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Wdh.: 2.1 Quantenbits
Bit: Informationseinheit eines klassischen Computers 

Realisierung: physikalisches System mit 2 Zuständen, die man  
zuverlässig unterscheiden kann 

Beispiel: Münze  -> beschrieben durch Mechanik 
Kondensator  -> beschrieben durch Elektromagnetismus 

Für sehr kleine Objekte - atomare Skala - gelten Mechanik oder 
Elektromagnetismus nicht mehr, und wir benötigen neue Theorien: 

Quantenmechanik, Quantenelektrodynamik   

Hier gibt es auch Systeme mit zwei möglichen Zuständen, z.B. der Spin eines 
Elektrons - eine Art Eigendrehimpuls des Elektrons, der nach oben oder nach 

unten oder nach einer Kombination (Superposition) aus oben oder unten 
zeigen kann! 

[0], [1], ,….. 

Dieses QuantenBit - QuBit ähnelt einem probabilistischem Bit  
- es gibt aber auch Unterschiede 

Wir diskutieren hier nur was man damit machen kann, nicht: 
Was ist der Hintergrund (Quantenmechanik)? 

Wie baut man sowas?

1

2
[0] +

1

2
[1]



Wdh.: 2.1.1 Wahrscheinlichkeiten versus Amplituden

QuBits ähneln probabilistischem Bit - es gibt zwei große Unterschiede: 
1. Wahrscheinlichlkeiten werden durch Amplituden ersetzt (können auch 

negativ oder komplex sein!) 
2.  Amplituden werden während dem Messen quadriert (Wahrscheinlichkeiten 

nicht) 

Die beiden möglichen Zustände eines QuBits werden  und  genannt. 

Der allgemeine Zustand eines QuBits  kann als Linearkombination 
(Superposition) dieser beiden Zustände geschrieben werden 

 

Vergleiche das probabilistische Bit 

 

Die Wahrscheinlichkeiten  wurden durch die Amplituden  ersetzt 
Die Basiszustände  durch 

|0⟩ |1⟩

|ψ⟩

|ψ⟩ = ψ0 |0⟩ + ψ1 |1⟩

(p0

p1) = p0 (1
0) + p1 (0

1) = p0[0] + p1[1]

p0,1 ψ0,1
[0] , [1] |0⟩ , |1⟩



Wdh.: 2.1.1 Wahrscheinlichkeiten versus Amplituden

Für die Wahrscheinlichkeiten  gilt 
 und  und somit  

Für die Amplituden  gilt  
 und somit  (können negativ sein) 

Die QuBitzustände  können auch durch Vektoren dargestellt werden 

      

p0,1
p0,1 ≥ 0 p0 + p1 = 1 p0,1 ∈ [0,1]

ψ0,1
ψ2

0 + ψ2
1 = 1 ψ0,1 ∈ [−1,1]

|0⟩ , |1⟩

|0⟩ = (1
0) |1⟩ = (0

1)
|ψ⟩ = ψ0 (1

0) + ψ1 (0
1) = (ψ0

ψ1)



Wdh.: 2.1.2 Ein QuBit als ein Kreis
 ist in der  Ebene ein Kreis mit Radius 1ψ2

0 + ψ2
1 = 1 ψ0 − ψ1

Damit können wir die Amplituden wie folgt parametrisieren 
 

Ein allgemeiner Zustand lautet dann 

 

Insbesondere gilt 

 und 

ψ0 = cos θ , ψ1 = sin θ

|ψ(θ)⟩ = cos θ (1
0) + sin θ (0

1) = (cos θ
sin θ )

|ψ(0)⟩ = (1
0) |ψ ( π

2 )⟩ = (0
1)



Wdh.: 2.1.2 Ein QuBit als ein Kreis
Die möglichen Zustände eines QuBits liegen auf einem Kreis, 

während die möglichen zustände eines probabilistischen Bits auf einer Geraden liegen

