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Wdh.: Probabilistisches vs. Quantum Bit

Probabilistisches Bit: 

  

Für die Wahrscheinlichkeiten  gilt:  und, , i.e.  

Quanten Bit: ein allgemeines QuBit  kann als Linearkombination 
(Superposition) der beiden Zustände  geschrieben werden 

  

Für die Amplituden  gilt:   und somit  

Die QuBitzustände  können auch durch Vektoren dargestellt werden 

     .         

(p0

p1) = p0 (1
0) + p1 (0

1) = p0[0] + p1[1]

p0,1 p0,1 ≥ 0 p0 + p1 = 1 p0,1 ∈ [0,1]

|ψ⟩
|0⟩ , |1⟩

|ψ⟩ = ψ0 |0⟩ + ψ1 |1⟩

ψ0,1 ψ2
0 + ψ2

1 = 1 ψ0,1 ∈ [−1,1]

|0⟩ , |1⟩

|0⟩ = (1
0) |1⟩ = (0

1) |ψ⟩ = ψ0 (1
0) + ψ1 (0

1) = (ψ0

ψ1)



Die möglichen Zustände eines QuBits liegen auf einem Kreis, 
während die möglichen Zustände eines probabilistischen Bits auf einer Geraden liegen

QuBit Probabilistisches Bit

QuBits ähneln probabilistischen Bits - es gibt zwei große Unterschiede: 
1. Wahrscheinlichkeiten  werden durch Amplituden  ersetzt (können 

auch negativ oder komplex sein!) Die Basiszustände  durch  
2.  Amplituden werden während dem Messen quadriert (Wahrscheinlichkeiten 

nicht) 

p0,1 ψ0,1
[0] , [1] |0⟩ , |1⟩

Wdh.: Probabilistisches vs. Quantum Bit



Wdh.: Ein QuBit als ein Kreis
 ist in der  Ebene ein Kreis mit Radius 1ψ2

0 + ψ2
1 = 1 ψ0 − ψ1

Damit können wir die Amplituden wie folgt parametrisieren 
 

Ein allgemeiner Zustand lautet dann 

 

Insbesondere gilt:  und 

ψ0 = cos θ , ψ1 = sin θ

|ψ(θ)⟩ = cos θ (1
0) + sin θ (0

1) = (cos θ
sin θ )

|ψ(0)⟩ = (1
0) |ψ ( π

2 )⟩ = (0
1)



Wdh.: Ein Qubit messen
Ann: man hat den Zustand  -> man kann nicht einfach  messen 

Born-Regel:  
Misst man den Zustand , dann findet man mit  
der Wahrscheinlichkeit  das Ergebnis  und mit  
der Wahrscheinlichkeit  das Ergebnis . 

|ψ(θ)⟩ θ

|ψ⟩ = ψ0 |0⟩ + ψ1 |1⟩
ψ2

0 |0⟩
ψ2

1 |1⟩

Nach der Messung ist der ursprüngliche  Zustand  
verschwunden und es gibt nur noch  oder .  

Weitere Messungen an diesem System liefern keine zusätzlichen 
Informationen mehr.

|ψ⟩ = ψ0 |0⟩ + ψ1 |1⟩
|0⟩ |1⟩



Wdh.: Operationen auf einem Qubit

Linearität: Operation  auf QuBits   
  

   
           
    

   

Quantenmechanik: jede lineare Operation ist eine erlaubt QuBit Operation, solange 
sie den QuBit-Raum (Kreis) auf sich selbst abbildet (wieder auf Kreis).    

M̂

M̂ |ψ⟩ = M̂ (ψ0 |0⟩ + ψ1 |1⟩) = ψ0M̂ |0⟩ + ψ1M̂ |1⟩

M̂ (ψ0

ψ1) = M̂ (ψ0 (1
0) + ψ1 (0

1)) = ψ0M̂ (1
0) + ψ1M̂ (0

1)



Wdh.: Operationen auf einem Qubit
NOT-Operation: 
                                     

Damit folgt: 
 

oder 

 

 

̂ NOT |0⟩ = |1⟩ ̂ NOT |1⟩ = |0⟩

̂NOT (ψ0 |0⟩ + ψ1 |1⟩) = ψ0 ̂NOT |0⟩ + ψ1 ̂NOT |1⟩ = ψ0 |1⟩ + ψ1 |0⟩

̂NOT (ψ0

ψ1) = (ψ1

ψ0)

NOT-Operation:  
Spiegelung an der Winkelhalbierenden

Quirky:



Wdh.: Operationen auf einem Qubit
 Spiegelung an der  Achse: Z-Operation|0⟩

 Linearität:

̂Z | + ⟩ = | − ⟩

̂Z | − ⟩ = | + ⟩
| + ⟩ :=

|0⟩ + |1⟩

2
| − ⟩ :=

|0⟩ − |1⟩

2

̂Z |0⟩ = |0⟩ ̂Z |1⟩ = − |1⟩

̂Z (ψ0

ψ1) = ( ψ0

−ψ1)



Wdh.: Operationen auf einem Qubit

⇒ ̂MAD ( |0⟩ + |1⟩

2 ) =
1

2
|0⟩ +

1

2 ( 1

2
|0⟩ + |1⟩) =

1 + 2

2
|0⟩ +

1

2
|1⟩

̂MAD |0⟩ = |0⟩

̂MAD |1⟩ = 1/ 2 |0⟩ + |1⟩

Lineare Operation, aber Ergebnis liegt nicht auf dem Einheitskreis!  

( 1 + 2

2 )
2

+ ( 1

2 )
2

= 2 + 2 ≫ 1

 ist keine erlaubte Operation!̂MAD



Wdh.: Rotationen
Drehung  um den Winkel  um den UrsprungÛ(θ) θ

In Vektornotation:

Darstellung als 2x2 Matrix 

Û(θ) = (cos θ −sin θ
sin θ cos θ )

Es gilt:   
                 

Û(θ) |ψ(α)⟩ = |ψ(α + θ)⟩
Û(θ)Û(φ) = Û(θ + φ)

Û(θ) |0⟩ = |ψ(θ)⟩

Û(θ) |1⟩ = |ψ(θ +
π
2

)⟩

Û(θ)(1
0) = (cos θ

sin θ ) Û(θ)(0
1) = (−sin θ

cos θ )



Wdh.: Zusammengesetzte und 
inverse Quantenoperationen

Werden zwei lineare Operationen  und  hintereinander ausgeführt, so gilt 
 

d.h. die zusammengesetzte Operation   ist auch linear. 
Analog: drei oder mehr Operationen 

Zu jeder Operation  gibt es eine inverse Operation , so dass gilt: 
, 

wobei  der Identität entspricht:  und   

Beispiele für Inverse: 
•             
•     
•           
•

M̂ N̂
N̂(M̂ |ψ⟩) = N̂ (ψ0M̂ |0⟩ + ψ1M̂ |1⟩) = ψ0N̂M̂ |0⟩ + ψ1N̂M̂ |1⟩

N̂ M̂

M̂ M̂−1

M̂−1M̂ = M̂M̂−1 = 1̂
1̂ 1̂ |0⟩ = |0⟩ 1̂ |1⟩ = |1⟩

NOT−1 = NOT
R̂(θ)−1 = R̂(−θ)

̂Z−1 = ̂Z
(NM)−1 = M−1N−1, da NM(NM)−1 = NMM−1N−1



Wdh.: Invertiertere Operationen
Alle Operationen auf QuBits sind invertierbar und damit reversibel 

Bei probabilistischen Bits war das nicht der Fall -  

vergleiche: probabilistischer Flip:  

Probabilistischer Reset

̂F ( 1
2 ) (p0

p1) =
1
2
1
2

R̂(r)[0] = [0] = (1
0)

R̂(r)[1] = r[0] + (1 − r)[1] = ( r
1 − r)

̂F( f )[0] = (1 − f )[0] + f [1]
̂F( f )[1] = f [0] + (1 − f )[1]



Wdh.: Spiegelungen
Behauptung:  
Jede QuBit-Operation ist entweder eine Rotation oder eine Spiegelung (Reflektion) 

Bisher kennen wir 2 Spiegelungen:  und  

Wir haben gezeigt: 
 

̂Z ̂NOT

̂Z = Û(−π/4) ̂NOT Û(π/4)
̂Z = ̂NOT Û(π/2)

Man findet: die allgemeinste Spiegelung (Reflektion)  hat die Form: 
 

̂V(θ)
̂V(θ) = NOT Û(θ) = Û(−θ) NOT



Wdh.: Hadamard 
Eine sehr nützliche QuBit-Operation ist die Hadamard Transformation  

(Jacques Hadamard)  

   

Auf die Basiszustände ergibt dies 

,        .

