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Wdh.: Probabilistisches vs. Quantum Bit

Probabilistisches Bit:

Do 1 0
< > =P0< > + Dy ( > = polO] + py[1]
pl O 1

Fiir die Wahrscheinlichkeiten p ; gilt: p, ; > Ound, py + p; = 1, i.e. py | € [0,1]

Quanten Bit: ein allgemeines QuBit |y) kann als Linearkombination
(Superposition) der beiden Zustande |0), | 1) geschrieben werden

lw) =yl 0) +y | 1)

Fiir die Amplituden v, | gilt: w° + w? = 1 und somit y,; € [—1,1]
Yo.1 Yo T Y Yo.1

Die QuBitzustinde |0), | 1) kénnen auch durch Vektoren dargestellt werden

0) = (é) 1) = (?) ) ="’0<(1)> T <(1)> ) @?)



Wdh.: Probabilistisches vs. Quantum Bit

QuBits ahneln probabilistischen Bits - es gibt zwei gro3e Unterschiede:
1. Wahrscheinlichkeiten p, | werden durch Amplituden y, | ersetzt (konnen

auch negativ oder komplex sein!) Die Basiszustande [0],[1] durch |0),|1)

2. Amplituden werden wahrend dem Messen quadriert (Wahrscheinlichkeiten
nicht)

Die moglichen Zustande eines QuBits liegen auf einem Kreis,
wahrend die moglichen Zustande eines probabilistischen Bits auf einer Geraden liegen

1)

A

QuBit —. Probabilistisches Bit

> |0)

Abbildung 2.2: Der Zustandsraum eines probabilistischen Bits (blau) sowie eines Qubits (rot).



Wdh.: Ein QuBit als ein Kreis

l//g + 1/112 = |l ist in der y;, — y; Ebene ein Kreis mit Radius 1

Damit konnen wir die Amplituden wie folgt parametrisieren
Wy = cos0,y; =sind

Ein allgemeiner Zustand lautet dann



Wdh.: Ein Qubit messen

Ann: man hat den Zustand |y/(6)) -> man kann nicht einfach  messen

Born-Regel:
Misst man den Zustand |y) = y;|0) + ;| 1), dann findet man mit
der Wahrscheinlichkeit y/; das Ergebnis |0) und mit

der Wahrscheinlichkeit 1/112 das Ergebnis | 1).

{ ¥o |0) + 91 [1) J
¥ i

1]

Nach der Messung ist der urspriingliche Zustand |y) = y;|0) +y;| 1)
verschwunden und es gibt nur noch | 0) oder | 1).

Weitere Messungen an diesem System liefern keine zusatzlichen
Informationen mehr.



Wdh.: Operationen auf einem Qubit

Linearitat: Operation M auf QuBits

My) =M (w1 0) + ;1)) = yoM|0) +y M| 1)
i1 (o) = ( (o) w1 (1) ) =it (g) + vt ()
W 0 1 0 1

Quantenmechanik: jede lineare Operation ist eine erlaubt QuBit Operation, solange
sie den QuBit-Raum (Kreis) auf sich selbst abbildet (wieder auf Kreis).



Wdh.: Operationen auf einem Qubit

NOT-Operation:
NOT|0) = |1) NOT|1) = |0)
Damit folgt:
NOT (y;10) + ;| 1)) =y NOT|0) +y; NOT| 1) =y | 1) +y, | 0)
oder
NOT (Wo) _ 1
Y1 Yo
1)
f NOT-Operation:

Spiegelung an der Winkelhalbierenden

10)

A
100.0%

S¥




Wdh.: Operationen auf einem Qubit

Spiegelung an der | 0) Achse: Z-Operation

Z10y=10)  Z|1)=—|1)

Linearitat:

QPR LU/ B AN Ll B, ZI+)=1-)
V2 V2 Zl=)=1+)




Wdh.: Operationen auf einem Qubit

MAD|0) = |0)

MAD|1) = 1/4/20) + | 1)

. [ 10)+ 1) 1 1 (1 1+4/2 1
MAD =— 10 — 1 —10 1 — 0 — 1
N ( NG > ﬁ'”ﬁ(ﬁ'””) NN

Lineare Operation, aber Ergebnis liegt nicht auf dem Einheitskreis!

(2 (&) e

MAD ist keine erlaubte Operation!




Wdh.: Rotationen

Drehung U(#) um den Winkel § um den Ursprung

U@©)|0) = |y(0))

00)]1) = |w<9+§>>

In Vektornotation:

. 1 cos 0 A 0 —sin @
U(9)<)=<. ) U<e><)=( )
0 sin @ 1 cos &
Darstellung als 2x2 Matrix Es gilt: U(0)] w(a)) = |p(a+ 0))

| UO)U(p) = U + )
A cos@ —sind@
ue)=1\".

sin@ cosd@



Wdh.: Zusammengesetzte und
inverse Quantenoperationen

Werden zwei lineare Operationen M und N hintereinander ausgefuhrt, so gilt
NG ) = N (woh10) + a1 1) ) =y 10) +yq 0T 1)

d.h. die zusammengesetzte Operation N M ist auch linear.
Analog: drei oder mehr Operationen

Zu jeder Operation M gibt es eine inverse Operation M‘l, so dass gilt:
MM =MM" =1,
wobei 1 der Identitit entspricht: 1 |[0) = |[O)und 1|1) = | 1)

Beispiele fur Inverse:

« NOT ! = NOT

+ RO =R(-0)

e 7271=7

e (NM)™' =M='N7, da NM(NM)~! = NMM~IN~!