QuBit Probabilistisches Bit



Wdh.: 2.2 Ein Qubit messen
Ann: man hat den Zustand  -> man kann nicht einfach  messen 

Born-Regel:  
Misst man den Zustand , dann findet man mit  
der Wahrscheinlichkeit  das Ergebnis  und mit  
der Wahrscheinlichkeit  das Ergebnis . 

|ψ(θ)⟩ θ

|ψ⟩ = ψ0 |0⟩ + ψ1 |1⟩
ψ2

0 |0⟩
ψ2

1 |1⟩

Nach der Messung ist der ursprüngliche  Zustand  
verschwunden und es gibt nur noch  oder .  

Weitere Messungen an diesem System liefern keine zusätzlichen 
Informationen mehr

|ψ⟩ = ψ0 |0⟩ + ψ1 |1⟩
|0⟩ |1⟩



Wdh.: 2.2 Ein Qubit messen

Weiterer Unterschied zum probabilistischen Bit: 

Das probabilistische Bits befindet sicher immer definitiv in einem der 
Zustände, das QuBit nicht! 

Das Ergebnis beim Münzwurf könnte prinzipiell vorhersagt werden, das 
Ergebnis bei der Messung eines QuBits kann prinzipiell nicht vorhergesagt 

werden - hier gibt es intrinsisch Zufall



Wdh.: 2.2 Ein Qubit messen

|ψ⟩ = ψ0 |0⟩ + ψ1 |1⟩ = cos θ |0⟩ + sin θ |1⟩

|ψ0 |2 = cos2 θ

|ψ1 |2 = sin2 θ

θ =
π
4

, −
π
4

,
3π
4

, −
3π
4

, . . .



Wdh.: 2.3 Qubits mit QUIRKY simulieren

• Draht (Einzellinie) entspricht nun einem QuBit mit Startzustand  

• Eine Messung wird mit                          bezeichnet. Nach der Messung gibt es eine 
Doppellinie (klassisches Bit).   

|0⟩



Wdh.: 2.4 Operationen auf einem Qubit
NOT-Operation: 
                                     

Linearität: Wir erweitern nun das Konzept der Linearität auf eine Operation  auf QuBits   
  

   
        

In Vektornotation lautet dies     
    

   

Quantenmechanik: jede lineare Operation ist eine erlaubt QuBit Operation, solange 
sie den QuBit-Raum (Kreis) auf sich selbst abbildet (wieder auf Kreis).    

Für die NOT-Operation folgt: 
 

oder 

 

 

 NOT |0⟩ = |1⟩  NOT |1⟩ = |0⟩

M̂

M̂ |ψ⟩ = M̂ (ψ0 |0⟩ + ψ1 |1⟩) = ψ0M̂ |0⟩ + ψ1M̂ |1⟩

M̂ (ψ0

ψ1) = M̂ (ψ0 (1
0) + ψ1 (0

1)) = ψ0M̂ (1
0) + ψ1M̂ (0

1)

NOT (ψ0 |0⟩ + ψ1 |1⟩) = ψ0NOT |0⟩ + ψ1NOT |1⟩ = ψ0 |1⟩ + ψ1 |0⟩

NOT (ψ0

ψ1) = (ψ1

ψ0)



Wdh.: 2.4 Operationen auf einem Qubit

NOT-Operation: Spiegelung an der Winkelhalbierenden

Quirky:



Wdh.: 2.4 Operationen auf einem Qubit
 Spiegelung an der  Achse: Z-Operation|0⟩

 Linearität:

̂Z | + ⟩ = | − ⟩ ̂Z | − ⟩ = | + ⟩

Spiegelung um |0> Achse

̂MAD(1/ 2( |0⟩ + |1⟩)) = 1/ 2 |0⟩ + 1/ 2(1/ 2 |0⟩ + |1⟩) = (1 + 2)/ 2 |0⟩ + 1/ 2 |1⟩



Wdh.: 2.4.1 Rotationen
Eine naheliegende Operation ist eine Drehung  um den Winkel  um den UrsprungÛ(θ) θ

In Vektornotation:

Darstellung als 2x2 Matrix 

Û = (cos θ −sin θ
sin θ cos θ )



Wdh.: 2.4.1 Rotationen

Beachte Rotation um 90 Grad ist keine Spiegelung 

      

         

NOT |0⟩ = |1⟩ Û ( π
2 ) |0⟩ = |1⟩

NOT |1⟩ = |0⟩ Û ( π
2 ) |1⟩ = − |0⟩

Û (ψ0
ψ1) = (cos α −sin α

sin α cos α ) (ψ0
ψ1) = (cos αψ0 − sin αψ1

sin αψ0 + cos αψ1)

Û (cos β
sin β) = (cos α cos β − sin α sin β

sin α cos β + cos α sin β) = (cos(α + β)
sin(α + β))



Wdh.: 2.4.1 Rotationen
Quirky:

Test:



Wdh.: 2.4.1 Rotationen

Û (0
1) = (cos α −sin α

sin α cos α ) (0
1) = (−sin α

cos α ) =

1
2

3
2

→
1
4
3
4

cos2 θ = 0.42 ⇒ cos θ = 0.648074 ⇒ θ = 0.865743 = π/(3.629)



Wdh.: 2.4.2 Zusammensetzen von 
Quantenoperationen

Werden zwei lineare Operationen  und  hintereinander ausgeführt, so gilt 
 

d.h. die zusammengesetzte Operation   ist auch linear. 

Analog: drei oder mehr Operationen 

Alle bisher behandelten Operation sind invertierbar: 
Zu jeder Operation  gibt es eine inverse Operation , so dass gilt: 

, 
wobei  der Identität entspricht:  und   

Beispiele: 
                           

M̂ N̂
N̂(M̂ |ψ⟩) = N̂ (ψ0M̂ |0⟩ + ψ1M̂ |1⟩) = ψ0N̂M̂ |0⟩ + ψ1N̂M̂ |1⟩

N̂ M̂

M̂ M̂−1

M̂−1M̂ = M̂M̂−1 = 1̂
1̂ 1̂ |0⟩ = |0⟩ 1̂ |1⟩ = |1⟩

NOT−1 = NOT R̂(θ)−1 = R̂(−θ) NM(NM)−1 = NMM−1N−1
(NM)−1 = M−1N−1



Wdh.: 2.4.2 Zusammensetzen von 
Quantenoperationen

Alle Operationen auf QuBits sind invertierbar und damit reversibel 

Bei probabilistischen Bits war das nicht der Fall -  

vergleiche: probabilistischer Flip: ̂F ( 1
2 )



Wdh.: 2.4.3 Spiegelungen
Jede QuBit-Operation ist entweder eine Rotation oder eine Spiegelung (Reflektion) 

Bisher kennen wir 2 Spiegelungen:  und NOT̂Z

Man findet: die allgemeinste Spiegelung (Reflektion)  hat die Form: 
 

̂V(θ)
̂V(θ) = NOT Û(θ) = Û(−θ) NOT

Û(θ)NOTÛ(−θ) = (cos θ −sin θ
sin θ cos θ ) (0 1

1 0) ( cos θ sin θ
−sin θ cos θ) = (cos θ −sin θ

sin θ cos θ ) (−sin θ cos θ
cos θ sin θ) = (−2 cos θ sin θ cos2 θ − sin2 θ

cos2θ − sin2 θ 2 cos θ sin θ )

;  θ = π/4 ⇒ (−1 0
0 1) θ = − π/4 ⇒ (1 0

0 −1)
NOTÛ(−θ) = (0 1

1 0) (cos θ −sin θ
sin θ cos θ ) = (sin θ cos θ

cos θ −sin θ) θ = π/2 ⇒ (1 0
0 −1)



Wdh.: 2.4.3 Spiegelungen
Eine sehr nützliche QuBit-Operation ist die Hadamard Transformation  

(Jacques Hadamard)  

   

Auf die Basiszustände ergibt dies 

 

Ĥ

Ĥ = ̂V ( π
4 ) = NOT Û ( π

4 )
Ĥ |0⟩ =

1

2
( |0⟩ + |1⟩) =: | + ⟩

Ĥ |1⟩ =
1

2
( |0⟩ − |1⟩) =: | − ⟩

Spiegelung an der Achse  
θ =

π
8



Wdh.: 2.5 Quantenzustände unterscheiden
Alice schaut einem Wettbewerb mit Eselrobotern zu: 
Notiz: 1 wenn Lieblingsroboter gewinnt, 0 wenn nicht  

Oder Kodierung dieser Information in einem QuBit 
QuBit in Zustand  wenn Lieblingsroboter gewinnt, sonst  

Sie wendet dazu entweder  oder  auf  an. 

Dann gibt Alice dieses QuBit an Bob 
Kann Bob nur anhand des QuBits raten, welchen Bitwert (0 oder 1) Alice kodiert hat?  
Wäre es besser, wenn Bob vorher eine Rotation/Spiegelung auf das QuBit anwenden 

kann? 

|ψ(θ1)⟩ |ψ(θ0)⟩
Û(θ0) Û(θ1) |0⟩



Wdh.: 2.5 Quantenzustände unterscheiden

Û (−
π
4 ) | + ⟩ = |0⟩ Û (−

π
4 ) | − ⟩ = − |1⟩



Wdh.: 2.5 Quantenzustände unterscheiden



Wdh.: 2.5 Quantenzustände unterscheiden



Wdh.: 2.5 Quantenzustände unterscheiden



Wdh.: 2.5.1 Mysteryoperation 2
Quantentomographie: 

Versuche Zustand durch Messungen  und Manipulationen zu bestimmen

ψ2
1 = 0.117 ψ2

2 = 0.883

Ergebnis:



Wdh.: 2.5.1 Mysteryoperation 2
Quantentomographie: 

Versuche Zustand durch Messungen  und Manipulationen zu bestimmen

ψ2
1 = 0.117 ψ2

2 = 0.883

Ergebnis: ⇒ θ = ± 0.3491 = ± π/9

Rotiere um +π/9 Rotiere um −π/9
 ⇒ θ = + π/9

M̂ |0⟩ = (
cos π

9

sin π
9

)



Wdh.: 2.5.1 Mysteryoperation 2
Quantentomographie: Versuche einen Zustand durch 

Messungen  und Manipulationen zu bestimmen M̂ |0⟩ = (
cos π

9

sin π
9

)

⇒ θ′￼= ± 1.2217 = ± 7π
18

= ± ( π
2

−
π
9 )

Rotiere um 
7π
18

 ⇒ θ′￼= −
7π
18

M̂ |1⟩ =
cos 7π

18

−sin 7π
18

M̂ =
cos π

9 cos 7π
18

sin π
9 −sin 7π

18
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 3.1. 2 Probabilistische Bits

Das probabilistische Bit für die 2-Münzenzustände ist gegeben durch 

 mit  und  

p00
p01
p10
p11

=

p0 ⋅ p0
p0 ⋅ p1
p1 ⋅ p0
p1 ⋅ p1

0 ≤ pij ≤ 1 p00 + p01 + p10 + p11 = 1



 3.1. 2 Probabilistische Bits

Das probabilistische Bit für die 2-Münzenzustände ist gegeben durch 

 mit  und  

Alternativ schreiben wir diesen Zustand als 

 

p00
p01
p10
p11

=

p0 ⋅ p0
p0 ⋅ p1
p1 ⋅ p0
p1 ⋅ p1

0 ≤ pij ≤ 1 p00 + p01 + p10 + p11 = 1

p00[00] + p01[01] + p10[10] + p11[11]