Ĥ

Ĥ = ̂V ( π
4 ) = NOT Û ( π

4 )
Ĥ |0⟩ =

1

2
( |0⟩ + |1⟩) =: | + ⟩ Ĥ |1⟩ =

1

2
( |0⟩ − |1⟩) =: | − ⟩

Spiegelung an der Achse  
θ =

π
8



Wdh.: Quantentomographie
Quantentomographie: Bestimme Zustand durch Messungen und Manipulationen 

ψ2
1 = 0.117 ψ2

0 = 0.883

Ergebnis: ⇒ θ = ± 0.3491 = ± π/9

Rotiere um +π/9 Rotiere um −π/9
 ⇒ θ = + π/9

M̂ |0⟩ = (
cos π

9

sin π
9

)
⇒ θ′￼= ± 1.2217 = ± 7π

18
= ± ( π

2
−

π
9 )

Rotiere um 
7π
18

 ⇒ θ′￼= −
7π
18

M̂ |1⟩ =
cos 7π

18

−sin 7π
18

M̂ =
cos π

9 cos 7π
18

sin π
9 −sin 7π

18



 Wdh.: 2 Probabilistische Bits
2 Münzen können vier Zustände haben

00 01 10 11

Das probabilistische Bit für die 2-Münzenzustände ist gegeben durch 

 mit  und  

p00
p01
p10
p11

=

p0 ⋅ p0
p0 ⋅ p1
p1 ⋅ p0
p1 ⋅ p1

0 ≤ pij ≤ 1 p00 + p01 + p10 + p11 = 1

Alternativ schreiben wir diesen Zustand als   

mit der Identifikation  

Kompakte Notation 

p00[00] + p01[01] + p10[10] + p11[11]

[00] =

1
0
0
0

, [01] =

0
1
0
0

, [10] =

0
0
1
0

, [11] =

0
0
0
1

,

1
2

[00] + 0[01] + 0[10] +
1
2

[11] =
1
2

[00] +
1
2

[11]



Wdh.: Beide Bits messen

[00] [11]



 Wdh.: Beide Bits messen

Beispiel: beim Messen des Zustandes  
     

1/2 [00] + 1/2 [11] 

erhalten wir [00] und [11] mit jeweils der Wahrscheinlichkeit 50% 

Misst man bei diesem besonderen Zustand nur das erste Bit, dann kennt man 
automatisch auch den Wert des zweiten Bits, 

d.h. die beiden EinzelBits sind perfekt korreliert



 Wdh.: Lokale Operationen
Lokale Operation: man macht auf den einzelnen Bits EinBit Operationen 
Globale Operation: man macht gleichzeitig auf allen Bits eine Operation

Beispiel für lokale Operation (Wirkung auf deterministisches Bit):

Beispiel für lokale Operation (Wirkung auf probabilistisches Bit):



 Wdh.: Lokale Operationen

Wdh:  und  

Damit erhalten wir für die lokalen Operationen  
 
 

 

R̂(r)[0] = [0] R̂(r)[1] = r[0] + (1 − r)[1]

R̂(r)1[00] = [00]
R̂(r)1[01] = [01]

R̂(r)1[10] = r[00] + (1 − r)[10]
R̂(r)1[11] = r[01] + (1 − r)[11]

Beispiel: R̂(1/3)1[11] =
1
3

[01] +
2
3

[11]



 Wdh.: Lokale Operationen
 
 

 

R̂(r)1[00] = [00]
R̂(r)1[01] = [01]

R̂(r)1[10] = r[00] + (1 − r)[10]
R̂(r)1[11] = r[01] + (1 − r)[11]

R̂(1/3)[1] =
1
3

[0] +
2
3

[1]

( 1
3

[0] +
2
3

[1]) ( 1
3

[0] +
2
3

[1]) =
1
9

[00] +
2
9

([01] + [10]) +
4
9

[11]

 
 

 

R̂(r)2[00] = [00]
R̂(r)2[01] = r[00] + (1 − r)[01]
R̂(r)2[10] = [10]
R̂(r)1[11] = r[01] + (1 − r)[11]



 Wdh.: Nur ein Bit messen
Betrachte den allgemeinen Zustand 

p00[00] + p01[01] + p10[10] + p11[11]



 Wdh.: Nur ein Bit messen
Mit Quirky kann man auch einzelne Bits messen 



 Wdh.: Der Zustand des anderen Bit
Wenn ein Bit gemessen wurde, dann befindet sich dies nach der Messung in einem 

deterministischen Zustand, aber was ist mit dem anderen Bit? 

Das hängt vom Zustand ab!