Wdh.: Invertiertere Operationen

Alle Operationen auf QuBits sind invertierbar und damit reversibel

Bei probabilistischen Bits war das nicht der Fall -

~ (1
vergleiche: probabilistischer Flip: F <5> <p0> =
P1

1-f
) 0] 0]
F(HI01 = (1 —)[0] +£11] . >f< :
R bit bit
F(HI1] = £10] + (1 —fH[1] f

g | o — 1 |

Probabilistischer Reset

R(I0] = [0] = <(1)) — ! L p—
A r bit /- bit
RO = #{0] + (1 = (1] = <1 ’ ) i . I i




Wdh.: Spiegelungen

Behauptung:
Jede QuBit-Operation ist entweder eine Rotation oder eine Spiegelung (Reflektion)

Bisher kennen wir 2 Spiegelungen: Z und NOT

Wir haben gezeigt:
Z = U(—n/4) NOT U(n/4)
Z = NOT U(x/2)

Man findet: die allgemeinste Spiegelung (Reflektion) ‘A/(Q) hat die Form:
V(@) = NOT U(O) = U(—0) NOT



Wdh.: Hadamard

Eine sehr nutzliche QuBit-Operation ist die Hadamard Transformation H
(Jacques Hadamard)

A A [ T A [ T
H=V(|=)=NoTU (=
(3) = ()

Auf die Basiszustande ergibt dies

R 1 R 1
H|0)=——(]|0 1)) =: : Hl1)Y=——([0)=1]1)) =]-).
10) 2(I Y+ 1)) = |+) | 1) \/§<|> 1)) =] =)

o Spiegelung an der Achse
T
0 =—
3




Wdh.: Quantentomographie

Quantentomographie: Bestimme Zustand durch Messungen und Manipulationen

88.3% 2 _ 2
Mio) = (Y0). 1 el | AL p?=0.117  y2=0.883
\/88.3%> ( V88.3% ) = 0 ==+0.349] = + /9
Ergebnis: i( oo ) +( o
Rotiere um +7/9 Rotiere um — /9
3 Operations Displays -3 Operations Displays : 9 =+7 / 2
= t S tery|  |Prob N COS =
g D] o JEESY moy=( °
10 _Mysm—u(pvg)—/ﬂ=;—j;: 10) —fys-{ucoio- 7 “::: S11 9
J_E %mg;on; - |:’meispl ys , 771_ 71_ ]Z'
g | 50 =+102T=t—=x=—=
10) —@—w:m—/?ﬂ% ::;:= 1 8 2 9
_ 1 17
Rotiere um — = 0 = — —
18 /4 r
cos I~ \ A cos 5 COS—=
tery — U(7pl"18) '1“."‘ ~ . 1_8 M —
IO>—@—Myserv 0< 0.0% Ml 1> — - Sin z —Sln E
18)




Wdh.: 2 Probabilistische Bits

2 Munzen konnen vier Zustande haben
© ®
01 10 11

Das probabilistische Bit fur die 2-Munzenzustande ist gegeben durch

Poo Po " Do

Poi Do P1| .

Pl ~ |P1Po mit 0 < p; < 1und pyy + py; +pip+p11 =1
P11 P1 - Pq

Alternativ schreiben wir diesen Zustand als p,,[00] + p,;[01] + p,o[10] + p{;[11]

fl\ (O\ (0\ (0\

0 1 0 0
O 9 [0 ] O 9 [ 0] 1 9 [ ] 0 b

\0) \0) \0) \1)

mit der Identifikation [00] =

1 1 1 1
Kompakte Notation 5[00] + O[01] + O[10] + 5[11] = 5[00] + 5[11]



Wdh.: Beide Bits messen

P00[00] + po1[01] + p1o[10] + p1:1[1 1]

Poo Po1 \/10 \\

@

[00] [11]
The Quirky Probability Simulator The Quirky Probability Simulator
Quest 3: Wizard of entanglement (two bits) Quest 3: Wizard of entanglement (two bits)
| Reset ] Undo | Share ( Make R(r) | | Reset || Undo | | Share | | MakeR(r)
x Operations Displays My Operations § Operations Displays My Operations
iel] B iel-] @

0.0%
a2 o) Bit2:  [0] %

0.0%
0.0%

0.0%
0.0%

Bit1: [0]= Bit1:  [0] -



Wdh.: Beide Bits messen

poo[OO] g p01[01] - plo[IO] +p11[1 1]

/ Po1 P10 \\
01 10

Beispiel: beim Messen des Zustandes

1/2 [00] + 1/2 [11]
erhalten wir [00] und [11] mit jeweils der Wahrscheinlichkeit 50%
Misst man bei diesem besonderen Zustand nur das erste Bit, dann kennt man

automatisch auch den Wert des zweiten Bits,
d.h. die beiden EinzelBits sind perfekt korreliert



Wdh.: Lokale Operationen

Lokale Operation: man macht auf den einzelnen Bits EinBit Operationen
Globale Operation: man macht gleichzeitig auf allen Bits eine Operation

Beispiel fur lokale Operation (Wirkung auf deterministisches Bit):

NOT, [00] = [10], NOT,[01] = [11], NOT,[10] = [00], NOT,[11] = [01].

NOT, [00] = [01], NOT,[01] = [00], NOT,[10] = [11], NOT,[11] = [10].

Beispiel fur lokale Operation (Wirkung auf probabilistisches Bit):

NOT; (poo[00] 4 po1[01] + p10[10] + p1a[11])

Poo Po1
Poir | — | Poo
=p0o[01] + po1[00] + p1o[11] + p11[10] NOT; po| | Pn
P11 P10

=p01/00] + poo[01] + p11[10] + p10[11],



Wdh.: Lokale Operationen

The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)

The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)

The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)
Reset || Undo Share Make R(r) Reset || Undo Share Make R(r) Reset || Undo Share Make R(r)
§ Operations Displays My Operations -3 Operations Displays My Operations § am Displays My Operations
= kS
s D] e Prob s D] ® Prob 3 Pl e Prob
= (=}
F—
0.0%
3it 2: 0 =@=
[ ] 0.0%

3it2:  [0]

[+
3it 2: [olz@j o0 | o.00
1”.”‘ 0.0\‘
0.0% )
[0 1 o.00 Bit1: (0] %BJ”.“ 0.08
: 0.0% 3t 10— D—w

Wdh: R(r)[0] = [0] und R(r)[1] = r[0] + (1 — P[]

Damit erhalten wir fur die lokalen Operationen
R(r);[00] = [00]
~ Rmy[01] = [01]
R(r){[10] = r[00] + (1 — r)[10]
R(r),[11] = r[01] + (1 — r)[11]
The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)

Reset Undo Share Make R(r)
§ Operations Displays My Operations
S Bl e Prob R(1/3)

R 1 2
Beispiel: R(1/3),[11] = 5[01] + 5[11] =

0.0%
Bit1: [0] =@=R(1f3)= .




1. Schreibe analog zu Gl. 3.9 und 3.10 die Formeln fur R(r), auf.
2. Erklare, warum das Ergebnis von Quirky in Gl. 3.12 richtig ist.

Wdh.: Lokale Operationen

R(r),[00] = [00]
A R(r),[01] = [01]
R(r),[10] = r[00] + (1 — r)[10]
R(r),[11] = r[01] + (1 — [11]

= [00]
00] + (1 = r)[O1]

= [10]

Bit 2: [0]—@—R(1/3) ‘:';‘
L%
2.2%

Bit1:  [0] —@—R(us) .

01]+ (1 = nr)[11]

R 1 2
R(1/3)[1] = 5[0] + 5[1]

(3.12)

(l[()] +%[1]> <l[0] +E[1]> —1[00] +2([01] + [10])+i[11]
3 3 3 3 9 9 9



Wdh.: Nur ein Bit messen

Betrachte den allgemeinen Zustand
Pool00] + pp;[01] + pyo[10] + pyy[11]

. : ‘ : Poo + Po1
| - ®

Bit 1 messen

| | . | P1o + P11
Pio P11 - [1]

Bit 2
Poo + P10 Po1 + P11
messen




Wdh.: Nur ein Bit messen

Mit Quirky kann man auch einzelne Bits messen

The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)

‘ Reset H Undo || || Share ‘ ‘ Make R(r) |

S Operations Displays My Operations
Ee

§ S| e R(1/3)

Bit2:  [0] —{(>—R(13) ::—;:= 0.0

0.0%

0.0‘ 33.3%
1 [©] E 100.0% 66.7%




Wdh.: Der Zustand des anderen Bit

Wenn ein Bit gemessen wurde, dann befindet sich dies nach der Messung in einem
deterministischen Zustand, aber was ist mit dem anderen Bit?

Das hangt vom Zustand ab!

Misst man das erste Bit von 5[10] + 5[1 1], dann erhalt man mit Wahrscheinlichkeit

1 1
+ 5 = ldas Ergebnis [ 1], das zweite Bit ist weiter unbestimmt und befindet sich

nach der Messeng des ersten im Zustand 5[0] + 5[1]

Misst man das erste Bit von p,,[00] + py[01] + p,o[10] + p;;[11], dann erhélt man mit

Wahrscheinlichkeit p,, + p,das Ergebnis [ 1], das zweite Bit ist weiter unbestimmt und

befindet sich nach der Messung des ersten im Zustand Pio [0] + ¥ [1]

P10t P11 Pio T P11
Durch die Summe p,, + p;; muss dividiert werden, damit die Summe der

Wahrscheinlichkeiten 1 bleibt!




Wdh.: Der Zustand des anderen Bit

Allgemein findet man

. Poo 0] + por[1]
[ Poo + Po1 J

Bit 2
0 1
r p
N A
) Poo + Po1
0 Poo Po1 |
Bit 1 Bit 1 messen
AN I | Pio + P11
1 P1o P11 |
< J
Poo + P1o Bit 2 Po1 + P11
messen
Y Y

Poo[0] + p1o[1]
{ Poo + P1o }

[p

01(0] + p11[1]
Po1r + P11 ] @

| @ (Pw[O] = Pn[llJ
R P10 + P11

probabilistisch,
auBer ein Koeffizient
Ist Null

deterministisch



Wdh.: Der Zustand des anderen Bit

Bit 2

Allgemein findet man

0 1
( B

0 Poo Po1 Poo T Po1 . [O] Poo [0] + Po1 [1]

Poo + Po1
Bit 1 Bit 1 messen
o + P : .

1 P1o P11 P1o T P11 ~ (] P10[0] + p11[1]

P1o + P11

9
Poo — P1o Bit 2 Po1 T+ P11
messen

Y

Poo[0] + pio[1] Po1(0] + pu1 1]
[O(;)oo+])i:: J [Olpm +I)E J @

Hier macht es keinen Unterschied ob man beide gleichzeitig misst, oder erst das eine
und dann das andere.

