
Ablauf
19.11.: Einführung

26.11.: Q1 Maestro der Wahrscheinlichkeit

 3.12.: Q2a KEINE Vorlesung

10.12.: Q2b Das Qubit bezwingen

17.12.: Q3a Verzaubernde Verschränkungen 1

 7. 1.: Q3b Verzaubernde Verschränkungen 2

14. 1.: Q4a Quantenkompositionen 1

21. 1.: Q4b Quantenkompositionen 2

28. 1.: Q5a Virtuose Algorithmen 1

 4. 2.: Q5b Virtuose Algorithmen 2

Vorlesung: Das theoretische Minimum
Mittwochsakademie

angelehnt an
“The Quantum Quest“ von Maris Ozols & Michael Walter
https://qi-rub.github.io/quantum-quest/2023/de/

https://www.quantum-quest.org/quirky

Wdh.: 2.1 Quantenbits
Bit: Informationseinheit eines klassischen Computers

Realisierung: physikalisches System mit 2 Zuständen, die man
zuverlässig unterscheiden kann

Beispiel: Münze -> beschrieben durch Mechanik
Kondensator -> beschrieben durch Elektromagnetismus

Für sehr kleine Objekte - atomare Skala - gelten Mechanik oder
Elektromagnetismus nicht mehr, und wir benötigen neue Theorien:

Quantenmechanik, Quantenelektrodynamik

Hier gibt es auch Systeme mit zwei möglichen Zuständen, z.B. der Spin eines
Elektrons - eine Art Eigendrehimpuls des Elektrons, der nach oben oder nach

unten oder nach einer Kombination (Superposition) aus oben oder unten
zeigen kann!

[0], [1], ,…..

Dieses QuantenBit - QuBit ähnelt einem probabilistischem Bit
- es gibt aber auch Unterschiede

Wir diskutieren hier nur was man damit machen kann, nicht:
Was ist der Hintergrund (Quantenmechanik)?

Wie baut man sowas?

1

2
[0] +

1

2
[1]

Wdh.: 2.1.1 Wahrscheinlichkeiten versus Amplituden

QuBits ähneln probabilistischem Bit - es gibt zwei große Unterschiede:
1. Wahrscheinlichlkeiten werden durch Amplituden ersetzt (können auch

negativ oder komplex sein!)
2. Amplituden werden während dem Messen quadriert (Wahrscheinlichkeiten

nicht)

Die beiden möglichen Zustände eines QuBits werden und genannt.

Der allgemeine Zustand eines QuBits kann als Linearkombination
(Superposition) dieser beiden Zustände geschrieben werden

Vergleiche das probabilistische Bit

Die Wahrscheinlichkeiten wurden durch die Amplituden ersetzt
Die Basiszustände durch

|0⟩ |1⟩

|ψ⟩

|ψ⟩ = ψ0 |0⟩ + ψ1 |1⟩

(p0

p1) = p0 (1
0) + p1 (0

1) = p0[0] + p1[1]

p0,1 ψ0,1
[0] , [1] |0⟩ , |1⟩

Wdh.: 2.1.1 Wahrscheinlichkeiten versus Amplituden

Für die Wahrscheinlichkeiten gilt
 und und somit

Für die Amplituden gilt
 und somit (können negativ sein)

Die QuBitzustände können auch durch Vektoren dargestellt werden

p0,1
p0,1 ≥ 0 p0 + p1 = 1 p0,1 ∈ [0,1]

ψ0,1
ψ2

0 + ψ2
1 = 1 ψ0,1 ∈ [−1,1]

|0⟩ , |1⟩

|0⟩ = (1
0) |1⟩ = (0

1)
|ψ⟩ = ψ0 (1

0) + ψ1 (0
1) = (ψ0

ψ1)

Wdh.: 2.1.2 Ein QuBit als ein Kreis
 ist in der Ebene ein Kreis mit Radius 1ψ2

0 + ψ2
1 = 1 ψ0 − ψ1

Damit können wir die Amplituden wie folgt parametrisieren

Ein allgemeiner Zustand lautet dann

Insbesondere gilt

 und

ψ0 = cos θ , ψ1 = sin θ

|ψ(θ)⟩ = cos θ (1
0) + sin θ (0

1) = (cos θ
sin θ)

|ψ(0)⟩ = (1
0) |ψ (π

2)⟩ = (0
1)

Wdh.: 2.1.2 Ein QuBit als ein Kreis
Die möglichen Zustände eines QuBits liegen auf einem Kreis,

während die möglichen zustände eines probabilistischen Bits auf einer Geraden liegen

QuBit Probabilistisches Bit

Wdh.: 2.2 Ein Qubit messen
Ann: man hat den Zustand -> man kann nicht einfach messen

Born-Regel:
Misst man den Zustand , dann findet man mit
der Wahrscheinlichkeit das Ergebnis und mit
der Wahrscheinlichkeit das Ergebnis .

|ψ(θ)⟩ θ

|ψ⟩ = ψ0 |0⟩ + ψ1 |1⟩
ψ2

0 |0⟩
ψ2

1 |1⟩

Nach der Messung ist der ursprüngliche Zustand
verschwunden und es gibt nur noch oder .

Weitere Messungen an diesem System liefern keine zusätzlichen
Informationen mehr

|ψ⟩ = ψ0 |0⟩ + ψ1 |1⟩
|0⟩ |1⟩

Wdh.: 2.2 Ein Qubit messen

Weiterer Unterschied zum probabilistischen Bit:

Das probabilistische Bits befindet sicher immer definitiv in einem der
Zustände, das QuBit nicht!

Das Ergebnis beim Münzwurf könnte prinzipiell vorhersagt werden, das
Ergebnis bei der Messung eines QuBits kann prinzipiell nicht vorhergesagt

werden - hier gibt es intrinsisch Zufall

Wdh.: 2.2 Ein Qubit messen

|ψ⟩ = ψ0 |0⟩ + ψ1 |1⟩ = cos θ |0⟩ + sin θ |1⟩

|ψ0 |2 = cos2 θ

|ψ1 |2 = sin2 θ

θ =
π
4

, −
π
4

,
3π
4

, −
3π
4

, . . .

Wdh.: 2.3 Qubits mit QUIRKY simulieren

• Draht (Einzellinie) entspricht nun einem QuBit mit Startzustand

• Eine Messung wird mit bezeichnet. Nach der Messung gibt es eine
Doppellinie (klassisches Bit).

|0⟩

Wdh.: 2.4 Operationen auf einem Qubit
NOT-Operation:

Linearität: Wir erweitern nun das Konzept der Linearität auf eine Operation auf QuBits

In Vektornotation lautet dies

Quantenmechanik: jede lineare Operation ist eine erlaubt QuBit Operation, solange
sie den QuBit-Raum (Kreis) auf sich selbst abbildet (wieder auf Kreis).