Misst man das erste Bit von , dann erhält man mit Wahrscheinlichkeit 

das Ergebnis , das zweite Bit ist weiter unbestimmt und befindet sich 

nach der Messeng des ersten im Zustand  

Misst man das erste Bit von , dann erhält man mit 
Wahrscheinlichkeit das Ergebnis , das zweite Bit ist weiter unbestimmt und 

befindet sich nach der Messung des ersten im Zustand  

Durch die Summe  muss dividiert werden, damit die Summe der 
Wahrscheinlichkeiten 1 bleibt! 

1
2

[10] +
1
2

[11]
1
2

+
1
2

= 1 [1]
1
2

[0] +
1
2

[1]

p00[00] + p01[01] + p10[10] + p11[11]
p10 + p11 [1]

p10

p10 + p11
[0] +

p11

p10 + p11
[1]

p10 + p11



 Wdh.: Der Zustand des anderen Bit
Allgemein findet man

deterministisch

probabilistisch, 
außer ein Koeffizient 

Ist Null



 Wdh.: Der Zustand des anderen Bit
Allgemein findet man

Hier macht es keinen Unterschied ob man beide gleichzeitig misst, oder erst das eine 
und dann das andere. 

Beispiel: das Ergebnis  kann man mit der Wahrscheinlichkeit  bestimmen 
Oder erst das erste Bit mit    und dann das zweite mit der Wahrscheinlichkeit 

 - das Produkt gibt wieder  

Oder erst das zweite Bit mit    und dann das zweite mit der Wahrscheinlichkeit 

 - das Produkt gibt wieder 

[11] p11
p10 + p11p11

p10 + p11
p11

p01 + p11p11

p01 + p11
p11



 Wdh.: SWAP Operation
Vertauscht die beiden Bits

oder kompakt: 

Mit Linearität erhalten wir: 



 Wdh.: Kontrollierte NOT Operation
Mit NOT und SWAP kann man einzelne Bits ändern oder zwei vertauschen, 
aber die Bits interagieren nicht. 

Wir benötigen Operationen bei denen in Abhängigkeit von einem Bit, das andere Bit 
verändern. 

CNOT: kontrollierte NOT Operation 
- Wenn das Steuerbit  ist, dann wird das Zielbit geflippt (NOT)  
- Wenn das Steuerbit  ist, dann bleibt das Zielbit gleich (IDENTITÄT)  
- Das Steuerbit ändert sich nicht

[1]
[0]

Steuerbit

1 → 2

Zielbit 



 Wdh.: Kontrollierte NOT Operation
Man kann sich CNOT auch als Addition vorstellen

Die beiden Bits werden addiert 
0,1,1,2 

Dann modulo 2 
0,1,1,0 

Das 2. Bit im Ergebnis entspricht dieser Operation

Formal kann man schreiben

Die Modulo 2 Operation        kann man auch als 
XOR (exklusives Oder  - Entweder oder)  
bezeichnen



 Wdh.: Kontrollierte NOT Operation



 Wdh.: Kontrollierte NOT Operation
Mit Quirky: dot = Steuerbit; Kreuz = Zielbit  

C1→2 C2→1



 Wdh.: Produkt-Verteilungen
Wie erhält man 2 Bit Zustände aus Einzelbits? 

Starte mit  und  

Damit findet man

q = q0[0] + q1[1] r = r0[0] + r1[1]

Äquivalent: mit: 

Besondere Eigenschaft: die beiden Bits sind unabhängig, d.h. beim Messen von einem 
Bit, erhält man keine Information über das andere Bit



 Wdh.: Produkt-Verteilungen
Für diese unabhängigen Zustände führt man eine neue Notation ein, das Tensorprodukt  ⊗

Ausgehend von

Findet man

Dies war unser ursprüngliche 2 Bit Zustand von oben

In Vektornotation:



 Wdh.: Produkt-Verteilungen
Wir hatten vorhin

q0r0 q0r1 q1r0 q1r1

r0

r1
=

48
32

=
3
2 q0

q1
=

3
2

32
12

= 4

r0 + r1 = 1 =
3
2

r1 + r1 =
5
2

r1 ⇒ r =
3
5

[0] +
2
5

[1] q0 + q1 = 1 = 4q1 + q1 = 5q1 ⇒ q =
4
5

[0] +
1
5

[1]



 Wdh.: Produkt-Verteilungen

Das Tensorprodukt erlaubt kompakte Schreibweisen, z.B. von 1 Bit Operationen:

Derartige Zustände nennt man Produkt-Zustände oder Produkt-Verteilungen 

Ist jeder 2-Bit Zustand ein Produktzustand? 

