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Wdh.: 2.1 Quantenbits

Bit: Informationseinheit eines klassischen Computers
Realisierung: physikalisches System mit 2 Zustanden, die man
zuverlassig unterscheiden kann

Beispiel: Munze -> beschrieben durch Mechanik
Kondensator -> beschrieben durch Elektromagnetismus

Fur sehr kleine Objekte - atomare Skala - gelten Mechanik oder
Elektromagnetismus nicht mehr, und wir benotigen neue Theorien:
Quantenmechanik, Quantenelektrodynamik

Hier gibt es auch Systeme mit zwei moglichen Zustanden, z.B. der Spin eines
Elektrons - eine Art Eigendrehimpuls des Elektrons, der nach oben oder nach
unten oder nach einer Kombination (Superposition) aus oben oder unten
zeigen kann!

1 1
[0, (11, —[0] + —[1].....
V2 V2
Dieses QuantenBit - QuBit ahnelt einem probabilistischem Bit
- es gibt aber auch Unterschiede

Wir diskutieren hier nur was man damit machen kann, nicht:
Was ist der Hintergrund (Quantenmechanik)?
Wie baut man sowas?



Wdh.: 2.1.1 Wahrscheinlichkeiten versus Amplituden

QuBits ahneln probabilistischem Bit - es gibt zwei groBe Unterschiede:

1. Wahrscheinlichlkeiten werden durch Amplituden ersetzt (kbnnen auch
negativ oder komplex seinl)

2. Amplituden werden wahrend dem Messen quadriert (Wahrscheinlichkeiten
nicht)

Die beiden mdglichen Zustidnde eines QuBits werden |0) und | 1) genannt.

Der allgemeine Zustand eines QuBits |y/) kann als Linearkombination
(Superposition) dieser beiden Zustande geschrieben werden

lw) =y,l0) +y | 1)

Vergleiche das probabilistische Bit

Do 1 0
( >=Po< >+p1< >=po[O]+p1[1]
pl O 1

Die Wahrscheinlichkeiten p, | wurden durch die Amplituden y, | ersetzt
Die Basiszustande [0],[1] durch |0),|1)



Wdh.: 2.1.1 Wahrscheinlichkeiten versus Amplituden

Fur die Wahrscheinlichkeiten p | gilt
Po.1 = 0und py + p; = 1 und somit py; € [0,1]

Fur die Amplituden yy, | gilt
l//g + 1//12 = 1 und somit y;, ; € [—1,1] (kénnen negativ sein)

Die QuBitzustinde |0), | 1) kénnen auch durch Vektoren dargestellt werden

0) = (é) D= (?)
w=w(}) +w (0) = (*)



Wdh.: 2.1.2 Ein QuBit als ein Kreis

l//g + 1/112 = |l ist in der y;, — y; Ebene ein Kreis mit Radius 1

Damit konnen wir die Amplituden wie folgt parametrisieren
Wy = cos O,y =sind

Ein allgemeiner Zustand lautet dann

Sy o
w(0) =cosO{ g J+smO{ ) =1 Gno

Insbesondere gilt

w0 = (é) und |w(§>> = (?)



Wdh.: 2.1.2 Ein QuBiIt als ein Kreis

Die moglichen Zustande eines QuBits liegen auf einem Kreis,
wahrend die maoglichen zustande eines probabilistischen Bits auf einer Geraden liegen

QuBit
T~

1)

A

Probabilistisches Bit

> |0)

Abbildung 2.2: Der Zustandsraum eines probabilistischen Bits (blau) sowie eines Qubits (rot).

\

Betrachte folgende zwei Zustande eines Qubits:

0+ 1

+) = %

Wo liegen diese Zustande auf dem Einheitskreis? Welchem Winkel 6 entsprechen sie jeweils?

Y

Ly -1y
V2




Wdh.: 2.2 Ein Qubit messen

Ann: man hat den Zustand |y/(6)) -> man kann nicht einfach  messen

Born-Regel:
Misst man den Zustand |y) = y;|0) + ;| 1), dann findet man mit

der Wahrscheinlichkeit y/; das Ergebnis |0) und mit
der Wahrscheinlichkeit 1/112 das Ergebnis | 1).

{ ¥o |0) + 91 [1) J
¥ i

1]

Nach der Messung ist der urspriingliche Zustand |y) = y;|0) +y;| 1)
verschwunden und es gibt nur noch |0) oder| 1).

Weitere Messungen an diesem System liefern keine zusatzlichen
Informationen mehr



Wdh.: 2.2 Ein Qubit messen

Weiterer Unterschied zum probabilistischen Bit:

Das probabilistische Bits befindet sicher immer definitiv in einem der
Zustande, das QuBit nicht!

Das Ergebnis beim Munzwurf konnte prinzipiell vorhersagt werden, das
Ergebnis bei der Messung eines QuBits kann prinzipiell nicht vorhergesagt
werden - hier gibt es intrinsisch Zufall



Wdh.: 2.2 Ein Qubit messen

Das Problem: Der Akku von Alice’ Eselsroboter ist schon wieder fast leer und muss den Weg zu einer

Ladestation finden. Bléderweise hat Eve es geschafft, den Zufallszahlengenerator des Esels zu hacken.
Aber da Eve damit auf einem Hackerforum angegeben hat, wei3 auch Alice davon. Um deren bdsen Plan
aufzuhalten, hat Alice einen Mini-Quantencomputer mit einem Qubit im Roboter verbaut. Sie will die

fundamentale Unvorhersehbarkeit einer Quantenmessung nutzen, um Zufallsbits zu generieren, die Eve

nicht vorhersehen kann. |y = W | 0) + | 1) =cos@|0)+sind|1)

Fragen: Alice kann das Qubit in jeden Zustand |1)(6)) versetzen und will ein zufélliges Bit generieren,

indem sie das Qubit misst.
|y |* = cos? 0

1. Mit welcher Wahrscheinlichkeit erhalt sie das Ergebnis 0 beim messen? Mit welcher
Wahrscheinlichkeit das Ergebnis 17 | 4] |2 = sin’ @

2. Alice will den Winkel @ so einstellen, dass beide Wahrscheinlichkeiten 1/2 sind. Welchen Winkel 6
sollte sie wahlen? (Es konnte mehrere Lésungen geben!) 0 T w 3m 3n

9 9 9 9

47" )




Wdh.: 2.3 Qubits mit QUIRKY simulieren

The Quirky Quantum Simulator

Quest 2: Conqueror of the qubit

Share Make U(0)
5 Operations Displays My Operations
o
§ /7<‘ @ Mystery|  (Prob

e

 Draht (Einzellinie) entspricht nun einem QuBit mit Startzustand |0)

il

e Eine Messung wird mit ** pezeichnet. Nach der Messung gibt es eine
Doppellinie (klassisches Bit).