Für die NOT-Operation folgt:

oder

 NOT |0⟩ = |1⟩ NOT |1⟩ = |0⟩

M̂

M̂ |ψ⟩ = M̂ (ψ0 |0⟩ + ψ1 |1⟩) = ψ0M̂ |0⟩ + ψ1M̂ |1⟩

M̂ (ψ0

ψ1) = M̂ (ψ0 (1
0) + ψ1 (0

1)) = ψ0M̂ (1
0) + ψ1M̂ (0

1)

NOT (ψ0 |0⟩ + ψ1 |1⟩) = ψ0NOT |0⟩ + ψ1NOT |1⟩ = ψ0 |1⟩ + ψ1 |0⟩

NOT (ψ0

ψ1) = (ψ1

ψ0)

Wdh.: 2.4 Operationen auf einem Qubit

NOT-Operation: Spiegelung an der Winkelhalbierenden

Quirky:

Wdh.: 2.4 Operationen auf einem Qubit
 Spiegelung an der Achse: Z-Operation|0⟩

 Linearität:

̂Z | + ⟩ = | − ⟩ ̂Z | − ⟩ = | + ⟩

Spiegelung um |0> Achse

̂MAD(1/ 2(|0⟩ + |1⟩)) = 1/ 2 |0⟩ + 1/ 2(1/ 2 |0⟩ + |1⟩) = (1 + 2)/ 2 |0⟩ + 1/ 2 |1⟩

Wdh.: 2.4.1 Rotationen
Eine naheliegende Operation ist eine Drehung um den Winkel um den UrsprungÛ(θ) θ

In Vektornotation:

Darstellung als 2x2 Matrix

Û = (cos θ −sin θ
sin θ cos θ)

Wdh.: 2.4.1 Rotationen

Beachte Rotation um 90 Grad ist keine Spiegelung

NOT |0⟩ = |1⟩ Û (π
2) |0⟩ = |1⟩

NOT |1⟩ = |0⟩ Û (π
2) |1⟩ = − |0⟩

Û (ψ0
ψ1) = (cos α −sin α

sin α cos α) (ψ0
ψ1) = (cos αψ0 − sin αψ1

sin αψ0 + cos αψ1)

Û (cos β
sin β) = (cos α cos β − sin α sin β

sin α cos β + cos α sin β) = (cos(α + β)
sin(α + β))

Wdh.: 2.4.1 Rotationen
Quirky:

Test:

Wdh.: 2.4.1 Rotationen

Û (0
1) = (cos α −sin α

sin α cos α) (0
1) = (−sin α

cos α) =

1
2

3
2

→
1
4
3
4

cos2 θ = 0.42 ⇒ cos θ = 0.648074 ⇒ θ = 0.865743 = π/(3.629)

Wdh.: 2.4.2 Zusammensetzen von
Quantenoperationen

Werden zwei lineare Operationen und hintereinander ausgeführt, so gilt

d.h. die zusammengesetzte Operation ist auch linear.

Analog: drei oder mehr Operationen

Alle bisher behandelten Operation sind invertierbar:
Zu jeder Operation gibt es eine inverse Operation , so dass gilt:

,
wobei der Identität entspricht: und

Beispiele:

M̂ N̂
N̂(M̂ |ψ⟩) = N̂ (ψ0M̂ |0⟩ + ψ1M̂ |1⟩) = ψ0N̂M̂ |0⟩ + ψ1N̂M̂ |1⟩

N̂ M̂

M̂ M̂−1

M̂−1M̂ = M̂M̂−1 = 1̂
1̂ 1̂ |0⟩ = |0⟩ 1̂ |1⟩ = |1⟩

NOT−1 = NOT R̂(θ)−1 = R̂(−θ) NM(NM)−1 = NMM−1N−1
(NM)−1 = M−1N−1

Wdh.: 2.4.2 Zusammensetzen von
Quantenoperationen

Alle Operationen auf QuBits sind invertierbar und damit reversibel

Bei probabilistischen Bits war das nicht der Fall -

vergleiche: probabilistischer Flip: ̂F (1
2)

Wdh.: 2.4.3 Spiegelungen
Jede QuBit-Operation ist entweder eine Rotation oder eine Spiegelung (Reflektion)

Bisher kennen wir 2 Spiegelungen: und NOT̂Z

Man findet: die allgemeinste Spiegelung (Reflektion) hat die Form:

̂V(θ)
̂V(θ) = NOT Û(θ) = Û(−θ) NOT

Û(θ)NOTÛ(−θ) = (cos θ −sin θ
sin θ cos θ) (0 1

1 0) (cos θ sin θ
−sin θ cos θ) = (cos θ −sin θ

sin θ cos θ) (−sin θ cos θ
cos θ sin θ) = (−2 cos θ sin θ cos2 θ − sin2 θ

cos2θ − sin2 θ 2 cos θ sin θ)

; θ = π/4 ⇒ (−1 0
0 1) θ = − π/4 ⇒ (1 0

0 −1)
NOTÛ(−θ) = (0 1

1 0) (cos θ −sin θ
sin θ cos θ) = (sin θ cos θ

cos θ −sin θ) θ = π/2 ⇒ (1 0
0 −1)

Wdh.: 2.4.3 Spiegelungen
Eine sehr nützliche QuBit-Operation ist die Hadamard Transformation

(Jacques Hadamard)

Auf die Basiszustände ergibt dies

Ĥ

Ĥ = ̂V (π
4) = NOT Û (π

4)
Ĥ |0⟩ =

1

2
(|0⟩ + |1⟩) =: | + ⟩

Ĥ |1⟩ =
1

2
(|0⟩ − |1⟩) =: | − ⟩

Spiegelung an der Achse
θ =

π
8

Wdh.: 2.5 Quantenzustände unterscheiden
Alice schaut einem Wettbewerb mit Eselrobotern zu:
Notiz: 1 wenn Lieblingsroboter gewinnt, 0 wenn nicht

Oder Kodierung dieser Information in einem QuBit
QuBit in Zustand wenn Lieblingsroboter gewinnt, sonst

Sie wendet dazu entweder oder auf an.

Dann gibt Alice dieses QuBit an Bob
Kann Bob nur anhand des QuBits raten, welchen Bitwert (0 oder 1) Alice kodiert hat?
Wäre es besser, wenn Bob vorher eine Rotation/Spiegelung auf das QuBit anwenden

kann?

|ψ(θ1)⟩ |ψ(θ0)⟩
Û(θ0) Û(θ1) |0⟩

Wdh.: 2.5 Quantenzustände unterscheiden

Û (−
π
4) | + ⟩ = |0⟩ Û (−

π
4) | − ⟩ = − |1⟩

Wdh.: 2.5 Quantenzustände unterscheiden

Wdh.: 2.5 Quantenzustände unterscheiden

Wdh.: 2.5 Quantenzustände unterscheiden

Wdh.: 2.5.1 Mysteryoperation 2
Quantentomographie:

Versuche Zustand durch Messungen und Manipulationen zu bestimmen

ψ2
1 = 0.117 ψ2

2 = 0.883

Ergebnis:

Wdh.: 2.5.1 Mysteryoperation 2
Quantentomographie:

Versuche Zustand durch Messungen und Manipulationen zu bestimmen

ψ2
1 = 0.117 ψ2

2 = 0.883

Ergebnis: ⇒ θ = ± 0.3491 = ± π/9

Rotiere um +π/9 Rotiere um −π/9
 ⇒ θ = + π/9

M̂ |0⟩ = (
cos π

9

sin π
9

)

Wdh.: 2.5.1 Mysteryoperation 2
Quantentomographie: Versuche einen Zustand durch

Messungen und Manipulationen zu bestimmen M̂ |0⟩ = (
cos π

9

sin π
9

)

⇒ θ′￼= ± 1.2217 = ± 7π
18

= ± (π
2

−
π
9)

Rotiere um
7π
18

 ⇒ θ′￼= −
7π
18

M̂ |1⟩ =
cos 7π

18

−sin 7π
18

M̂ =
cos π

9 cos 7π
18

sin π
9 −sin 7π

18

 3.1. 2 Probabilistische Bits
2 Münzen können vier Zustände haben

 3.1. 2 Probabilistische Bits
2 Münzen können vier Zustände haben

00 01 10 11

 3.1. 2 Probabilistische Bits
2 Münzen können vier Zustände haben

00 01 10 11

Das probabilistische Bit für die 2-Münzenzustände ist gegeben durch

 3.1. 2 Probabilistische Bits
2 Münzen können vier Zustände haben

00 01 10 11

Das probabilistische Bit für die 2-Münzenzustände ist gegeben durch

p00
p01
p10
p11

 3.1. 2 Probabilistische Bits
2 Münzen können vier Zustände haben

00 01 10 11

Das probabilistische Bit für die 2-Münzenzustände ist gegeben durch

p00
p01
p10
p11

=

p0 ⋅ p0
p0 ⋅ p1
p1 ⋅ p0
p1 ⋅ p1

 3.1. 2 Probabilistische Bits
2 Münzen können vier Zustände haben

00 01 10 11

Das probabilistische Bit für die 2-Münzenzustände ist gegeben durch

 mit

p00
p01
p10
p11

=

p0 ⋅ p0
p0 ⋅ p1
p1 ⋅ p0
p1 ⋅ p1

0 ≤ pij ≤ 1

 3.1. 2 Probabilistische Bits
2 Münzen können vier Zustände haben

00 01 10 11

Das probabilistische Bit für die 2-Münzenzustände ist gegeben durch

 mit und

p00
p01
p10
p11

=

p0 ⋅ p0
p0 ⋅ p1
p1 ⋅ p0
p1 ⋅ p1

0 ≤ pij ≤ 1 p00 + p01 + p10 + p11 = 1

 3.1. 2 Probabilistische Bits

Das probabilistische Bit für die 2-Münzenzustände ist gegeben durch

 mit und

p00
p01
p10
p11

=

p0 ⋅ p0
p0 ⋅ p1
p1 ⋅ p0
p1 ⋅ p1

0 ≤ pij ≤ 1 p00 + p01 + p10 + p11 = 1

 3.1. 2 Probabilistische Bits

Das probabilistische Bit für die 2-Münzenzustände ist gegeben durch

 mit und

Alternativ schreiben wir diesen Zustand als

p00
p01
p10
p11

=

p0 ⋅ p0
p0 ⋅ p1
p1 ⋅ p0
p1 ⋅ p1

0 ≤ pij ≤ 1 p00 + p01 + p10 + p11 = 1

p00[00] + p01[01] + p10[10] + p11[11]

 3.1. 2 Probabilistische Bits

Das probabilistische Bit für die 2-Münzenzustände ist gegeben durch

 mit und

Alternativ schreiben wir diesen Zustand als

mit der Identifikation

p00
p01
p10
p11

=

p0 ⋅ p0
p0 ⋅ p1
p1 ⋅ p0
p1 ⋅ p1

0 ≤ pij ≤ 1 p00 + p01 + p10 + p11 = 1

p00[00] + p01[01] + p10[10] + p11[11]

[00] =

1
0
0
0

, [01] =

0
1
0
0

, [10] =

0
0
1
0

, [11] =

0
0
0
1

,

 3.1. 2 Probabilistische Bits

Das probabilistische Bit für die 2-Münzenzustände ist gegeben durch

 mit und

Alternativ schreiben wir diesen Zustand als

mit der Identifikation

Kompakte Notation

p00
p01
p10
p11

=

p0 ⋅ p0
p0 ⋅ p1
p1 ⋅ p0
p1 ⋅ p1

0 ≤ pij ≤ 1 p00 + p01 + p10 + p11 = 1

p00[00] + p01[01] + p10[10] + p11[11]

[00] =

1
0
0
0

, [01] =

0
1
0
0

, [10] =

0
0
1
0

, [11] =

0
0
0
1

,

1
2

[00] + 0[01] + 0[10] +
1
2

[11] =
1
2

[00] +
1
2

[11]

 3.1. 2 Probabilistische Bits

Quirky: Quest 3 -> 2 Bits

 3.1.1 Beide Bits messen

 3.1.1 Beide Bits messen

[00]

 3.1.1 Beide Bits messen

[00] [11]

 3.1.1 Beide Bits messen

Beispiel: beim Messen des Zustandes

1/2 [00] + 1/2 [11]

erhalten wir [00] und [11] mit jeweils der Wahrscheinlichkeit 50%

 3.1.1 Beide Bits messen

Beispiel: beim Messen des Zustandes

1/2 [00] + 1/2 [11]

erhalten wir [00] und [11] mit jeweils der Wahrscheinlichkeit 50%

Misst man bei diesem besonderen Zustand nur das erste Bit, dann kennt man
automatisch auch den Wert des zweiten Bits,

 3.1.1 Beide Bits messen

Beispiel: beim Messen des Zustandes

1/2 [00] + 1/2 [11]

erhalten wir [00] und [11] mit jeweils der Wahrscheinlichkeit 50%

Misst man bei diesem besonderen Zustand nur das erste Bit, dann kennt man
automatisch auch den Wert des zweiten Bits,

d.h. die beiden EinzelBits sind perfekt korreliert

 3.1.2 Lokale Operationen
Lokale Operation: man macht auf den einzelnen Bits EinBit Operationen

 3.1.2 Lokale Operationen
Lokale Operation: man macht auf den einzelnen Bits EinBit Operationen
Globale Operation: man macht gleichzeitig auf allen Bits eine Operation

 3.1.2 Lokale Operationen
Lokale Operation: man macht auf den einzelnen Bits EinBit Operationen
Globale Operation: man macht gleichzeitig auf allen Bits eine Operation

Beispiel für lokale Operation (Wirkung auf deterministisches Bit):

 3.1.2 Lokale Operationen
Lokale Operation: man macht auf den einzelnen Bits EinBit Operationen
Globale Operation: man macht gleichzeitig auf allen Bits eine Operation

Beispiel für lokale Operation (Wirkung auf deterministisches Bit):

 3.1.2 Lokale Operationen
Lokale Operation: man macht auf den einzelnen Bits EinBit Operationen
Globale Operation: man macht gleichzeitig auf allen Bits eine Operation

Beispiel für lokale Operation (Wirkung auf deterministisches Bit):

 3.1.2 Lokale Operationen
Lokale Operation: man macht auf den einzelnen Bits EinBit Operationen
Globale Operation: man macht gleichzeitig auf allen Bits eine Operation

Beispiel für lokale Operation (Wirkung auf deterministisches Bit):

Beispiel für lokale Operation (Wirkung auf probabilistisches Bit):

 3.1.2 Lokale Operationen
Lokale Operation: man macht auf den einzelnen Bits EinBit Operationen
Globale Operation: man macht gleichzeitig auf allen Bits eine Operation

Beispiel für lokale Operation (Wirkung auf deterministisches Bit):

Beispiel für lokale Operation (Wirkung auf probabilistisches Bit):

 3.1.2 Lokale Operationen
Lokale Operation: man macht auf den einzelnen Bits EinBit Operationen
Globale Operation: man macht gleichzeitig auf allen Bits eine Operation

Beispiel für lokale Operation (Wirkung auf deterministisches Bit):

Beispiel für lokale Operation (Wirkung auf probabilistisches Bit):

 3.1.2 Lokale Operationen

 3.1.2 Lokale Operationen

 3.1.2 Lokale Operationen

 3.1.2 Lokale Operationen

Wdh: und R̂(r)[0] = [0] R̂(r)[1] = r[0] + (1 − r)[1]

 3.1.2 Lokale Operationen

Wdh: und

Damit erhalten wir für die lokalen Operationen

R̂(r)[0] = [0] R̂(r)[1] = r[0] + (1 − r)[1]

R̂(r)1[00] =
R̂(r)1[01] =
R̂(r)1[10] =
R̂(r)1[11] =

 3.1.2 Lokale Operationen

Wdh: und

Damit erhalten wir für die lokalen Operationen

R̂(r)[0] = [0] R̂(r)[1] = r[0] + (1 − r)[1]

R̂(r)1[00] = [00]
R̂(r)1[01] =
R̂(r)1[10] =
R̂(r)1[11] =

 3.1.2 Lokale Operationen

Wdh: und

Damit erhalten wir für die lokalen Operationen

R̂(r)[0] = [0] R̂(r)[1] = r[0] + (1 − r)[1]

R̂(r)1[00] = [00]
R̂(r)1[01] = [01]

R̂(r)1[10] =
R̂(r)1[11] =

 3.1.2 Lokale Operationen

Wdh: und

Damit erhalten wir für die lokalen Operationen

R̂(r)[0] = [0] R̂(r)[1] = r[0] + (1 − r)[1]

R̂(r)1[00] = [00]
R̂(r)1[01] = [01]

R̂(r)1[10] = r[00] + (1 − r)[10]
R̂(r)1[11] =

 3.1.2 Lokale Operationen

Wdh: und

Damit erhalten wir für die lokalen Operationen

R̂(r)[0] = [0] R̂(r)[1] = r[0] + (1 − r)[1]

R̂(r)1[00] = [00]
R̂(r)1[01] = [01]

R̂(r)1[10] = r[00] + (1 − r)[10]
R̂(r)1[11] = r[01] + (1 − r)[11]

 3.1.2 Lokale Operationen

Wdh: und

Damit erhalten wir für die lokalen Operationen

R̂(r)[0] = [0] R̂(r)[1] = r[0] + (1 − r)[1]

R̂(r)1[00] = [00]
R̂(r)1[01] = [01]

R̂(r)1[10] = r[00] + (1 − r)[10]
R̂(r)1[11] = r[01] + (1 − r)[11]

Beispiel: R̂(1/3)1[11]

 3.1.2 Lokale Operationen

Wdh: und

Damit erhalten wir für die lokalen Operationen

R̂(r)[0] = [0] R̂(r)[1] = r[0] + (1 − r)[1]

R̂(r)1[00] = [00]
R̂(r)1[01] = [01]

R̂(r)1[10] = r[00] + (1 − r)[10]
R̂(r)1[11] = r[01] + (1 − r)[11]

Beispiel: R̂(1/3)1[11] =
1
3

[01] +
2
3

[11]

 3.1.2 Lokale Operationen

Wdh: und

Damit erhalten wir für die lokalen Operationen

R̂(r)[0] = [0] R̂(r)[1] = r[0] + (1 − r)[1]

R̂(r)1[00] = [00]
R̂(r)1[01] = [01]

R̂(r)1[10] = r[00] + (1 − r)[10]
R̂(r)1[11] = r[01] + (1 − r)[11]

Beispiel: R̂(1/3)1[11] =
1
3

[01] +
2
3

[11]

 3.1.2 Lokale Operationen

R̂(r)1[00] = [00]
R̂(r)1[01] = [01]

R̂(r)1[10] = r[00] + (1 − r)[10]
R̂(r)1[11] = r[01] + (1 − r)[11]

 3.1.2 Lokale Operationen

R̂(r)1[00] = [00]
R̂(r)1[01] = [01]

R̂(r)1[10] = r[00] + (1 − r)[10]
R̂(r)1[11] = r[01] + (1 − r)[11]

R̂(r)2[00] = [00]
R̂(r)2[01] = r[00] + (1 − r)[01]

R̂(r)2[10] = [10]
R̂(r)1[11] = r[01] + (1 − r)[11]

 3.1.2 Lokale Operationen

R̂(r)1[00] = [00]
R̂(r)1[01] = [01]

R̂(r)1[10] = r[00] + (1 − r)[10]
R̂(r)1[11] = r[01] + (1 − r)[11]

R̂(r)2[00] = [00]
R̂(r)2[01] = r[00] + (1 − r)[01]

R̂(r)2[10] = [10]
R̂(r)1[11] = r[01] + (1 − r)[11]

 3.1.2 Lokale Operationen

R̂(r)1[00] = [00]
R̂(r)1[01] = [01]

R̂(r)1[10] = r[00] + (1 − r)[10]
R̂(r)1[11] = r[01] + (1 − r)[11]

R̂(1/3)[1] =
1
3

[0] +
2
3

[1]

R̂(r)2[00] = [00]
R̂(r)2[01] = r[00] + (1 − r)[01]

R̂(r)2[10] = [10]
R̂(r)1[11] = r[01] + (1 − r)[11]

 3.1.2 Lokale Operationen

R̂(r)1[00] = [00]
R̂(r)1[01] = [01]

R̂(r)1[10] = r[00] + (1 − r)[10]
R̂(r)1[11] = r[01] + (1 − r)[11]

R̂(1/3)[1] =
1
3

[0] +
2
3

[1]

(1
3

[0] +
2
3

[1]) (1
3

[0] +
2
3

[1]) =
1
9

[00] +
2
9

([01] + [10]) +
4
9

[11]

R̂(r)2[00] = [00]
R̂(r)2[01] = r[00] + (1 − r)[01]

R̂(r)2[10] = [10]
R̂(r)1[11] = r[01] + (1 − r)[11]

 3.1.3 Nur ein Bit messen
Betrachte den allgemeinen Zustand

p00[00] + p01[01] + p10[10] + p11[11]

 3.1.3 Nur ein Bit messen
Betrachte den allgemeinen Zustand

p00[00] + p01[01] + p10[10] + p11[11]

 3.1.3 Nur ein Bit messen
Mit Quirky kann man auch einzelne Bits messen

 3.1.4 Der Zustand des anderen Bit
Wenn ein Bit gemessen wurde, dann befindet sich dies nach der Messung in einem

deterministischen Zustand, aber was ist mit dem anderen Bit?

 3.1.4 Der Zustand des anderen Bit
Wenn ein Bit gemessen wurde, dann befindet sich dies nach der Messung in einem

deterministischen Zustand, aber was ist mit dem anderen Bit?

Das hängt vom Zustand ab!

 3.1.4 Der Zustand des anderen Bit
Wenn ein Bit gemessen wurde, dann befindet sich dies nach der Messung in einem

deterministischen Zustand, aber was ist mit dem anderen Bit?

Das hängt vom Zustand ab!

Misst man das erste Bit von
1
2

[10] +
1
2

[11]

 3.1.4 Der Zustand des anderen Bit
Wenn ein Bit gemessen wurde, dann befindet sich dies nach der Messung in einem

deterministischen Zustand, aber was ist mit dem anderen Bit?

Das hängt vom Zustand ab!

Misst man das erste Bit von , dann erhält man mit Wahrscheinlichkeit

das Ergebnis

1
2

[10] +
1
2

[11]
1
2

+
1
2

= 1 [1]

 3.1.4 Der Zustand des anderen Bit
Wenn ein Bit gemessen wurde, dann befindet sich dies nach der Messung in einem

deterministischen Zustand, aber was ist mit dem anderen Bit?

Das hängt vom Zustand ab!

Misst man das erste Bit von , dann erhält man mit Wahrscheinlichkeit

das Ergebnis , das zweite Bit ist weiter unbestimmt

1
2

[10] +
1
2

[11]
1
2

+
1
2

= 1 [1]

 3.1.4 Der Zustand des anderen Bit
Wenn ein Bit gemessen wurde, dann befindet sich dies nach der Messung in einem

deterministischen Zustand, aber was ist mit dem anderen Bit?

Das hängt vom Zustand ab!

Misst man das erste Bit von , dann erhält man mit Wahrscheinlichkeit

das Ergebnis , das zweite Bit ist weiter unbestimmt und befindet sich

nach der Messeng des ersten im Zustand

1
2

[10] +
1
2

[11]
1
2

+
1
2

= 1 [1]
1
2

[0] +
1
2

[1]

 3.1.4 Der Zustand des anderen Bit
Wenn ein Bit gemessen wurde, dann befindet sich dies nach der Messung in einem

deterministischen Zustand, aber was ist mit dem anderen Bit?

Das hängt vom Zustand ab!

Misst man das erste Bit von , dann erhält man mit Wahrscheinlichkeit

das Ergebnis , das zweite Bit ist weiter unbestimmt und befindet sich

nach der Messeng des ersten im Zustand

Misst man das erste Bit von

1
2

[10] +
1
2

[11]
1
2

+
1
2

= 1 [1]
1
2

[0] +
1
2

[1]

p00[00] + p01[01] + p10[10] + p11[11]

 3.1.4 Der Zustand des anderen Bit
Wenn ein Bit gemessen wurde, dann befindet sich dies nach der Messung in einem

deterministischen Zustand, aber was ist mit dem anderen Bit?

Das hängt vom Zustand ab!

Misst man das erste Bit von , dann erhält man mit Wahrscheinlichkeit

das Ergebnis , das zweite Bit ist weiter unbestimmt und befindet sich

nach der Messeng des ersten im Zustand

Misst man das erste Bit von , dann erhält man mit
Wahrscheinlichkeit das Ergebnis

1
2

[10] +
1
2

[11]
1
2

+
1
2

= 1 [1]
1
2

[0] +
1
2

[1]

p00[00] + p01[01] + p10[10] + p11[11]
p01 + p11 [1]

 3.1.4 Der Zustand des anderen Bit
Wenn ein Bit gemessen wurde, dann befindet sich dies nach der Messung in einem

deterministischen Zustand, aber was ist mit dem anderen Bit?

Das hängt vom Zustand ab!

Misst man das erste Bit von , dann erhält man mit Wahrscheinlichkeit

das Ergebnis , das zweite Bit ist weiter unbestimmt und befindet sich

nach der Messeng des ersten im Zustand

Misst man das erste Bit von , dann erhält man mit
Wahrscheinlichkeit das Ergebnis , das zweite Bit ist weiter unbestimmt

1
2

[10] +
1
2

[11]
1
2

+
1
2

= 1 [1]
1
2

[0] +
1
2

[1]

p00[00] + p01[01] + p10[10] + p11[11]
p01 + p11 [1]

 3.1.4 Der Zustand des anderen Bit
Wenn ein Bit gemessen wurde, dann befindet sich dies nach der Messung in einem

deterministischen Zustand, aber was ist mit dem anderen Bit?

Das hängt vom Zustand ab!

Misst man das erste Bit von , dann erhält man mit Wahrscheinlichkeit

das Ergebnis , das zweite Bit ist weiter unbestimmt und befindet sich

nach der Messeng des ersten im Zustand

Misst man das erste Bit von , dann erhält man mit
Wahrscheinlichkeit das Ergebnis , das zweite Bit ist weiter unbestimmt und

befindet sich nach der Messung des ersten im Zustand

1
2

[10] +
1
2

[11]
1
2

+
1
2

= 1 [1]
1
2

[0] +
1
2

[1]

p00[00] + p01[01] + p10[10] + p11[11]
p01 + p11 [1]

p10

p10 + p11
[0] +

p11

p10 + p11
[1]

 3.1.4 Der Zustand des anderen Bit
Wenn ein Bit gemessen wurde, dann befindet sich dies nach der Messung in einem

deterministischen Zustand, aber was ist mit dem anderen Bit?

Das hängt vom Zustand ab!

Misst man das erste Bit von , dann erhält man mit Wahrscheinlichkeit

das Ergebnis , das zweite Bit ist weiter unbestimmt und befindet sich

nach der Messeng des ersten im Zustand

Misst man das erste Bit von , dann erhält man mit
Wahrscheinlichkeit das Ergebnis , das zweite Bit ist weiter unbestimmt und

befindet sich nach der Messung des ersten im Zustand

Durch die Summe muss dividiert werden, damit die Summe der
Wahrscheinlichkeiten 1 bleibt!

1
2

[10] +
1
2

[11]
1
2

+
1
2

= 1 [1]
1
2

[0] +
1
2

[1]

p00[00] + p01[01] + p10[10] + p11[11]
p01 + p11 [1]

p10

p10 + p11
[0] +

p11

p10 + p11
[1]

p10 + p11

 3.1.4 Der Zustand des anderen Bit
Allgemein findet man

deterministisch

probabilistisch,
außer ein Koeffizient

Ist Null

 3.1.4 Der Zustand des anderen Bit
Allgemein findet man

 3.1.4 Der Zustand des anderen Bit
Allgemein findet man

Hier macht es keinen Unterschied ob man beide gleichzeitig misst, oder erst das eine
und dann das andere.

 3.1.4 Der Zustand des anderen Bit
Allgemein findet man

Hier macht es keinen Unterschied ob man beide gleichzeitig misst, oder erst das eine
und dann das andere.

Beispiel: das Ergebnis kann man mit der Wahrscheinlichkeit bestimmen [11] p11

 3.1.4 Der Zustand des anderen Bit
Allgemein findet man

Hier macht es keinen Unterschied ob man beide gleichzeitig misst, oder erst das eine
und dann das andere.

Beispiel: das Ergebnis kann man mit der Wahrscheinlichkeit bestimmen
Oder erst das erste Bit mit und dann das zweite mit der Wahrscheinlichkeit

 - das Produkt gibt wieder

[11] p11
p10 + p11p11

p10 + p11
p11

 3.1.4 Der Zustand des anderen Bit
Allgemein findet man

Hier macht es keinen Unterschied ob man beide gleichzeitig misst, oder erst das eine
und dann das andere.

Beispiel: das Ergebnis kann man mit der Wahrscheinlichkeit bestimmen
Oder erst das erste Bit mit und dann das zweite mit der Wahrscheinlichkeit

 - das Produkt gibt wieder

Oder erst das zweite Bit mit und dann das zweite mit der Wahrscheinlichkeit

 - das Produkt gibt wieder

[11] p11
p10 + p11p11

p10 + p11
p11

p01 + p11p11

p01 + p11
p11

 3.1.4 Der Zustand des anderen Bit

3
8

[00] +
1
8

[01] +
1
6

[10] +
2
6

[11]

26
48

[0] +
22
48

[1]

3
8

[00] +
1
6

[10],
3
8

>
1
6

⇒ [0] wahrscheinlicher

 3.1.5 Die SWAP Operation
Vertauscht die beiden Bits

 3.1.5 Die SWAP Operation
Vertauscht die beiden Bits

 3.1.5 Die SWAP Operation
Vertauscht die beiden Bits

oder kompakt:

 3.1.5 Die SWAP Operation
Vertauscht die beiden Bits

oder kompakt:

Mit Linearität erhalten wir:

 3.1.5 Die SWAP Operation
Vertauscht die beiden Bits

oder kompakt:

Mit Linearität erhalten wir:

 3.1.5 Die SWAP Operation
Vertauscht die beiden Bits

oder kompakt:

Mit Linearität erhalten wir:

 3.1.6 Die kontrollierte NOT Operation

Mit NOT und SWAP kann man einzelne Bits ändern oder zwei vertauschen,
aber die Bits interagieren nicht.

 3.1.6 Die kontrollierte NOT Operation
Mit NOT und SWAP kann man einzelne Bits ändern oder zwei vertauschen,
aber die Bits interagieren nicht.

Wir benötigen Operationen bei denen in Abhängigkeit von einem Bit, das andere Bit
verändern.

 3.1.6 Die kontrollierte NOT Operation
Mit NOT und SWAP kann man einzelne Bits ändern oder zwei vertauschen,
aber die Bits interagieren nicht.

Wir benötigen Operationen bei denen in Abhängigkeit von einem Bit, das andere Bit
verändern.

CNOT: kontrollierte NOT Operation

 3.1.6 Die kontrollierte NOT Operation
Mit NOT und SWAP kann man einzelne Bits ändern oder zwei vertauschen,
aber die Bits interagieren nicht.

Wir benötigen Operationen bei denen in Abhängigkeit von einem Bit, das andere Bit
verändern.

CNOT: kontrollierte NOT Operation
- Wenn das Steuerbit ist, dann wird das Zielbit geflippt (NOT) [1]

 3.1.6 Die kontrollierte NOT Operation
Mit NOT und SWAP kann man einzelne Bits ändern oder zwei vertauschen,
aber die Bits interagieren nicht.

Wir benötigen Operationen bei denen in Abhängigkeit von einem Bit, das andere Bit
verändern.

CNOT: kontrollierte NOT Operation
- Wenn das Steuerbit ist, dann wird das Zielbit geflippt (NOT)
- Wenn das Steuerbit ist, dann bleibt das Zielbit gleich (IDENTITÄT)

[1]
[0]

 3.1.6 Die kontrollierte NOT Operation
Mit NOT und SWAP kann man einzelne Bits ändern oder zwei vertauschen,
aber die Bits interagieren nicht.

Wir benötigen Operationen bei denen in Abhängigkeit von einem Bit, das andere Bit
verändern.

CNOT: kontrollierte NOT Operation
- Wenn das Steuerbit ist, dann wird das Zielbit geflippt (NOT)
- Wenn das Steuerbit ist, dann bleibt das Zielbit gleich (IDENTITÄT)
- Das Steuerbit ändert sich nicht

[1]
[0]

 3.1.6 Die kontrollierte NOT Operation
Mit NOT und SWAP kann man einzelne Bits ändern oder zwei vertauschen,
aber die Bits interagieren nicht.

Wir benötigen Operationen bei denen in Abhängigkeit von einem Bit, das andere Bit
verändern.

CNOT: kontrollierte NOT Operation
- Wenn das Steuerbit ist, dann wird das Zielbit geflippt (NOT)
- Wenn das Steuerbit ist, dann bleibt das Zielbit gleich (IDENTITÄT)
- Das Steuerbit ändert sich nicht

[1]
[0]

1. Bit: Steuerbit

2. Bit: Zielbit

1 → 2

 3.1.6 Die kontrollierte NOT Operation
Mit NOT und SWAP kann man einzelne Bits ändern oder zwei vertauschen,
aber die Bits interagieren nicht.

Wir benötigen Operationen bei denen in Abhängigkeit von einem Bit, das andere Bit
verändern.

CNOT: kontrollierte NOT Operation
- Wenn das Steuerbit ist, dann wird das Zielbit geflippt (NOT)
- Wenn das Steuerbit ist, dann bleibt das Zielbit gleich (IDENTITÄT)
- Das Steuerbit ändert sich nicht

[1]
[0]

1. Bit: Steuerbit

2. Bit: Zielbit

1 → 2

 3.1.6 Die kontrollierte NOT Operation
Mit NOT und SWAP kann man einzelne Bits ändern oder zwei vertauschen,
aber die Bits interagieren nicht.

Wir benötigen Operationen bei denen in Abhängigkeit von einem Bit, das andere Bit
verändern.

CNOT: kontrollierte NOT Operation
- Wenn das Steuerbit ist, dann wird das Zielbit geflippt (NOT)
- Wenn das Steuerbit ist, dann bleibt das Zielbit gleich (IDENTITÄT)
- Das Steuerbit ändert sich nicht

[1]
[0]

1. Bit: Steuerbit

2. Bit: Zielbit

1 → 2

 3.1.6 Die kontrollierte NOT Operation
Man kann sich CNOT auch als Addition vorstellen

 3.1.6 Die kontrollierte NOT Operation
Man kann sich CNOT auch als Addition vorstellen

Die beiden Bits werden addiert
0,1,1,2

 3.1.6 Die kontrollierte NOT Operation
Man kann sich CNOT auch als Addition vorstellen

Die beiden Bits werden addiert
0,1,1,2

Dann modulo 2
0,1,1,0

 3.1.6 Die kontrollierte NOT Operation
Man kann sich CNOT auch als Addition vorstellen

Die beiden Bits werden addiert
0,1,1,2

Dann modulo 2
0,1,1,0

Das 2. Bit im Ergebnis entspricht dieser Operation

 3.1.6 Die kontrollierte NOT Operation
Man kann sich CNOT auch als Addition vorstellen

Die beiden Bits werden addiert
0,1,1,2

Dann modulo 2
0,1,1,0

Das 2. Bit im Ergebnis entspricht dieser Operation

Formal kann man schreiben

 3.1.6 Die kontrollierte NOT Operation
Man kann sich CNOT auch als Addition vorstellen

Die beiden Bits werden addiert
0,1,1,2

Dann modulo 2
0,1,1,0

Das 2. Bit im Ergebnis entspricht dieser Operation

Formal kann man schreiben

 3.1.6 Die kontrollierte NOT Operation
Man kann sich CNOT auch als Addition vorstellen

Die beiden Bits werden addiert
0,1,1,2

Dann modulo 2
0,1,1,0

Das 2. Bit im Ergebnis entspricht dieser Operation

Formal kann man schreiben

Die Modulo 2 Operation kann man auch als
XOR (exklusives Oder - Entweder oder)
bezeichnen

 3.1.6 Die kontrollierte NOT Operation

 3.1.6 Die kontrollierte NOT Operation

 3.1.6 Die kontrollierte NOT Operation
Mit Quirky: dot = Steuerbit; Kreuz = Zielbit

 3.1.6 Die kontrollierte NOT Operation
Mit Quirky: dot = Steuerbit; Kreuz = Zielbit

 3.1.6 Die kontrollierte NOT Operation
Mit Quirky: dot = Steuerbit; Kreuz = Zielbit

C1→2 C2→1

 3.1.6 Die kontrollierte NOT Operation
Mit Quirky: dot = Steuerbit; Kreuz = Zielbit

C1→2 C2→1

 3.1.7 Produkt-Verteilungen
Wie erhält man 2 Bit Zustände aus Einzelbits?

 3.1.7 Produkt-Verteilungen
Wie erhält man 2 Bit Zustände aus Einzelbits?

Starte mit und q = q0[0] + q1[1] r = r0[0] + r1[1]

 3.1.7 Produkt-Verteilungen
Wie erhält man 2 Bit Zustände aus Einzelbits?

Starte mit und

Damit findet man

q = q0[0] + q1[1] r = r0[0] + r1[1]

 3.1.7 Produkt-Verteilungen
Wie erhält man 2 Bit Zustände aus Einzelbits?

Starte mit und

Damit findet man

q = q0[0] + q1[1] r = r0[0] + r1[1]

Äquivalent: mit:

 3.1.7 Produkt-Verteilungen
Wie erhält man 2 Bit Zustände aus Einzelbits?

Starte mit und

Damit findet man

q = q0[0] + q1[1] r = r0[0] + r1[1]

Äquivalent: mit:

Besondere Eigenschaft: die beiden Bits sind unabhängig, d.h. beim Messen von einem
Bit, erhält man keine Information über das andere Bit

 3.1.7 Produkt-Verteilungen
Wie erhält man 2 Bit Zustände aus Einzelbits?

Starte mit und

Damit findet man

q = q0[0] + q1[1] r = r0[0] + r1[1]

Äquivalent: mit:

Besondere Eigenschaft: die beiden Bits sind unabhängig, d.h. beim Messen von einem
Bit, erhält man keine Information über das andere Bit

 3.1.7 Produkt-Verteilungen
Wie erhält man 2 Bit Zustände aus Einzelbits?

Starte mit und

Damit findet man

q = q0[0] + q1[1] r = r0[0] + r1[1]

Äquivalent: mit:

Besondere Eigenschaft: die beiden Bits sind unabhängig, d.h. beim Messen von einem
Bit, erhält man keine Information über das andere Bit

 3.1.7 Produkt-Verteilungen
Für diese unabhängigen Zuständen führt man eine neue Notation ein, das Tensorprodukt ⊗

 3.1.7 Produkt-Verteilungen
Für diese unabhängigen Zuständen führt man eine neue Notation ein, das Tensorprodukt ⊗

Ausgehend von

 3.1.7 Produkt-Verteilungen
Für diese unabhängigen Zuständen führt man eine neue Notation ein, das Tensorprodukt ⊗

Ausgehend von

Findet man

 3.1.7 Produkt-Verteilungen
Für diese unabhängigen Zuständen führt man eine neue Notation ein, das Tensorprodukt ⊗

Ausgehend von

Findet man

 3.1.7 Produkt-Verteilungen
Für diese unabhängigen Zuständen führt man eine neue Notation ein, das Tensorprodukt ⊗

Ausgehend von

Findet man

Dies war unser ursprüngliche 2 Bit Zustand von oben

 3.1.7 Produkt-Verteilungen
Für diese unabhängigen Zuständen führt man eine neue Notation ein, das Tensorprodukt ⊗

Ausgehend von

Findet man

Dies war unser ursprüngliche 2 Bit Zustand von oben

In Vektornotation:

 3.1.7 Produkt-Verteilungen
Wir hatten vorhin

 3.1.7 Produkt-Verteilungen
Wir hatten vorhin

 3.1.7 Produkt-Verteilungen
Wir hatten vorhin

 3.1.7 Produkt-Verteilungen

Das Tensorprodukt erlaubt kompakte Schreibweisen, z.B. von 1 Bit Operationen:

 3.1.7 Produkt-Verteilungen

Das Tensorprodukt erlaubt kompakte Schreibweisen, z.B. von 1 Bit Operationen:

 3.1.7 Produkt-Verteilungen

Das Tensorprodukt erlaubt kompakte Schreibweisen, z.B. von 1 Bit Operationen:

Derartige Zustände nennt man Produkt-Zustände oder Produkt-Verteilungen

 3.1.7 Produkt-Verteilungen

Das Tensorprodukt erlaubt kompakte Schreibweisen, z.B. von 1 Bit Operationen:

Derartige Zustände nennt man Produkt-Zustände oder Produkt-Verteilungen

Ist jeder 2-Bit Zustand ein Produktzustand?

 3.1.7 Produkt-Verteilungen

Das Tensorprodukt erlaubt kompakte Schreibweisen, z.B. von 1 Bit Operationen:

Derartige Zustände nennt man Produkt-Zustände oder Produkt-Verteilungen

Ist jeder 2-Bit Zustand ein Produktzustand?

Nein!

 3.1.8 Korrelierte Verteilungen

Es gibt auch 2-Bit Zustände, die nicht Produktzustände sind,
d.h. sie können nicht als geschrieben werden

Z.B.

Derartige Zustände nennt man korreliert

Misst man das erste Bit, dann kennt man automatisch den Wert des zweiten!

In diesem Fall: Zustand des 1. Bits = Zustand des 2. Bits (perfekt korrelierte Zustände)

[a] ⊗ [b]

1
2

[00] +
1
2

[11]

 3.1.8 Korrelierte Verteilungen
Konstruktion von mit Quirky

1
2

[00] +
1
2

[11]

 3.1.8 Korrelierte Verteilungen
Konstruktion von mit Quirky

1
2

[00] +
1
2

[11]

 3.1.8 Korrelierte Verteilungen
Konstruktion von mit Quirky

1
2

[00] +
1
2

[11]

 3.1.8 Korrelierte Verteilungen
Konstruktion von mit Quirky

1
2

[00] +
1
2

[11]

 3.1.8 Korrelierte Verteilungen
Test: ist ein Zustand

ein Produkt-Zustand oder ein korrelierter Zustand?

 3.1.8 Korrelierte Verteilungen
Test: ist ein Zustand

ein Produkt-Zustand oder ein korrelierter Zustand?

Berechne: Δ(p) = p00p11 − p01p10

 3.1.8 Korrelierte Verteilungen
Test: ist ein Zustand

ein Produkt-Zustand oder ein korrelierter Zustand?

Berechne: Δ(p) = p00p11 − p01p10

Für Produkt-Zustände erhält man immer ,
andernfalls, ist der Zustand korreliert.

Δ(p) = 0

 3.1.8 Korrelierte Verteilungen
Test: ist ein Zustand

ein Produkt-Zustand oder ein korrelierter Zustand?

Berechne: Δ(p) = p00p11 − p01p10

Für Produkt-Zustände erhält man immer ,
andernfalls, ist der Zustand korreliert.

Beispiel:

Δ(p) = 0

Δ (1
2

[00] +
1
2

[11])

 3.1.8 Korrelierte Verteilungen
Test: ist ein Zustand

ein Produkt-Zustand oder ein korrelierter Zustand?

Berechne: Δ(p) = p00p11 − p01p10

Für Produkt-Zustände erhält man immer ,
andernfalls, ist der Zustand korreliert.

Beispiel:

Δ(p) = 0

Δ (1
2

[00] +
1
2

[11]) =
1
2

1
2

− 0 =
1
4

 3.1.8 Korrelierte Verteilungen
Test: ist ein Zustand

ein Produkt-Zustand oder ein korrelierter Zustand?

Berechne: Δ(p) = p00p11 − p01p10

Für Produkt-Zustände erhält man immer ,
andernfalls, ist der Zustand korreliert.

Beispiel:

Beweis: jeder korrelierte Zustand liefert
(Siehe Skript)

Δ(p) = 0

Δ (1
2

[00] +
1
2

[11]) =
1
2

1
2

− 0 =
1
4

≠ 0

 3.1.8 Korrelierte Verteilungen