Nein!



 Wdh.: Korrelierte Verteilungen

Es gibt auch 2-Bit Zustände, die nicht Produktzustände sind,  
d.h. sie können nicht als  geschrieben werden 

Z.B.   

Derartige Zustände nennt man korreliert  

Misst man das erste Bit, dann kennt man automatisch den Wert des zweiten! 

In diesem Fall: Zustand des 1. Bits = Zustand des 2. Bits (perfekt korrelierte Zustände)

[a] ⊗ [b]

1
2

[00] +
1
2

[11]



 Wdh.: Korrelierte Verteilungen
Konstruktion von  mit Quirky 

1
2

[00] +
1
2

[11]



 Wdh.: Korrelierte Verteilungen
Test: ist ein Zustand 

ein Produkt-Zustand oder ein korrelierter Zustand?

Berechne: Δ(p) = p00p11 − p01p10

Für Produkt-Zustände erhält man immer  , 
andernfalls, ist der Zustand korreliert. 

Beispiel:  

Beweis: jeder korrelierte Zustand liefert  
(Siehe Skript)

Δ(p) = 0

Δ ( 1
2

[00] +
1
2

[11]) =
1
2

1
2

− 0 =
1
4

≠ 0



 Wdh.: Korrelierte Verteilungen





 3.2 Zwei QuantenBits



 3.2 Zwei QuantenBits

Ein Zwei-QuBit Zustand lautet allgemein: 

 |ψ⟩ = ψ00 |00⟩ + ψ01 |01⟩ + ψ10 |10⟩ + ψ11 |11⟩



 3.2 Zwei QuantenBits

Ein Zwei-QuBit Zustand lautet allgemein: 

 

mit   und somit  

|ψ⟩ = ψ00 |00⟩ + ψ01 |01⟩ + ψ10 |10⟩ + ψ11 |11⟩

|ψ00 |2 + |ψ01 |2 + |ψ10 |2 + |ψ11 |2 = 1 ψij ∈ [−1,1]



 3.2 Zwei QuantenBits

Ein Zwei-QuBit Zustand lautet allgemein: 

 

mit   und somit  

Als Basiszustände wählen wir 

 

|ψ⟩ = ψ00 |00⟩ + ψ01 |01⟩ + ψ10 |10⟩ + ψ11 |11⟩

|ψ00 |2 + |ψ01 |2 + |ψ10 |2 + |ψ11 |2 = 1 ψij ∈ [−1,1]

|00⟩ =

1
0
0
0

, |01⟩ =

0
1
0
0

, |10⟩ =

0
0
1
0

, |11⟩ =

0
0
0
1

,



 3.2 Zwei QuantenBits

Ein Zwei-QuBit Zustand lautet allgemein: 

 

mit   und somit  

Als Basiszustände wählen wir 

 

Damit lautet der allgemeine 2-QuBit Zustand 

|ψ⟩ = ψ00 |00⟩ + ψ01 |01⟩ + ψ10 |10⟩ + ψ11 |11⟩

|ψ00 |2 + |ψ01 |2 + |ψ10 |2 + |ψ11 |2 = 1 ψij ∈ [−1,1]

|00⟩ =

1
0
0
0

, |01⟩ =

0
1
0
0

, |10⟩ =

0
0
1
0

, |11⟩ =

0
0
0
1

,

|ψ⟩ =

ψ00
ψ01
ψ10
ψ11



 3.2 Zwei QuantenBits

Wir benutzen auch bei Zwei-QuBit Zuständen das Tensor-Produkt  ⊗



 3.2 Zwei QuantenBits

Wir benutzen auch bei Zwei-QuBit Zuständen das Tensor-Produkt  

 

⊗

|0⟩ ⊗ |0⟩ = |00⟩ , |0⟩ ⊗ |1⟩ = |01⟩ , |1⟩ ⊗ |0⟩ = |10⟩ , |1⟩ ⊗ |1⟩ = |11⟩



 3.2 Zwei QuantenBits

Wir benutzen auch bei Zwei-QuBit Zuständen das Tensor-Produkt  

 