 3.1. 2 Probabilistische Bits

Das probabilistische Bit für die 2-Münzenzustände ist gegeben durch 

 mit  und  

Alternativ schreiben wir diesen Zustand als 

 

mit der Identifikation  

p00
p01
p10
p11

=

p0 ⋅ p0
p0 ⋅ p1
p1 ⋅ p0
p1 ⋅ p1

0 ≤ pij ≤ 1 p00 + p01 + p10 + p11 = 1

p00[00] + p01[01] + p10[10] + p11[11]

[00] =

1
0
0
0

, [01] =

0
1
0
0

, [10] =

0
0
1
0

, [11] =

0
0
0
1

,



 3.1. 2 Probabilistische Bits

Das probabilistische Bit für die 2-Münzenzustände ist gegeben durch 

 mit  und  

Alternativ schreiben wir diesen Zustand als 

 

mit der Identifikation  

Kompakte Notation 

p00
p01
p10
p11

=

p0 ⋅ p0
p0 ⋅ p1
p1 ⋅ p0
p1 ⋅ p1

0 ≤ pij ≤ 1 p00 + p01 + p10 + p11 = 1

p00[00] + p01[01] + p10[10] + p11[11]

[00] =

1
0
0
0

, [01] =

0
1
0
0

, [10] =

0
0
1
0

, [11] =

0
0
0
1

,

1
2

[00] + 0[01] + 0[10] +
1
2

[11] =
1
2

[00] +
1
2

[11]



 3.1. 2 Probabilistische Bits

Quirky: Quest 3 -> 2 Bits 
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automatisch auch den Wert des zweiten Bits, 



 3.1.1 Beide Bits messen

Beispiel: beim Messen des Zustandes  
     

1/2 [00] + 1/2 [11] 

erhalten wir [00] und [11] mit jeweils der Wahrscheinlichkeit 50% 

Misst man bei diesem besonderen Zustand nur das erste Bit, dann kennt man 
automatisch auch den Wert des zweiten Bits, 

d.h. die beiden EinzelBits sind perfekt korreliert
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1
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2
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4
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3
8

[00] +
1
8

[01] +
1
6

[10] +
2
6

[11]

26
48

[0] +
22
48

[1]

3
8

[00] +
1
6

[10],
3
8

>
1
6

⇒ [0] wahrscheinlicher
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 3.1.6 Die kontrollierte NOT Operation
Man kann sich CNOT auch als Addition vorstellen

Die beiden Bits werden addiert 
0,1,1,2 

Dann modulo 2 
0,1,1,0 

Das 2. Bit im Ergebnis entspricht dieser Operation

Formal kann man schreiben

Die Modulo 2 Operation        kann man auch als 
XOR (exklusives Oder  - Entweder oder)  
bezeichnen
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In Vektornotation:
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Das Tensorprodukt erlaubt kompakte Schreibweisen, z.B. von 1 Bit Operationen:

Derartige Zustände nennt man Produkt-Zustände oder Produkt-Verteilungen 

Ist jeder 2-Bit Zustand ein Produktzustand? 

Nein!



 3.1.8 Korrelierte Verteilungen

Es gibt auch 2-Bit Zustände, die nicht Produktzustände sind,  
d.h. sie können nicht als  geschrieben werden 

Z.B.   

Derartige Zustände nennt man korreliert  

Misst man das erste Bit, dann kennt man automatisch den Wert des zweiten! 

In diesem Fall: Zustand des 1. Bits = Zustand des 2. Bits (perfekt korrelierte Zustände)

[a] ⊗ [b]

1
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1
2

[11]
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 3.1.8 Korrelierte Verteilungen
Test: ist ein Zustand 

ein Produkt-Zustand oder ein korrelierter Zustand?

Berechne: Δ(p) = p00p11 − p01p10

Für Produkt-Zustände erhält man immer  , 
andernfalls, ist der Zustand korreliert. 

Beispiel:  

Beweis: jeder korrelierte Zustand liefert  
(Siehe Skript)

Δ(p) = 0
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1
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1
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1
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− 0 =
1
4

≠ 0
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