Beispiel: das Ergebnis [ 1 1] kann man mit der Wahrscheinlichkeit p;; bestimmen
Oder erst das erste Bit mit p,, + p;; und dann das zweite mit der Wahrscheinlichkeit

Pn__ das Produkt gibt wieder p,
Pio * P11
Oder erst das zweite Bit mit p,; + p;; und dann das zweite mit der Wahrscheinlichkeit
P11

- das Produkt gibt wieder p,
Po1 T P11



Wdh.: SWAP Operation

Vertauscht die beiden Bits

SWAP [00] = [00],

SWAP [01] = [10],

oder kompakt: _
SWAP [10] = [01], P SWAP |a,b] = |b, d],
SWAP [11] = [11].
Mit Linearitat erhalten wir: SWAP (pgo[00] + po1[01] + p1o[10] + py[11])

=po[00] + po1[10] + p10[01] + pq1[11]

=p0oo[00] + p19[01] + po1[10] + pq[11].

Schreibe die SWAP-Operation auf zwei probabilistischen Bits in der 4-Vektorschreibweise.

DPoo Poo
SWAP | Po1 | — | P10
P1o Po1

P11 P11



Wdh.: Kontrollierte NOT Operation

Mit NOT und SWAP kann man einzelne Bits andern oder zwei vertauschen,
aber die Bits interagieren nicht.

Wir benotigen Operationen bei denen in Abhangigkeit von einem Bit, das andere Bit
verandern.

CNOT: kontrollierte NOT Operation
- Wenn das Steuerbit [ 1] ist, dann wird das Zielbit geflippt (NOT)

- Wenn das Steuerbit [0] ist, dann bleibt das Zielbit gleich (IDENTITAT)
- Das Steuerbit andert sich nicht

CNOT, [OO] — [00]7

| =2 CNOT, y [01] = [01],
/ \ CNOT_,, [10] = [11],
Steuerbit Zielbit >

CNOT, ., [11] = [10].



Wdh.: Kontrollierte NOT Operation

Man kann sich CNOT auch als Addition vorstellen

CNOT; 5 [00] = [00],

Die beiden Bits werden addiert

CNOT1_>2 [01] — [01], 0,1,1,2
Dann modulo 2
CNOT;_,5 [10] = [11], 0,1,1,0

Das 2. Bit im Ergebnis entspricht dieser Operation
CNOT, ., [11] = [10].

Formal kann man schreiben

CNOT; ., [a,b] = [a,a @ b], Die Modulo 2 Operation €5 kann man auch als
XOR (exklusives Oder - entweder oder)
bezeichnen

060=101=0001=1p0=1.



Wdh.: Kontrollierte NOT Operation

CNOT-2 [a,b] = [a,a ® b,

1. Schreibe die Operation CNOT,_,; in einer Formel wie in Gl. 3.20.
2. Wie kann man CNOT5_.; durch SWAP und CNOT_,, implementieren?

—
v Losung.

1.CNOT,_,1[a,b] = [a® b,b] = [bD a,b).
2. Dies kann getan werden, indem man zuerst eine SWAP-Operation ausftihrt, dann CNOT_.,, und
am Ende wieder SWARP. Tatsachlich, wenn wir Gl. 3.18 und 3.20 nutzen, gilt

SWAP(CNOT;_,5(SWAP|a, b])) = SWAP(CNOT;_,5[b, a])

= SWAP[b,b® a| = [b® a,b|.




Wdh.: Kontrollierte NOT Operation

Mit Quirky: dot = Steuerbit; Kreuz = Zielbit

§ Operations Displays =€>—.—

B @ I * Cl—>2 C2—>1
Bit 2: [0] j\ _._69_
Hausaufgabe32(SWAPausCNOTs).

Problem: Es ist beinahe Mitternacht, aber Bob bastelt immer noch an dem

Prototypen seines probabilistischen-Bit Computers herum, den er am
nachsten Tag in der Schule vorstellen will. Er ist so beschéaftigt damit,

seinen Zufallszahlengenerator zu kalibreren, dass er vergisst seinen

Papageien Ziggy zu futtern. Um auf sich aufmerksam zu machen, st6it
Ziggy Bob’s Kaffetasse um und der ganze Kaffe flieBt Gber Bob’s

selbstgebastelte Tastatur, mit der er Operationen auslésen kann. Entsetzt
stellt Bob fest, dass die SWAP-Taste nicht mehr funktioniert! Zum Gliick
ist es der CNOT'-Taste besser ergangen, sie funktioniert noch immer.
Fragen: Wie kann Bob die SW AP-Operation nur durch CNOT-
Operationen implementieren? (Wenn du zeigen willst, dass zwei
Operationen identisch sind, musst du das dank Linearitat nur fur die

Basiszustande zeigen.)

Hinweis: Du solltest drei CNOT-Operationen bendtigen.




Wdh.: Produkt-Verteilungen

Wie erhalt man 2 Bit Zustande aus Einzelbits?
Starte mit g = ¢y[0] + g([1] und r = r|0] + r{[1]

Damit findet man

qor0[00] + qor1[01] + q170[10] + g7 [11].
Aquivalent:  200[00] + po1|01] + p1o[10] + pq1[11] mit:  Pab = QaTb-

Besondere Eigenschaft: die beiden Bits sind unabhangig, d.h. beim Messen von einem
Bit, erhalt man keine Information uber das andere Bit

Nimm an, dass wir das erste Bit aus dem Zustand Gl. 3.22 messen und das Ergebnis als a € {0,1}
bezeichnen. Zeige, dass der Zustand des zweiten Bit r ist, unabhangig vom Ergebnis a des ersten Bits.

Mit anderen Worten, die beiden Bits zu kombinieren und das erste Bit zu messen hat den Zustand des

zweiten nicht beeinflusst (was es auch nicht sollte)!

v Losung.

Nutzen wir Abb. 3.3, so kdnnen wir den Zustand des zweiten Bits nach dem Messen berechnen als

Pool0] + Parll] _ @arol0] + garall] _ mol0] +mal1] _ oy gy 2

Pa0 + Pa1 4,70 + 9471 o+ T1

wobei wir g, gestrichen haben und benutzt haben, dass ry, + r; = 1.



Wdh.: Produkt-Verteilungen

Flr diese unabhéngigen Zustande flihrt man eine neue Notation ein, das Tensorprodukt @

Ausgehend von [0] ® [1] = [01].

Findet man ¢®r = (q[0] + ¢:[1]) ® (r[0] + r[1])
= qoro ([0] ® [0]) + gor1 ([0] ® [1]) + @17 ([1] ® [0]) + gv71 ([1] ® [1])

= qoro[00] + qor1[01] + q179[10] + gy [11].

Dies war unser ursprungliche 2 Bit Zustand von oben

In Vektornotation:

WD) o (T) = ™ _ | Q71
1 ™1 To Qiro |

\ql 1 / qir1




Wdh.: Produkt-Verteilungen

Wir hatten vorhin

Bit2:  [0] R(MA)
2.2%

2.2%

Bit1:  [0] R(1/3)

4%

(1[0] ; Em) 8 (l[o] ' 3[1]) ~ Lot 2011+ 2p10]+ 411 = AN e
3 3 3 3 9 9 9 g T 12/9) T (222% )’
4/9 44.4%

Finde zwei probabilistische Bits g und r, sodass folgende Gleichung gilt:

g®r = 0.48[00] + 0.32[01] + 0.12[10] + 0.08[11].

. 400 r| d17o q17; )
E_ﬁ_i‘/zo\ 332

7"1 32 2 @—_—
ql 2 12
—1=2 _2 =201+ 20 =1=4 =5 —40 11
fro+1r = —Er1+r1—5r1=>r—§[]+g[] q0+q1— = q1+q1— q1=>Q—§[ ]+§[]




Wdh.: Produkt-Verteilungen

Das Tensorprodukt erlaubt kompakte Schreibweisen, z.B. von 1 Bit Operationen:

My(la] ® [b]) = Mla] ® [b],  M>([a] ® [b]) = [a] @ M]b).

Derartige Zustande nennt man Produkt-Zustande oder Produkt-Verteilungen
Ist jeder 2-Bit Zustand ein Produktzustand?

Nein!



Wdh.: Korrelierte Verteilungen

Es gibt auch 2-Bit Zustande, die nicht Produktzustande sind,
d.h. sie konnen nicht als [a] ® [D] geschrieben werden

Z.B l[oo] + l[11]
) g)

Derartige Zustande nennt man korreliert
Misst man das erste Bit, dann kennt man automatisch den Wert des zweiten!

In diesem Fall: Zustand des 1. Bits = Zustand des 2. Bits (perfekt korrelierte Zustande)



Wdh.: Korrelierte Verteilungen

| 1
Konstruktion von E[OO] + 5[1 1] mit Quirky

Bit2:  [0] .

0.0%

0.0%

Bit1:  [0] (D R(1/2)

0%

Erklare, warum die obige Berechnung in Quirky den Zustand 1[00] + 4 [11] generiert.

v Losung.

Der Zustand vor der kontrollierten NOT-Operation ist

(L101+211) @0/ = 2{00] + 1 1a0L

Nachdem wir die kontrollierte NOT-Operation angewendet haben, erhalten wir

CNOT (%[00] T %[10]) = {00 + -[11].



Wdh.: Korrelierte Verteilungen

Test: ist ein Zustand
P = P00|00] + po1{01] + p10[10] + p11[11]

ein Produkt-Zustand oder ein korrelierter Zustand?

Berechne: A(p) = pooP11 — Po1P1o

Fir Produkt-Zustande erhilt man immer A(p) = 0,
andernfalls, ist der Zustand korreliert.

11 |

1 1
Beispiel: A { —[00] +—[11] )| =—==—-0=—
eispie (2[ | 2[ ]) X 7

Beweis: jeder korrelierte Zustand liefert #= (
(Siehe Skript)



Wdh.: Korrelierte Verteilungen
Hausaufgabe 3.4 Unabhinggkel implizet Produit optoral).

Nimm an, dass p sich in einer beliebigen Zwei-Bit-Verteilung befindet, sodass der Zustand des zweiten

Bits unabhangig vom Messergebnis des ersten Bit ist. Zeige, dass ein solches p eine Produktverteilung

ist. Das schaffst du in zwei Schritten:
1. Das Messergebnis des ersten Bits kann entweder 0 oder 1 sein. Mit Abb. 3.3 kannst du die

verbleibenden Zustande des zweiten Bits in beiden Féllen vergleichen und die folgenden Identitaten

zeigen:

Poo P1o Po1 o P11

Poo + Po1 B P1o + P11 ’ Poo + Po1 B P10 + P11 .
A

2. Nutze diese Gleichungen sowiy Gl. 3.2p, um zu zeigeA, dass A(p ~ 0

Bit 2
0 1

/-

[ Poo + P [0] + por[1]
00 01 Pqo Po1
0 Poo Po1 > 'm' L &
. Poo + Po1r

Bit 1 Bit 1 messen

+
1 L P10 P11 P10 + P11 . Il] pw[ﬂ] + pll[l]
Pio +Pii

- -

-

&

Bit 2 Po1 + P
messen

Poo + P1o




Quest 3: Verzaubernde

Verschrankungen

3.1 Zweli probabilistische Bits , _
3.2.1 Zwei Qubits messen

3.2 Zwel Quantenbits 3.2.2 Lokale Operationen
3.2.3 Parallele Operationen
3.2.4 Kontrollierte Operationen
3.2.5 Verschrankte Zustande

3.2.6 Verschrankung und Korrelati...

3.2.7 Die Macht von Verschrankung



3.2 Zweil QuantenBits
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Ein Zwei-QuBit Zustand lautet allgemein:
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3.2 Zwei QuantenBits

Ein Zwei-QuBit Zustand lautet allgemein:

[w) = woo| 00) +yp; [O1) + 01 10) +yqq [ 11)

mit |l//00|2 + |W01 |2 + |W10|2 + |17U11 |2 = ] und somit l//l] c [—1,1]



3.2 Zwei QuantenBits

Ein Zwei-QuBit Zustand lautet allgemein:

lyw) = oo | 00) +yp; 101) + 0] 10) +yq, | 11)
mit |l//00|2 + |l//01 |2 + |l//10|2 + |l//11 |2 = ] und somit l//l] c [—1,1]

Als Basiszustande wahlen wir

1 0

|00y =[], [101)= [10)y={|, [11)=

oS O O
oS = O O
—_— O O O

1
() 9
0



3.2 Zwei QuantenBits

Ein Zwei-QuBit Zustand lautet allgemein:

lyw) = oo | 00) + o 101) + 01 10) + g | 11)
mit |l//00|2 + |y, * + |l//10|2 + |y > = 1 und somit w; € [—1,1]

Als Basiszustande wahlen wir

1 0 0 0
0 1 0 0
100y =141 10L=1,1, o=, Hh=|
0 0 0 1
Y00
Damit lautet der allgemeine 2-QuBit Zustand |y) = 5(1)(1)

Y11
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Wir benutzen auch bei Zwei-QuBit Zustanden das Tensor-Produkt &
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3.2 Zwei QuantenBits

Wir benutzen auch bei Zwei-QuBit Zustanden das Tensor-Produkt &

[0)®10) =100),[0)® 1) =101),[1)®|0) =[10), 1) ® | 1) = | 1)

Aus zwei allgemeinen Ein QuBit Zustanden |a) = ;| 0) + a;| 1) und

18) = Bol0) + 1)



3.2 Zwei QuantenBits

Wir benutzen auch bei Zwei-QuBit Zustanden das Tensor-Produkt &

[0)®10) =100),[0)® 1) =101),[1)®|0) =|10), 1) ® | 1) = | 1)

Aus zwei allgemeinen Ein QuBit Zustanden |a) = ;| 0) + a;| 1) und
| #) = Fy|0) + f;| 1) kann folgendes Tensorprodukt gebildet werden | @) ® | /)



3.2 Zwei QuantenBits

Wir benutzen auch bei Zwei-QuBit Zustanden das Tensor-Produkt &

[0)®10) =100),[0)® 1) =101),[1)®|0) =[10), 1) ® | 1) = | 11)

Aus zwei allgemeinen Ein QuBit Zustanden |a) = ;| 0) + a;| 1) und
| ) = f,10) + B, | 1) kann folgendes Tensorprodukt gebildet werden

[a) ® | ) = apfy| 00) + apf, |01) + 15y | 10) + a5y | 11)



3.2 Zwei QuantenBits

Wir benutzen auch bei Zwei-QuBit Zustanden das Tensor-Produkt &

[0)®10) =100),[0)®|1)=1[01),[1)®[0) =[10), [1) ® [1) =]11)

Aus zwei allgemeinen Ein QuBit Zustanden |a) = ;| 0) + a;| 1) und
| #) = By 0) + B, ] 1) kann folgendes Tensorprodukt gebildet werden

@) ® | B) = apfy| 00) + apfy |01) + 5| 10) + oy B | 11)

Derartige Zustande nennt man Produktzustande



3.2 Zwei QuantenBits

Wir benutzen auch bei Zwei-QuBit Zustanden das Tensor-Produkt &

[0)®[0) =100), |0)®[1)=101),[1)®[0) =[10), [ ) ® 1) = |11)

Aus zwei allgemeinen Ein QuBit Zustanden |a) = ;| 0) + a;| 1) und
| B) = f,10) + B, | 1) kann folgendes Tensorprodukt gebildet werden
[a) ® | F) = apfy | 00) + apf; |01) + 15y 10) + o, 5, | 11)

Derartige Zustande nennt man Produktzustande

Beachte: Nicht alle 2-QuBit Zustande sind Produktzustande



3.2 Zwei QuantenBits

Wir benutzen auch bei Zwei-QuBit Zustanden das Tensor-Produkt &

[0)®10) =100),0)® 1) =101),[1)®|0) =[10), 1) ®|1) = | 11)

Aus zwei allgemeinen Ein QuBit Zustanden |a) = ;| 0) + a;| 1) und
| B) = By]10) + ;| 1) kann folgendes Tensorprodukt gebildet werden
|a) ® | ) = apfy | 00) + apf; | 01) + 15y 10) + o, 5, | 11)

Derartige Zustande nennt man Produktzustande
Beachte: Nicht alle 2-QuBit Zustande sind Produktzustande

Ubungsaufgabe 3.7: Tensorprodukt und Produktzustinde

Erinnere dich an die Zustinde |+) und |—) aus Ubungsaufgabe 2.1.
1. Schreibe |+) ® |—) in der Form aus GL. (3.30).

2. Ist der Zustand % (|00) + |01) + |10) 4 |11)) ein Produktzustand?
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Quirky: https://www.quantum-quest.org/quirky

Quest 3 -> 2 QuBits



3.2 Zwei QuantenBits

Quirky: https://www.quantum-quest.org/quirky

Quest 3 -> 2 QuBits
- Start mit |00)
- 3 neue Boxen: Z, H, und @ , keine Mystery Box

# quantum-quest.nl

The Quirky Quantum Simulator

Quest 3: Wizard of entanglement (two qubits)

(uSoft

Share Make U(B)
% Operations Displays My Operations
o B
S |B|A] e |Pmb r
8
= Z H
Qubit 2: 10
Qubit 1: 10)

This is Quirky Version 0.3.0. Quirky is based on Craig_Gidney's awesome quantum circuit simulator Quirk.
\—/



3.2.1 Zwei QuBits messen

Ahnlich wie 2 probabilistische Bits, aber nun Amplituden

woo |00) + 901 |01) + 1010 |10) + 2P17 |11) ]

/ / < \

(1o0]) 10] 11

Messung mit Quirky

Qubit 2: [0) -

Qubit 1: |0) —




3.2.2 Lokale Operationen

Lokale Operation: ein QuBit wird einzeln manipuliert
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3.2.2 Lokale Operationen

Lokale Operation: ein QuBit wird einzeln manipuliert

Beispiel: NOT Operation auf 1. oder auf 2. QuBit

NOT; |00) = |10), NOT; [01) = [11), NOT; [10) = |00), NOT; |11)
NOT, |00) = [01), NOT, [01) = |[00), NOT, [10) = |11), NOT, |11)

01),
110) .



3.2.2 Lokale Operationen

Lokale Operation: ein QuBit wird einzeln manipuliert

Beispiel: NOT Operation auf 1. oder auf 2. QuBit

NOT; |00) = |10), NOT; [01) = [11), NOT; [10) = |00), NOT; |11)
NOT, |00) = [01), NOT, [01) = |[00), NOT, [10) = |11), NOT, |11)

01),
10) .

Anwendung: Erzeugung aller 4 Basiszustiande aus | 00)



3.2.2 Lokale Operationen

Lokale Operation: ein QuBit wird einzeln manipuliert

Beispiel: NOT Operation auf 1. oder auf 2. QuBit

NOT; |00) = |10), NOT; [01) = [11), NOT; [10) = |00), NOT; |11)
NOT, |00) = [01), NOT, [01) = |[00), NOT, [10) = |11), NOT, |11)

01),
10) .

Anwendung: Erzeugung aller 4 Basiszustiande aus | 00)

00) = [00), [01) = NOT, |00), [10) =NOT; [00), [11) = NOT, NOT; |00).



3.2.2 Lokale Operationen

Lokale Operation: ein QuBit wird einzeln manipuliert

Beispiel: NOT Operation auf 1. oder auf 2. QuBit

NOT; |00) = |10), NOT; [01) = [11), NOT; [10) = |00), NOT; |11)
NOT, |00) = [01), NOT, [01) = |[00), NOT, [10) = |11), NOT, |11)

01),
110) .

Anwendung: Erzeugung aller 4 Basiszustiande aus | 00)

00) = [00), [01) = NOT, |00), [10) =NOT; [00), [11) = NOT, NOT; |00).

Lokale Operation mit Quirky [10) = NOT; |00)
A
Qubit1:  |0) 4@—/7§-L-

Qubit 2: |0)
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U sei eine beliebige 1-QuBit Operation
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U sei eine beliebige 1-QuBit Operation, dann definieren wir die
2-QuBit Operation U, auf jeden Basisvektor |a,b) = |a) @ |b) mita,b € {0,1}
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3.2.2 Lokale Operationen

U sei eine beliebige 1-QuBit Operation, dann definieren wir die
2-QuBit Operation U, auf jeden Basisvektor |a,b) = |a) ® |b) mita,b € {0,1}

Uyla,b)y=Ula) ® | b)

Anwendung von U ; auf einen beliebigen Zustand |y)



3.2.2 Lokale Operationen

U sei eine beliebige 1-QuBit Operation, dann definieren wir die
2-QuBit Operation U, auf jeden Basisvektor |a,b) = |a) @ |b) mita,b € {0,1}

Uyla,b)y=Ula) ® |b)

Anwendung von U ; auf einen beliebigen Zustand | y)

Uy 1Y) = wiooU, 100) + o, Uy 101) + yigUy | 10) +y, Uy | 11)



3.2.2 Lokale Operationen

U sei eine beliebige 1-QuBit Operation, dann definieren wir die
2-QuBit Operation U, auf jeden Basisvektor |a,b) = |a) @ |b) mita,b € {0,1}

Uyla,b)y=Ula) ® |b)

Anwendung von U ; auf einen beliebigen Zustand |y)

Uy 1Y) = wiooU, 100) + o, Uy 101) + o Uy | 10) +yy, Uy | 11)

Analog definieren wir die 2-QuBit Operation lA]2 als
U,|a,b) = |a)y ® U|b)



3.2.2 Lokale Operationen

U sei eine beliebige 1-QuBit Operation, dann definieren wir die
2-QuBit Operation U, auf jeden Basisvektor |a,b) = |a) @ |b) mita,b € {0,1}

Uyla,b)y=Ula) ® |b)

Anwendung von U ; auf einen beliebigen Zustand |y)

Uy 1Y) = wiooU, 100) + o, Uy 101) + o Uy | 10) +yy, Uy | 11)

Analog definieren wir die 2-QuBit Operation lA]2 als
U,|a,b) = |a)y ® U|b)

e Mogliche 1 QuBit Operationen: Rotationen lA](é’) und Spiegelungen \7(6’) = NOT lA](Q)



3.2.2 Lokale Operationen

U sei eine beliebige 1-QuBit Operation, dann definieren wir die
2-QuBit Operation U, auf jeden Basisvektor |a,b) = |a) @ |b) mita,b € {0,1}

Uyla,b)y=Ula) ® |b)

Anwendung von U ; auf einen beliebigen Zustand |y)

Uy 1Y) = wiooU, 100) + o, Uy 101) + o Uy | 10) +yy, Uy | 11)

Analog definieren wir die 2-QuBit Operation IAJZ als
U,|a,b) = |a)y ® U|b)

e Mogliche 1 QuBit Operationen: Rotationen lA](é’) und Spiegelungen \7(6’) = NOT lA](Q)
 Obige Definitionen gelten auch fir beliebige Produktzustande



3.2.2 Lokale Operationen

U sei eine beliebige 1-QuBit Operation, dann definieren wir die
2-QuBit Operation U, auf jeden Basisvektor |a,b) = |a) @ |b) mita,b € {0,1}

Uyla,b)y=Ula) ® |b)

Anwendung von U ; auf einen beliebigen Zustand |y)

Uy 1Y) = wiooU, 100) + o, Uy 101) + o Uy | 10) +yy, Uy | 11)

Analog definieren wir die 2-QuBit Operation IAJZ als
U,|a,b) = |a)y ® U|b)

e Mogliche 1 QuBit Operationen: Rotationen U(H) und Spiegelungen ‘A/(Q) = NOT ZA](Q)
e Obige Definitionen gelten auch fur beliebige Produktzustande

U,(lay @ |5) =Ula) ® | f)und Uy(|a) ® | B) = |a) @ U|B)



3.2.2 Lokale Operationen

Quoitz: |00 —(]) 0{_."22=

0.0%
Qubit1:  |0) H Hdz L s
// k\/7<-.'°‘

Hadamard Z—Spiegelung




3.2.2 Lokale Operationen
Quoitz: |00 —(]) AHE Z‘ e
Qubit1:  |0) HHz HA Cz%=

a

Hadamard Z—Spiegelung




3.2.2 Lokale Operationen
Qubitz: |0 —(]) AHE z% e
Qubit1: |0 HHz HA Cz%=

a

Hadamard Z—Spiegelung




3.2.2 Lokale Operationen
Quoit2: |00 —(]) 7 ° =
Qubit1: |0 HHz HA ° =

a

Hadamard Z—Spiegelung

o o Q@ O

A oA . A 1 4
Z,H,NOT,|00) = Z,H,|01) = $21 (101) +|11))



3.2.2 Lokale Operationen
Quoitz: |00 —() 7 '“ =
Qubit1:  |0) HHz HA '“ =

a

Hadamard Z—Spiegelung

o o o o

.\ A . A 1 .
Z,HNOT,|00) = Z,H,|01) = —Z, (|01) + |11)) =

1
7 $(|01>—|11>)



3.2.2 Lokale Operationen
Qubitz: 100 —p) 7 “ =
Qubit1:  |0) HHz HA ° =

a

Hadamard Z—Spiegelung

o o o o

A A . A 1 .
Z,HNOT,|00) = Z,H,|01) = —Z, (|01) + |11)) = (101)y —|11))

A

50% 50%
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Wenn diese auf unterschiedliche QuBits wirken,
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3.2.3 Parallele Operationen

Betrachte Beliebige Operationen Uund V
Wenn diese auf unterschiedliche QuBits wirken , dann gilt UV, = V,U,

Beweis: Betrachte Wirkung auf Basiszustande
U1V |a,by =U; (la)@V |b)) =U|a) @V |b) =V, (U |a) ® |b)) = VoUq |a,b),

Nutze Linearitat bei beliebigem Zustand

In diesem Fall kdnnen wir die 2 Operationen parallel ausfiuihren
und wir fuhren eine neue Notation ein:

(08V)(1®1p) = (01a)) & (17)



3.2.3 Parallele Operationen

Betrachte Beliebige Operationen Uund V
Wenn diese auf unterschiedliche QuBits wirken , dann gilt UV, = V,U,

Beweis: Betrachte Wirkung auf Basiszustande
U1V |a,by =U; (la)@V |b)) =U|a) @V |b) =V, (U |a) ® |b)) = VoUq |a,b),

Nutze Linearitat bei beliebigem Zustand

In diesem Fall konnen wir die 2 Operationen parallel ausfiihren
und wir fuhren eine neue Notation ein:

(08V)(loe1p) =(01a)e(175)

U X V nennt man das Tensorprodukt von 2 Quantenoperationen
oder eine Paralleloperation.




3.2.3 Parallele Operationen

Beispiel: H ® H
(H® H) [00) = (H0)) ® (H [0))
— (510 + ) e (J510+ 1)
:%|o)®|0)+§|0)®|1)+%|1>®IO>+§I1>®|1>
= 2(100) + [01) + [10) +[11)).

\

Uniforme Superposition

Test:

Qubit 2: 04 H |

A
A

v L v (%)
. . . .

o o o o
e e e e

Qubit 1: 004 H