Aus zwei allgemeinen Ein QuBit Zuständen  und 
 

⊗

|0⟩ ⊗ |0⟩ = |00⟩ , |0⟩ ⊗ |1⟩ = |01⟩ , |1⟩ ⊗ |0⟩ = |10⟩ , |1⟩ ⊗ |1⟩ = |11⟩

|α⟩ = α0 |0⟩ + α1 |1⟩
|β⟩ = β0 |0⟩ + β1 |1⟩



 3.2 Zwei QuantenBits

Wir benutzen auch bei Zwei-QuBit Zuständen das Tensor-Produkt  

 

Aus zwei allgemeinen Ein QuBit Zuständen  und 
 kann folgendes Tensorprodukt gebildet werden  

⊗

|0⟩ ⊗ |0⟩ = |00⟩ , |0⟩ ⊗ |1⟩ = |01⟩ , |1⟩ ⊗ |0⟩ = |10⟩ , |1⟩ ⊗ |1⟩ = |11⟩

|α⟩ = α0 |0⟩ + α1 |1⟩
|β⟩ = β0 |0⟩ + β1 |1⟩ |α⟩ ⊗ |β⟩



 3.2 Zwei QuantenBits

Wir benutzen auch bei Zwei-QuBit Zuständen das Tensor-Produkt  

 

Aus zwei allgemeinen Ein QuBit Zuständen  und 
 kann folgendes Tensorprodukt gebildet werden 

 

⊗

|0⟩ ⊗ |0⟩ = |00⟩ , |0⟩ ⊗ |1⟩ = |01⟩ , |1⟩ ⊗ |0⟩ = |10⟩ , |1⟩ ⊗ |1⟩ = |11⟩

|α⟩ = α0 |0⟩ + α1 |1⟩
|β⟩ = β0 |0⟩ + β1 |1⟩
|α⟩ ⊗ |β⟩ = α0β0 |00⟩ + α0β1 |01⟩ + α1β0 |10⟩ + α1β1 |11⟩



 3.2 Zwei QuantenBits

Wir benutzen auch bei Zwei-QuBit Zuständen das Tensor-Produkt  

 

Aus zwei allgemeinen Ein QuBit Zuständen  und 
 kann folgendes Tensorprodukt gebildet werden 

 
Derartige Zustände nennt man Produktzustände  

⊗

|0⟩ ⊗ |0⟩ = |00⟩ , |0⟩ ⊗ |1⟩ = |01⟩ , |1⟩ ⊗ |0⟩ = |10⟩ , |1⟩ ⊗ |1⟩ = |11⟩

|α⟩ = α0 |0⟩ + α1 |1⟩
|β⟩ = β0 |0⟩ + β1 |1⟩
|α⟩ ⊗ |β⟩ = α0β0 |00⟩ + α0β1 |01⟩ + α1β0 |10⟩ + α1β1 |11⟩



 3.2 Zwei QuantenBits
Wir benutzen auch bei Zwei-QuBit Zuständen das Tensor-Produkt  

 

Aus zwei allgemeinen Ein QuBit Zuständen  und 
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Quirky:  

Quest 3 -> 2 QuBits  
- Start mit  
- 3 neue Boxen: Z, H, und       , keine Mystery Box 

|00⟩



 3.2.1 Zwei QuBits messen

Ähnlich wie 2 probabilistische Bits, aber nun Amplituden

Messung mit Quirky
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Û1 |a, b⟩ = Û |a⟩ ⊗ |b⟩
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 und 

Û(θ) ̂V(θ) = ̂NOT Û(θ)

Û1( |α⟩ ⊗ |β⟩) = Û |α⟩ ⊗ |β⟩ Û2( |α⟩ ⊗ |β⟩) = |α⟩ ⊗ Û |β⟩
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Hadamard -SpiegelunĝZ

̂Z1Ĥ1 ̂NOT2 |00⟩ = ̂Z1Ĥ1 |01⟩ =
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Hadamard -SpiegelunĝZ
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Hadamard -SpiegelunĝZ

̂Z1Ĥ1 ̂NOT2 |00⟩ = ̂Z1Ĥ1 |01⟩ =
1

2
̂Z1 ( |01⟩ + |11⟩) =

1

2
( |01⟩ − |11⟩)

50% 50%
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Û ̂V
Û1
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 nennt man das Tensorprodukt von 2 Quantenoperationen  
oder eine Paralleloperation.

(Û ⊗ ̂V) ( |α⟩ ⊗ |β⟩) = (Û |α⟩) ⊗ ( | ̂Vβ⟩)
Û ⊗ ̂V



 3.2.3 Parallele Operationen
Beispiel: Ĥ ⊗ Ĥ

Uniforme Superposition

Test:


