann 

erhalten wir ein perfekt korrelierten Paar von Zufallsbits 
|Φ+⟩

Test: 

Dasselbe gilt für  :  |Φ−⟩
1
2

[00] +
1
2

[11]

Für die Zustände    erhalten wir hingegen   welches anti-

korrelierte Bits beschreibt.

|Ψ±⟩
1
2

[01] +
1
2

[10]
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 3.2.6 Verschränkung und Korrelationen
Vergleiche das Mass  mit  Δ(p) Δ( |ψ⟩)

d.h. ist , dann folgt daraus   Δ( |ψ⟩) = 0 Δ(p) = 0

Zu jeder gegeben Wahrscheinlichkeitsverteilung  können wir einfach einen 
Quantenzustand  finden, dass Messergebnis gemäß  verteilt ist.  

p
|ψ⟩ p

|ψ⟩ = p00 |00⟩ + p01 |01⟩ + p10 |10⟩ + p11 |11⟩

d.h. Quantenzustände können alles was Wahrscheinlichkeitsverteilungen können 
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Bob misst dies und danach ist der ursprüngliche Zustand verschwunden
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Dann sendet Alice Ihr QBuit an Bob und der hat den gesamten Zustand 
und kann des gesamten Zustand extrahieren (Ü 3.13)