Wdh.: 2.4 Operationen auf einem Qubit

NOT-Operation:

NOT|0) = |1) NOT|1)=0)

Linearitat: Wir erweitern nun das Konzept der Linearitit auf eine Operation M auf QuBits

M |y) =M<l/fo|0>+l//1|1>) =W0M|O>+W1M|1>

In Vektornotation lautet dies

(g0 = (o )+ (7)) = (o )+t ()

Quantenmechanik: jede lineare Operation ist eine erlaubt QuBit Operation, solange
sie den QuBit-Raum (Kreis) auf sich selbst abbildet (wieder auf Kreis).

Fir die NOT-Operation folgt:
NOT (| 0) + ;1)) = wyNOT|0) + y;NOT| 1) =y | 1) + ;| 0)
oder

vor (1) = ()



Wdh.: 2.4 Operationen auf einem Qubit

NOT-Operation: Spiegelung an der Winkelhalbierenden
1)

Quirky: 10

A B

R
\V




Wdh.: 2.4 Operationen auf einem Qubit

Spiegelung an der | 0) Achse: Z-Operation

Z10) =10),  Z[1)=-]1),

Linearitat: Z (:ﬁg) = ( _@1),

Betrachte folgende zwei Qubit Zustande:

I ULV U
V2 V2
1. Berechne Z |+) und Z |-). Z|+>=|—> 2|_>=|+>

2. Stelle die Z-Operation grafisch auf dem Einheitskreis dar, wie in Abb. 2.4.
: Spiegelung um |0> Achse

Betrachte die MAD-Operation, indem du MAD [0) = |0) und MAD |1) = %(m} + |1)) durch

Linearitat erweiterst. Suche einen Qubit Zustand |v)), sodass MAD |) kein gultiger Qubit-Zustand ist.
Zeige also, dass MAD keine giiltige Operation auf Qubits ist!

e _J

MAD(1/1/2(|0) + [ 1))) = 1/4/2]0) + 1/7/2(1/4/2[0) + [ 1)) = (1 +1/2)/4/2|0) + 1/1/2] 1)




Wdh.: 2.4.1 Rotationen

Eine naheliegende Operation ist eine Drehung 17(9) um den Winkel ¢ um den Ursprung

U(0)10) = [4(6)),  UO)[1) = [(6+ F)).

Darstellung als 2x2 Matrix

[ — cos@ —sind
sinfé cosd
In Vektornotation:

1\  [(cos@ O\ (—sinf
U(e) (0) - (Sin 9)7 U(g) (1) o ( COSH >, sin(6 + %):cosﬁ.

cos(f + ) =—sin 0




Wdh.: 2.4.1 Rotationen
Obungsaufgabe 23 QuoitRotatoner.

1. Berechne U(Oé) ("pO) mit Gl. 2.8 und 2.27. U(Wo) _ (cosa —sina) <Wo> _ <COS(,¥l//0— sinay/1>

¢1 Vi sina  cosa 4! sin ayy + cos ay,

2. Nutze die Definition von [1(6)) aus GI. 2.5 um zu prifen, dass fir alle Winkel a und (3 folgendes gilt:

U(@) [$(B)) = [¢(a + f)). (2.29)
0 cosff\ _ [(cosacosf—sinasinf\  (cos(a+f)
sinff) \sinacosf+cosasinf/ \sin(a +p)
Das bedeutet, dass U(6) eine Rotation auf beliebigen Qubit-Zusténden entspricht.

Hinweis: Die trigonometrischen Regeln fir Winkelsummen und -differenzen konnten hilfreich sein:

sin(a & 3) = sin a cos B = cos a sin 3, cos(a + ) = cos a cos B F sin asin 8. (2.30)

Beachte Rotation um 90 Grad ist keine Spiegelung

NOT|0) = | 1) 0(§>|O>=|1>
NOT| 1) = |0) 0(§>|1>=—|0>



Wdh.: 2.4.1 Rotationen

Quirky:

The Quirky Quantum Simulator

Quest 2: Conqueror of the qubit

‘/ ’ ‘ ’ ‘ ’ ‘ Share ’ | Make U(0) ’ U(ﬂ)

\ ) J ) ) . Angle 6: | pi6
§ Operations Displays My Operations | OK “‘, \ Cancel y
8 /ﬂ - : J1 |
ke

10)

10) —{U(pi/6) /7< %ﬁ‘—
Test:
2
_ (cos(m/6)\ _ (/3/2 Iy _1_

[%(m/6)) = (sin(vr/ﬁ)) N ( 1/2 )’ =\2) "1~ 257



Wdh.: 2.4.1 Rotationen

die Ausgabe von Quirky korrekt ist.

"

um den Winkel /6 und messe schlussendlich das Qubit.
2. Nutze Quirky’s Wahrscheinlichkeitenanzeige um die Ergebnisse der Messung anzuzeigen. Zeige, dass

1. Baue folgende Abfolge von Operationen in Quirky: Bereite zun&chst den Zustand |1) vor, rotiere dann

3. Verandere deinen Schaltkreis so, dass man mit Wahrscheinlichkeit 42% das Messergebnis 1 erhalt.

The Quirky Quantum Simulator

Quest 2: Conqueror of the qubit U <(1)> — (
‘ Reset H Undo ” H Share ] ‘ Make U(0) ‘

§ ations Displays My Operations

S /7< @ |Mym . U(pire)

=

10 —@—U(pus)— /7{ -B:

cos?0 = 0.42 = cos O = 0.648074 = 0 = 0.865743 = 7/(3.629)

cosa —sina

0 :(—sina
sinx  cosa 1 cosa

>:

1

2
V3
=

Al &=

The Quirky Quantum Simulator

Quest 2: Conqueror of the qubit

t Reset N Undo H . H Share ’ [ Make U(6) ’

Operations

=

10; —@— Uipw3.629) — /7<

1}

Displays

0%

My Operations

U(pils)‘umm

0%



Wdh.: 2.4.2 Zusammensetzen von
Quantenoperationen

Werden zwei lineare Operationen M und N hintereinander ausgefuhrt, so gilt
Rt ) = N (M1 0) + yi M1 1) ) = yoNT10) + yy T | 1)

d.h. die zusammengesetzte Operation N M ist auch linear.

Analog: drei oder mehr Operationen

Alle bisher behandelten Operation sind invertierbar:
Zu jeder Operation M gibt es eine inverse Operatlon M1 , S0 dass gilt:
M 'M=MM"=1,
wobei 1 der Identitit entspricht: 1 [0) = [0)und 1| 1) = | 1)

Beispiele: (NM)~ ' = M~'N~!
NOT~! = NOT RO~ = R(-6) NM(NM)~' = NMM~'N~!

Zeige dass N M invertierbar ist, wenn M und NN invertierbar sind. Beschreibe das Inverse der
zusammengesetzten Operation (N]\/_i)“1 durch die einzelnen Inverse N —1und M/ 1.




Wdh.: 2.4.2 Zusammensetzen von
Quantenoperationen

Alle Operationen auf QuBits sind invertierbar und damit reversibel

Bei probabilistischen Bits war das nicht der Fall -

~ [ 1
vergleiche: probabilistischer Flip: [ <E>



Wdh.: 2.4.3 Spiegelungen

Jede QuBit-Operation ist entweder eine Rotation oder eine Spiegelung (Reflektion)
Bisher kennen wir 2 Spiegelungen: Z und NOT

Seien Z, NOT und U () die Qubit-Operationen definiert in Gl. 2.26, 2.25 und 2.27.
1. Finde einen Winkel 6, fur den Z = U(0) NOT U(—6) qilt.
2. Finde einen Winkel 0, fir den Z = NOT U(0) gilt.

Kannst du die Abfolge der Transformationen auf dem Einheitskreis visualiseren?

Hinweis: Schau dir Abb. 2.4 und die Zeichnung, die du flur die 2.2 erstellt hast an.

" g

A A o1 : o S . . 2 o 2
0(0)NOTD(—0) = (COSQ sm@) (0 1) <cos€ sm9> _ <cos€ smH) ( sin 6 cos9> _ ( 2cosf@sinf cos” 0 — sin 9)

sinfd cosf 1 0 —sin@ cos6 sinf cosé@ cosf sin6 cos?0 —sin?@ 2cos@sind

- -1 0\, 1 0
(9—7z/4=><0 1),9_ 7z/4=><0 _1>

~ _ (0 1 cosd —sinf\ _ (sinf cos6 - 1 0
NOTU(_Q)‘(l o) <sin9 cos9>_<cos9 —sin9> 0=nl2= (O _1>

Man findet: die allgemeinste Spiegelung (Reflektion) ‘7(9) hat die Form:
V(@) = NOT U(0) = U(—O0)NOT



Wdh.: 2.4.3 Spiegelungen

Eine sehr niutzliche QuBit-Operation ist die Hadamard Transformation H
(Jacques Hadamard)

A A ]Z- A 7[
H=V|— ) =NOTU | —
4 4

Auf die Basiszustande ergibt dies

A10) = —— (10) + 1)) =: | +)

\/5

ﬁ|1>— (I0>—|1>)— [ =)

S \

Spiegelung an der Achse

T
0 =—
3




Wdh.: 2.5 Quantenzustande unterscheiden

Alice schaut einem Wettbewerb mit Eselrobotern zu:
Notiz: 1 wenn Lieblingsroboter gewinnt, 0 wenn nicht

Oder Kodierung dieser Information in einem QuBit
QuBit in Zustand |(6,)) wenn Lieblingsroboter gewinnt, sonst |y(6,))

Sie wendet dazu entweder lA](HO) oder lA](é’l) auf | 0) an.

Dann gibt Alice dieses QuBit an Bob
Kann Bob nur anhand des QuBits raten, welchen Bitwert (0 oder 1) Alice kodiert hat?
Ware es besser, wenn Bob vorher eine Rotation/Spiegelung auf das QuBit anwenden
kann?

Stell dir vor, jemand gibt dir ein Qubit in einem der folgenden Zustande:

O+ -

+) =
V2 V2

Du willst erraten, in welchem der beiden Zustande es sich befindet. Du darfst eine Rotation anwenden
und danach messen. Um welchen Winkel solltest du rotieren und mit welcher Wahrscheinlichkeit ratst du
korrekt?

N v




Wdh.: 2.5 Quantenzustande unterscheiden
Obungsaufgabe 26 (Plus und Minus).

Stell dir vor, jemand gibt dir ein Qubit in einem der folgenden Zusténde:

O+n -

[+) =
V2 V2

Du willst erraten, in welchem der beiden Zustande es sich befindet. Du darfst eine Rotation anwenden
und danach messen. Um welchen Winkel solltest du rotieren und mit welcher Wahrscheinlichkeit ratst du
korrekt?

e _J

N /3 A T
o(-%)1+y=10) U(‘Z)H:"”

Zeige, dass die beiden Zustédnde |4)(0)) und |1)(6 + 7)) = — [1)(6)) nicht unterschieden werden kénnen.
Also, dass egal welche Qubit-Operationen du anwendest, bevor du misst, die Messergebnisse immer
gleich wahrscheinlich sein werden.

e . g
v Lésung.

Wir haben bereits gesehen, dass jede Kombination M an Rotationen und Spiegelungen linear ist. Damit

folgt aus M [(0)) = |4(0')) = (:’z Z) dass M (— [(0))) = — [4(¢)) = (::’j le) Nach Gl. 2.6 sind

die Wahrscheinlichkeiten p, und p; der Messergebnisse fir beide Zustande gleich.



Wdh.: 2.5 Quantenzustande unterscheiden

Seien 6, @' zwei Winkel. Nimm der Einfachheit halber an, dass —5 < <0< % - Angenommen, Eve

gibt dir ein einzelnes Qubit, welches sich jeweils mit 50% Wahrscheinlichkeit in Zustand |(6)) ogef
14(0")) befindet. (Sie kdnnte beispielsweise eine faire Miinze werfen, um zu entscheiden, in ywefchem
Zustand sich das Qubit befinden soll.) Deine Aufgabe ist es nun, herauszufinden, welchex’Zustand das
Qubit hat. In ein paar Schritten wirst du die optimale Strategie finden:

1. Wende zunachst die Rotation U(¢) um einen Winkel ¢ an. Welche zwei mgdfichen Zustande erhéltst
du dann?

2. Fuhre als nédchstes eine Quantenmessung durch und interpretiergdas Ergebnis wie folgt: Falls das
Ergebnis 0 ist, ratst du, dass das Qubit in Zustand |1)(6)) wg#! ansonsten ratst du den Zustand
14(@')). Mit welcher Wahrscheinlichkeit identifizierst dyden Zustand korrekt? Schreibe eine Formel
mit den Variablen 6, ¢’ und ¢.

Hinweis: Berechne zunachst die Erfolgswahrg€heinlichkeit, angenommen du hast den ersten
Zustand bekommen. Dann die Erfolgswghfscheinlichkeit, angenommen du hast den zweiten Zustand
bekommen. Und dann erinnere dich.daran, dass beide mit Wahrscheinlichkeit 50% auftreten.

3. Du kannst den Rotationswinkel# immer noch clever wahlen. Was ist die Erfolgswahrscheinlichkeit
als Funktion von € und &', enn du ¢ optimal wéahlst?

Hinweis: Versuche dje’trigonometrischen ldentitdten aus Gl. 2.30 zu verwenden. Insbesondere
kannst du mit dig€en zeigen, dass

2 1 2

sin® a = 5 (1 —cos(2a)), cos’a = —(1+ cos(2a)). (2.36)

N |

Wenn du nicht mehr weiter wei3t, kannst du auch Wolfram Alpha nutzen.




Wdh.: 2.5 Quantenzustande unterscheiden
 Ubungsaufgabe 28 (Arm- und Beinbruch (herausforderna).

Alice und Bob erkunden gerne die Wildnis rund um ihre Stadt. Daflir haben sie

7
\ 4
"n \

zwei groBe Gorilla-Roboter gebaut, die das unwegsame Gelande navigieren

kdnnen und sie dabei bequem auf dem Rlcken tragen. Aber heute ist kein guter

W,
Hady
<

e
o B
(X

Tag fur Bob, sein Roboter ist von einer Klippe gefallen! Zum Glick tUberlebt Bob

N

]
N -
\esesl

den Sturz mit nur ein paar blauen Flecken, aber dem Roboter geht es nicht so , ; \
gut: ein Arm, ein Bein und das Kommunikationsmodul sind kaputt gegangen.
Bob hat leider keine Ersatzteile fur die Arme und Beine mitgebracht, schaffi€s @
aber zumindest das Kommunikationsmodul kurzzeitig zu reparieren.
Dummerweise kann er nur ein einzelnes Qubit senden, bevor es gahz kaputt
geht. Bob wirde gerne Alice Bescheid geben, welches Bein fhks oder rechts)
und welcher Arm (links oder rechts) kaputt ist, damit siedas entsprechende

Bauteil von ihrem Roboter zu ihm herunter schickeprkann. Sie kann ihm aber nur

ein GliedmalB geben, da beide Roboter noch na€h Hause laufen kbnnen muissen

(sie kbnnen zum Glick auf drei Beinen lay#€n). Die Situation ist aber noch
komplizierter, da Alice nicht ihr ganzgg Werkzeug mitgebracht hat. Bob weil,
dass sie entweder das Werkzeyg”zum abmontieren von Beinen oder Armen

dabei hat — leider kann er si€nh nicht daran erinnern welches von beiden!

Es gibt vier moglicheg“Kombinationen, in denen die Arme und Beine gebrochen sein kdnnen — du kannst
annehmen dasg7alle mit gleicher Wahrscheinlichkeit 1/4 auftreten. Weiterhin gibt es zwei mégliche
Werkzeugg? die Alice dabei haben kdnnte und du kannst annehmen, dass beide mit Wahrscheinlichkeit
1/2 gdftreten.




Wdh.: 2.5 Quantenzustande unterscheiden

Fragen:

1. Wenn Bob nur ein Bit an Alice senden kann, wie sollte er den Wert auswahlen, je pdchdem welche

der vier Moglichkeiten eingetroffen ist? Wie sollte Alice die Nachricht interprgiferen und entscheiden
welches Gliedmal, linkes oder rechtes, sie ihm senden sollte? (Denk dageh, dass Alice entweder nur

Beine oder nur Arme senden kann und Bob nicht weil3 welches vonAeiden der Fall ist.) Wenn beide

die optimale Strategie nutzen, mit welcher Wahrscheinlichkeit jeterpretiert Alice die Nachricht richtig

und sendet das richtige Korperteil an Bob?

2. Was, wenn Bob stattdessen ein Qubit senden kann?.4e nach seiner Situation kann er einen von vier

Zustanden wahlen und Alice kann abhangig vonAhrer Situation eine von zwei Rotationen anwenden,

bevor sie das Qubit misst. Was ist ihre geme&insame beste Strategie und welche

Erfolgswahrscheinlichkeit hat sie?

Du kannst annehmen, dass Alice Bob wissen, wie sie ihre Nachrichten interpretieren missen, da sie

im Voraus daruber gesprochegrhaben, was sie in dieser Notsituation machen sollten.




Wdh.: 2.5.1 Mysteryoperation 2

Quantentomographie:
Versuche Zustand durch Messungen und Manipulationen zu bestimmen

Mo = (). ot ARIR— 220117 y? =0.883

L (x/W:a%), N ( V88.3% )

Ergebnis: V11.7% —v/11.7%

1. Wie kannst du zwischen den beiden Optionen unterscheiden? Nutze Quirky um den Quantenzustand
M |0) bis auf allgemeines Vorzeichen festzustellen.

2. Bestimme genauso auch den Quantenzustand M |1).

3. Bonusfrage: Bestimmen die beiden Antworten die Operation M vollstandig? Falls ja, schreibe eine

Formel fur M auf. Falls nicht, wie kannst du M herausfinden?




Wdh.: 2.5.1 Mysteryoperation 2

Quantentomographie:
Versuche Zustand durch Messungen und Manipulationen zu bestimmen

Mo = (90). o faml A p2=0.117  y2=0.883

Ergebnis: - (W) " ( V88.3% ) = 0 = +0.3491 = + /9

VvV 11.7% —V11.7%

1. Wie kannst du zwischen den beiden Optionen unterscheiden? Nutze Quirky um den Quantenzustand
M |0) bis auf allgemeines Vorzeichen festzustellen.

2. Bestimme genauso auch den Quantenzustand M |1).

3. Bonusfrage: Bestimmen die beiden Antworten die Operation M vollstandig? Falls ja, schreibe eine

Formel fur M auf. Falls nicht, wie kannst du M herausfinden?

Rotiere um +7/9 Rotiere um — /9
= 0 =+ /9
x Operations Displays x Operations Displays Ea
g g A COS 3
E A D ] [protl g | A B[] [Pt M |0) = ’

SIn —

.33

7% ] L {1 )(-pi/g)
Mystery|—|U(piro) ,7<=' 10> —{Mystery|-U(-pir9) /7§ "o 9




Wdh.: 2.5.1 Mysteryoperation 2

T

Quantentomographie: Versuche einen Zustand durch M| 0) = €05 9
Messungen und Manipulationen zu bestimmen sin =

9

1. Wie kannst du zwischen den beiden Optionen unterscheiden? Nutze Quircy um den Quantenzustand
M |0) bis auf allgemeines Vorzeichen festzustellen.

2. Bestimme genauso auch den Quantenzustand M |1).

3. Bonusfrage: Bestimmen die beiden Antworten die Operation M vollstandig? Falls ja, schreibe eine
Formel flr M auf. Falls nicht, wie kannst du M herausfinden?

§ Operations Displays
3 | A Mystery r T T
[ S0 =+t10T=t— =% (==
0> —P— oA s —— 18 2 9
I
r >0 = — —
Rotiere um — 18 _ S
COS E M _ COSE COSE
10 —CD—pumenumnp A M|1) = '8 sinZ  —sin 2=
~sin 2% S




Quest 3: Verzaubernde

Verschrankungen

In den letzten zwei Wochen haben wir dartber gesprochen, wie sich ein einzelnes probabilistisches Bit und
ein einzelnes Qubit verhalt. Diese Woche wirst du lernen, was passiert, wenn du zwei zur Verfligung hast.
Zunachst werden wir lernen, wie sich zwei klassische Bits verhalten, welche Zustande sie haben kénnen und
wie sie korrelieren. AnschlieBend werden wir uns analog zwei Qubits anschauen und herausfinden, was es

heiBt, wenn diese verschrédnkt (engl. entangled) sind.

3.1 Zwei probabilistische Bits
3.1.1 Beide Bits messen

3.2 Zwei Quantenbits
3.1.2 Lokale Operationen
3.1.3 Nur ein Bit messen
3.1.4 Der Zustand des anderen Bit
3.1.5 Die SWAP-Operation
3.1.6 Die kontrollierte-NOT-Operat...

3.1.7 Produkt-Verteilungen

3.1.8 Korrelierte Verteilungen
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2 Munzen konnen vier Zustande haben
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3.1. 2 Probabilistische Bits

2 Munzen konnen vier Zustande haben

00 01 10 11

Das probabilistische Bit fur die 2-Munzenzustande ist gegeben durch

Poo Po " Po
Po1 Po-Pi| .
Pl | P Po mit 0 < p; < 1und pyy + py; +pip+pi1 =1

P11 P1 P



3.1. 2 Probabilistische Bits

Das probabilistische Bit fur die 2-Munzenzustande ist gegeben durch

Poo Po " Po
Po1 Po ° Pq _
Pio| ~ |P1Po mit 0 < p; < 1 und pyy + po; +p1o+p1y = 1

P11 P11 P1



3.1. 2 Probabilistische Bits

Das probabilistische Bit fur die 2-Munzenzustande ist gegeben durch

Poo Po * Po
Po1 Po - P1
P1o P11 Po
P11 P11 P1

mit 0 < p;; < L und pyy + py; + 1o +p11 =1

Alternativ schreiben wir diesen Zustand als

PoolO0] + py[01] + pyo[10] + pyy[11]



3.1. 2 Probabilistische Bits

Das probabilistische Bit fur die 2-Munzenzustande ist gegeben durch

Poo Po " Po

Po1 Po-Pi| .

Pl | P po mit0 < p; < 1und py, + py; +pio+pi =1
P11 P11 P1

Alternativ schreiben wir diesen Zustand als

Pool00] + po[01] + pyo[10] + py[11]

0

mit der Identifikation [00] = ., [01] = [10] = ., [11] =

S = O O

1
O 9
0

SO O =

—_— O O O

9



3.1. 2 Probabilistische Bits

Das probabilistische Bit fur die 2-Munzenzustande ist gegeben durch

Poo Po * Po

Po1 Po " P1 _

Dio — D1+ Po mit 0 Spijﬁ lundp00+]901+l910+l?11= 1
P11 P11 Pq

Alternativ schreiben wir diesen Zustand als

Pool00] + poy[01] + p1o[ 10] + py4[11]

0

, [01]= [10] = , 1] =

9

mit der Identifikation [00] =

oS == O O

0
1 0
Of° 0
0 1

SO O =

1 1 1 1
Kompakte Notation 5[00] + O[01] + O[10] + 5[11] = E[OO] + 5[11]



3.1. 2 Probabilistische Bits

Quirky: Quest 3 -> 2 Bits

The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)

\ | | | Share | | MakeR(r) |

Operations Displays My Operations
5 ‘

Bit 2: [0]

Toolbox
Jan)

Bit1: [0]




3.1.1 Beide Bits _messen

P00[00] + po1[01] + p1o[10] + p11[1 1]
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3.1.1 Beide Bits messen

[00] T p01[01] - pm[lO] +p11[1 1]

Poo / \P10 \\

The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)

[00]

‘ Reset J Undo ]‘ Share [ Make R(r) ’

§ Operations Displays My Operations
§ @l . Pmb\

=

Bit 2: [0]

Bit 1: [0]




3.1.1 Beide Bits messen

P00[00] + po1[01] + p1o[10] + p1:1[1 1]

Poo Po1 \/10 \\

@

[00] [11]

The Quirky Probability Simulator The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits) Quest 3: Wizard of entanglemgnt (two bits)

‘ Reset ’ Undo H \ Share | ‘ Make R(r) ’ ‘ Reset H Undo \ H Share ’ ‘ Make R(r) |

x Operations Displays My Operations _§ Operations Displays My Operations

% D) e Prob 3 GB‘ . Prob

=
Bit2:  [0] Bit2: [0 —p— "

0.0%
0.0%

0.0%
0.0%

Bit1: [0]= Bit1:  [0] =@=-
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3.1.1 B_eide Bits messen

poo[OO] + P01[01] + p10[10] +p11[1 l]

/ 0 (! \\
01

Beispiel: beim Messen des Zustandes

1/2 [00] + 1/2 [11]

erhalten wir [00] und [11] mit jeweils der Wahrscheinlichkeit 50%



3.1.1 Beide Bits messen

poo[OO] - r p01[01] = plo[l()] +p11[11]

// P10

Beispiel: beim Messen des Zustandes
1/2 [00] + 1/2 [11]
erhalten wir [00] und [11] mit jeweils der Wahrscheinlichkeit 50%

Misst man bei diesem besonderen Zustand nur das erste Bit, dann kennt man
automatisch auch den Wert des zweiten Bits,



3.1.1 Beide Bits messen

poo[OO] -+ p01[01] -+ plo[lﬂ] —+ pu[ll]

/ y \ \\
10

Beispiel: beim Messen des Zustandes

1/2 [00] + 1/2 [11]
erhalten wir [00] und [11] mit jeweils der Wahrscheinlichkeit 50%
Misst man bei diesem besonderen Zustand nur das erste Bit, dann kennt man

automatisch auch den Wert des zweiten Bits,
d.h. die beiden EinzelBits sind perfekt korreliert
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3.1.2 Lokale Operationen

Lokale Operation: man macht auf den einzelnen Bits EinBit Operationen
Globale Operation: man macht gleichzeitig auf allen Bits eine Operation

Beispiel fur lokale Operation (Wirkung auf deterministisches Bit):

NOT, [00] = [10], NOT,[01] = [11], NOT,[10] = [00], NOT,[11] = [01].

NOT,[00] = [01], NOT,[01] = [00], NOT,[10] = [11], NOT,[11] = [10].

Beispiel fur lokale Operation (Wirkung auf probabilistisches Bit):

NOT; (poo[00] 4 po1[01] + p10[10] + p1a[11])

=p00l01] + po1/00] + p1o[11] + p11[10]

=p01/00] + poo[01] + p11[10] + p10[11],



3.1.2 Lokale Operationen

Lokale Operation: man macht auf den einzelnen Bits EinBit Operationen
Globale Operation: man macht gleichzeitig auf allen Bits eine Operation

Beispiel fur lokale Operation (Wirkung auf deterministisches Bit):

NOT, [00] = [10], NOT,[01] = [11], NOT,[10] = [00], NOT,[11] = [01].

NOT,[00] = [01], NOT,[01] = [00], NOT,[10] = [11], NOT,[11] = [10].

Beispiel fur lokale Operation (Wirkung auf probabilistisches Bit):

NOT; (poo[00] 4 po1[01] + p10[10] + p1a[11])

Poo Po1
Po1 | — | Poo
=poo[01] + po1[00] + p1o[11] + p11[10] NOT; po| | Ppu
P11 P10

=p01/00] + poo[01] + p11[10] + p10[11],



3.1.2 Lokale Operationen

The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)

‘ Reset ] ‘ Undo ‘ ‘ ] ‘ Share ‘ ‘ Make R(r) ’
§ Operations Displays My Operations
8 D]
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3.1.2 Lokale Operationen

‘The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)

The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)
‘/ Reset ] ‘ Undo ‘ ‘ } ‘ Share ‘ ‘ Make R(r) ’ ‘ Reset H Undo H H Share ‘ ‘ Make R(r) ‘
x Operations Displays My Operations = Operations Displays My Operations
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3.1.2 Lokale Operationen

The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)

The Quirky Probability Simulator

The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)

Quest 3: Wizard of entanglement (two bits)
H Share ‘ ‘ Make R(r) ‘

My Operations

\’ Reset H Undo ‘ ‘

‘ Reset H Undo H

=

Toolbox

‘ ‘ Share | ’ Make R(r) ‘

Displays My Operations

Toolbox

‘7 Reset ‘ ‘ Undo : ‘ ‘ Share ‘ ‘ Make R(r) ‘
E Operations Displays My Operations
il
3it2: [0 o-0
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3.1.2 Lokale Operationen

The Quirky Probability Simulator The Quirky Probability Simulator The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits) Quest 3: Wizard of entanglement (two bits) Quest 3: Wizard of entanglement (two bits)

Reset || Undo Share Make R(r) Reset || Undo ‘ Share Make R(r) Reset || Undo k Share Make R(r)
2 Operations Displays My Operations E Operations Displays My Operations § Operations Displays My Operations
S 1K IE 8 B e Prob B Bl e Prob

0.0% 0.0%
3it 2: 0 . .
[ ]=€B=m.n Mz o] 000 B2 (0] —~— : ::
0.0% 100.0%
3it1: [0 Bit1:  [0] =@= l 0.0%

0.0% 3it1: [0]

Wdh: R(r)[0] = [0] und R(»)[1] = r[0] + (1 = P[1]



3.1.2 Lokale Operationen

The Quirky Probability Simulator The Quirky Probability Simulator The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits) Quest 3: Wizard of entanglement (two bits) Quest 3: Wizard of entanglement (two bits)

Reset || Undo Share Make R(r) Reset || Undo Share Make R(r) Reset || Undo Share Make R(r)
E Operations Displays My Operations é Operations Displays My Operations § Operations Displays My Operations
§ @ . Prob § @ * Prob S @ L Prob

0.0% 0.0%
3it 2: 0 : -
o~ D pz: 0] on sitz: o] —P— °°
0.0%

0.0% 1.._..'
0.0%

3it 1: [0] E 3it1: [0] =€B= 0.0% Bit1: [0] =@=

Wdh: R(r)[0] = [0] und R(»)[1] = r[0] + (1 — P[1]

Damit erhalten wir fur die lokalen Operationen
R(r),[00] =
R(r);[01
R(r)[10;
R(n),[11] =
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The Quirky Probability Simulator
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Quest 3: Wizard of entanglement (two bits)

The Quirky Probability Simulator
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The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)
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3.1.2 Lokale Operationen

The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)

The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)

The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)

Reset || Undo Share Make R(r) Reset || Undo Share Make R(r) Reset || Undo Share Make R(r)
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Damit erhalten wir fur die lokalen Operationen
R(r),[00] = [00]
~ R@)[011=1[01]
R(r){[10] = r[00] + (1 — r)[10]
R(r),[11] =



3.1.2 Lokale Operationen

The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)

The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)

The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)
Reset || Undo Share Make R(r) Reset | Undo Share Make R(r) Reset || Undo Share Make R(r)
§ Operations Displays My Operations -3 Operations Displays My Operations § am Displays My Operations
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3.1.2 Lokale Operationen

The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)

The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)

The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)
Reset || Undo Share Make R(r) Reset || Undo Share Make R(r) Reset || Undo Share Make R(r)
§ Operations Displays My Operations -3 Operations Displays My Operations § am Displays My Operations
8
S (D] e Prob S [P e Prob =
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Wdh: R(r)[0] = [0] und R(r)[1] = r[0] + (1 — P[]

Damit erhalten wir fur die lokalen Operationen
R(r);[00] = [00]
~ R,[01] =[01]
R(r){[10] = r[00] + (1 — r)[10]
R(r),[11] = r[01] + (1 — r)[11]

Beispiel: IA€(1/3)1[1 1]



The Quirky Probability Simulator The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)

Reset Undo
Operations
ST K
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Toolbox
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Damit erhalten wir fur die lokalen Operationen
R(r);[00] = [00]
~ R,[01] =[01]
R(r){[10] = r[00] + (1 — r)[10]
R(r),[11] = r[01] + (1 — r)[11]

Beispiel: R(1/3),[11] = %[01] + %[11]

0.0%
0.0%
1“-“. |
3it1: 0 0.0%
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3.1.2 Lokale Operationen

The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)

Share Make R(r)

Displays My Operations

Prob




3.1.2 Lokale Operationen

The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)

The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)

The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)
Reset || Undo Share Make R(r) Reset || Undo Share Make R(r) Reset || Undo Share Make R(r)
§ Operations Displays My Operations -3 Operations Displays My Operations § am Displays My Operations
8
S (D] e Prob S . Prob =
8 g D HEIE Prob
0.0%
3it 2: 0 =@=
[ ] 0.0%

3it2:  [0]

3it1:  [0]

3it2: (0] o0 L
lno.oy 0.0%
0.0% 1“-“.
0.0%
0.0% @ 0.0% 3it1: [0] =@=‘1“ "

3it1:  [0]
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Damit erhalten wir fur die lokalen Operationen
R(r);[00] = [00]
~ Rmy[01] = [01]
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R(r),[11] = r[01] + (1 — r)[11]
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3.1.2 Lokale Operationen

R(r),[00] = [00]
R(r),[01] = [01]

R(r),[10] = r[00] + (1 — r)[10]
R(r),[11] = r[01] + (1 — [11]

1. Schreibe analog zu Gl. 3.9 und 3.10 die Formeln fir R(r), auf.
2. Erklare, warum das Ergebnis von Quirky in Gl. 3.12 richtig ist.




3.1.2 Lokale Operationen

R(r),[00] = [00]
A R(r),[01] = [01]
R(r),[10] = r[00] + (1 — r)[10]
R(r),[11] = r[01] + (1 — [11]

1. Schreibe analog zu Gl. 3.9 und 3.10 die Formeln fur R(r), auf.
2. Erklare, warum das Ergebnis von Quirky in Gl. 3.12 richtig ist.

~ R(,[00] = [00]
R(r),[01] = r[00] + (1 — r)[01]

~ R(,[10] = [10]
R(r){[11] =r[O1] + (1 = )[11]




1. Schreibe analog zu Gl. 3.9 und 3.10 die Formeln fur R(r), auf.
2. Erklare, warum das Ergebnis von Quirky in Gl. 3.12 richtig ist.

3.1.2 Lokale Operationen

R(r),[00] = [00]
A R(r),[01] = [01]
R(r),[10] = r[00] + (1 — r)[10]
R(r),[11] = r[01] + (1 — [11]

Bit 2:

Bit1:

~ R(,[00] = [00]
R(r),[01] = r[00] + (1 — r)[01]

R(r),[

0] = [10]

R [11]1=r

0] —@—R(m)

Ol + (1 =n[l1]

0] PR, —
(3.12)

.4%



1. Schreibe analog zu Gl. 3.9 und 3.10 die Formeln fur R(r), auf.
2. Erklare, warum das Ergebnis von Quirky in Gl. 3.12 richtig ist.

3.1.2 Lokale Operationen

R(r),[00] = [00]
A R(r),[01] = [01]
R(r),[10] = r[00] + (1 — r)[10]
R(r),[11] = r[01] + (1 — [11]

Bit 2:

Bit1:

~ R(,[00] = [00]
R(r),[01] = r[00] + (1 — r)[01]

R(r),[

0] = [10]

R [11]1=r

0] —@—R(m)

Ol + (1 =n[l1]

R 1 2
R(1/3)[1] = 5[0] + 5[1]

.4%

0] PR, —
(3.12)



3.1.2 Lokale Operationen

R(r),[00] = [00]
A R(r),[01] = [01]
R(r),[10] = r[00] + (1 — r)[10]
R(r),[11] = r[01] + (1 — [11]

1. Schreibe analog zu Gl. 3.9 und 3.10 die Formeln fur R(r), auf.
2. Erklare, warum das Ergebnis von Quirky in Gl. 3.12 richtig ist.

R(r),[00] = [00]
R(r),[01] = r{00] + (1 — H[O1]

~ R@),10] = [10]
R(r){[11] =r[O1] + (1 = )[11]

R 1 2
R(1/3)[1] = 5[0] + 5[1]

Bit2:  [0] —@—R(m) e

. (3.12)

Bit1:  [0] —@—R(us) '“

(l[()] +%[1]> <l[0] +E[1]> —1[00] +2([01] + [10])+i[11]
3 3 3 3 9 9 9
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Pool00] + pp;[01] + pyo[10] + pyy[11]

. : ‘ : Poo + Po1
| - ®

Bit 1 messen

| | . | P1o + P11
Pio P11 - [1]

Bit 2
Poo + P10 Po1 + P11
messen




3.1.3 Nur ein Bit messen

Mit Quirky kann man auch einzelne Bits messen

The Quirky Probability Simulator

Quest 3: Wizard of entanglement (two bits)

Reset H Undo Share ‘ ‘ Make R(r) ‘

Operations Displays My Operations

o (1)

Bit2:  [0] —{(>—R(13) ::—:= 0.0

0.0%

Toolbox
4R
NV

0.0% 33.3‘
1 [©] E 100.0% 66.7%
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3.1.4 Der Zustand des anderen Bit

Allgemein findet man

. Poo 0] + por[1]
[ Poo + Po1 J

Bit 2
0 1
r p
N A
) Poo + Po1
0 Poo Po1 |
Bit 1 Bit 1 messen
AN I | Pio + P11
1 P1o P11 |
< J
Poo + P1o Bit 2 Po1 + P11
messen
Y Y

Poo[0] + p1o[1]
{ Poo + P1o }

[p

01(0] + p11[1]
Po1r + P11 ] @

| @ (Pw[O] = Pn[llJ
R P10 + P11

probabilistisch,
auBer ein Koeffizient
Ist Null

deterministisch



3.1.4 Der Zustand des anderen Bit

Allgemein findet man

Bit 2
0 1
¢ Gy
g — | Poo + P 0 1
o | (70 ) R Pool0] + por[1]
\_ | | » Poo + Po1
Bit 1 Bit 1 messen
a : : [ Pio +p 1
1 . D10 P11 W - > @ p10[0]+P11[]
¢ , : JJ P10 + P11
./ \_
< v
Poo + P10 Bit 2 Po1 + P11
messen
Y Y

Poo[0] + p1o[1] Po1[0] + p11[1]
[ Poo + P10 ] [ Po1 + P11 ] @




3.1.4 Der Zustand des anderen Bit

= = Bit 2
Allgemein findet man ; 1
f B
0 oo B Poo + Po1 R P00[0] + po1[1]
_ _ _ _ Poo + Po1
Bit 1 Bit 1 messen
' | ' P10 +
1 P1o P11 P1o T P11 . @ P10[0] + p11[1]
. . . . P10 + P
& J
Poo + P1o Bit 2 Po1 + P11

messen

Y Y

Poo[0] + pio[1] po1(0] + pu [1]
(0(;’00+P13 ] {mpori'mi ] @

Hier macht es keinen Unterschied ob man beide gleichzeitig misst, oder erst das eine
und dann das andere.
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= = Bit 2
Allgemein findet man ; 1
v \
. ' Poo + Po1 P00[0] + po1[1]
0 Poo Po1 >
T
Bit 1 Bit 1 messen
D - P
1 P10 P11 po T i > ([1] [pm[ﬂ] tPu [I]J
P1o + P11
i v
Bit 2

Poo T P1o Po1 — P11

messen

Y

Poo[0] + p1o[1] Po1[0] + pui[1]
[0(;)00'*‘1713 J [Opm + P J @

Y
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i 1 Bit 2
Allgemein findet man ) 1
( N

0 Poo Po1 Poo T Po1 - (0] Poo[0] + po1[1]

Poo + Po1
Bit 1 Bit 1 messen
) - P .

1 P10 P11 P1o TP -~ (] p10[0] + p11[1]

P1o + P11

Poo T P1o Bit 2 Po1 T+ P11

Poo[0] + pio[1] Po1(0] + pu1 1]
[0(;)00+P13 J [01}7014'1)11 J @
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Beispiel: das Ergebnis [11] kann man mit der Wahrscheinlichkeit P11 bestimmen

Oder erst das erste Bit mit p,, + p;; und dann das zweite mit der Wahrscheinlichkeit
P11

Pio T P11

- das Produkt gibt wieder p,
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i 1 Bit 2
Allgemein findet man ) 1
( D\

0 Poo Po1 Poo T Po1 . [O] Poo [0] + Po1 [1]

Poo + Po1
Bit 1 Bit 1 messen

1 P1o P11 P1o T P11 ~ (] P10[0] + p11[1]

P1o + P11

. o
Poo — P1o Bit 2 Po1 7+ P11
messen

Y

Poo[0] + pio[1] Po1(0] + pu1 1]
[ 0(;700 +P13 J [ 011101 +PE J

Hier macht es keinen Unterschied ob man beide gleichzeitig misst, oder erst das eine
und dann das andere.

Beispiel: das Ergebnis [ 1 1] kann man mit der Wahrscheinlichkeit p;; bestimmen
Oder erst das erste Bit mit p,, + p;; und dann das zweite mit der Wahrscheinlichkeit

Pn__ das Produkt gibt wieder p,
Pio * P11
Oder erst das zweite Bit mit p,; + p;; und dann das zweite mit der Wahrscheinlichkeit
P11

- das Produkt gibt wieder p,
Po1 T P11



3.1.4 Der Zustand des anderen Bit
Ubungsaufgabe 3.2 (Alice’ Minze erater).

Problem: Alice ist im Besitz von drei Minzen u, q,  mit den folgenden Verteilungen:

= (13) 0= ()~ ()

Sie fuhrt nun die folgende Sequenz von Wirfen durch:
1. Sie wirft die Mlnze w.
2. Je nach Ergebnis wirft sie eine der anderen beiden MUnzen:
(0) wenn u das Ergebnis 0 hatte, wirft sie g;
(1) wenn u das Ergebnis 1 hatte, wirft sie r.
3. Alice erzahlt Bob das Ergebnis (0 oder 1) des zweiten Munzwurfs (aber nicht, ob es das Ergebnis von

q oder 7 ist).

Diese Situation besteht aus zwei probabilistischen Bits: Alice’ erster MUnzwurf und Alice’ zweiter
MUnzwurf (der auch Bob’s probabilistischem Bit entspricht).

1 1 2
Fragen: g[OO] + g[()l] + 5[10] + g[ll]

1. Was ist die Wahrscheinlichkeitsverteilung der beiden Wiirfe von Alice? 26 0] 22 1
—_— + —_—
48 48

2. Was ist die Verteilung, wenn Bob sein probabilistisches Bit misst?

3. Wenn Bob sein Bit misst und als Ergebnis 0 erhalt, ist es dann wahrscheinlicher, dass erste Minze 0

. 3 1 3 1
oder 1 war? Was wenn er 1 misst? g[OO] + E[IO]’ g > g = [0] wahrscheinlicher
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3.1.6 Die kontrollierte NOT Operation

Man kann sich CNOT auch als Addition vorstellen

CNOT; 5 [00] = [00],

Die beiden Bits werden addiert

CNOT1_>2 [01] — [01], 0,1,1,2
Dann modulo 2
CNOT;_,5 [10] = [11], 0,1,1,0

Das 2. Bit im Ergebnis entspricht dieser Operation
CNOT, ., [11] = [10].

Formal kann man schreiben

CNOT;_» |a,b] = [a,a ® V), Die Modulo 2 Operation @ kann man auch als
XOR (exklusives Oder - Entweder oder)
bezeichnen

060=101=0001=1p0=1.
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3.1.6 Die kontrollierte NOT Operation

1. Schreibe die Operation CNOT5_,; in einer Formel wie in Gl. 3.20.
2. Wie kann man CNOT5_.; durch SWAP und CNOT}_.5 implementieren?

v LOosung.

1.CNOTy_,1[a,b] = [a® b,b] = [b® a,b|.
2. Dies kann getan werden, indem man zuerst eine SWAP-Operation ausfihrt, dann CNOT;_,5, und
am Ende wieder SWAP. Tatsachlich, wenn wir Gl. 3.18 und 3.20 nutzen, gilt

— SWAP[b,b® a] = [b® a, b].
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3.1.6 Die kontrollierte NOT Operation

Mit Quirky: dot = Steuerbit; Kreuz = Zielbit

§ Operations Displays =€9‘=.=

@ * Cl -2 C2—> 1
Bit2:  [0] j\ =.=€9=
Bit1: [0 —1>

Problem: Es ist beinahe Mitternacht, aber Bob bastelt immer noch an dem

Tool

Prototypen seines probabilistischen-Bit Computers herum, den er am
nachsten Tag in der Schule vorstellen will. Er ist so beschéftigt damit,

seinen Zufallszahlengenerator zu kalibreren, dass er vergisst seinen

Papageien Ziggy zu futtern. Um auf sich aufmerksam zu machen, st6Bt
Ziggy Bob’s Kaffetasse um und der ganze Kaffe flieBt Gber Bob’s
selbstgebastelte Tastatur, mit der er Operationen auslésen kann. Entsetzt
stellt Bob fest, dass die SWAP-Taste nicht mehr funktioniert! Zum Glick
ist es der CNOT'-Taste besser ergangen, sie funktioniert noch immer.
Fragen: Wie kann Bob die SWAP-Operation nur durch CNOT-
Operationen implementieren? (Wenn du zeigen willst, dass zwei
Operationen identisch sind, musst du das dank Linearitat nur fur die

Basiszustédnde zeigen.)

Hinweis: Du solltest drei CNOT-Operationen bendtigen.
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Starte mit g = ¢y[0] + g([1] und r = r|0] + r{[1]

Damit findet man

qor0[00] + qor1[01] + q170[10] + gy71[11].
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Bit, erhalt man keine Information uber das andere Bit
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bezeichnen. Zeige, dass der Zustand des zweiten Bit r ist, unabhéngig vom Ergebnis a des ersten Bits.
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Wie erhalt man 2 Bit Zustande aus Einzelbits?

Starte mit g = ¢y[0] + g([1] und r = r|0] + r{[1]

Damit findet man

qor0[00] + qor1[01] + q170[10] + gy71[11].

Aquivalent:  poo[00] + po1[01] + p1o[10] + p11[11]  mit:  pap = qare.

Besondere Eigenschaft: die beiden Bits sind unabhangig, d.h. beim Messen von einem
Bit, erhalt man keine Information uber das andere Bit

Nimm an, dass wir das erste Bit aus dem Zustand Gl. 3.22 messen und das Ergebnis als a € {0,1}
bezeichnen. Zeige, dass der Zustand des zweiten Bit r ist, unabhéngig vom Ergebnis a des ersten Bits.

Mit anderen Worten, die beiden Bits zu kombinieren und das erste Bit zu messen hat den Zustand des

zweiten nicht beeinflusst (was es auch nicht sollte)!

v~ Lésung.

Nutzen wir Abb. 3.3, so konnen wir den Zustand des zweiten Bits nach dem Messen berechnen als

Pa0l0] + pai 1] _ qa70[0] + gar[1] _ ro[0] + 71[1] = 1[0 + m[1] =,
Pa0 + Pa1 QaT0 + qaT1 To+T1

wobei wir g, gestrichen haben und benutzt haben, dass r, + r; = 1.



3.1.7 Produkt-Verteilungen

Flr diese unabhéngigen Zustanden fihrt man eine neue Notation ein, das Tensorprodukt &



3.1.7 Produkt-Verteilungen

Flr diese unabhéngigen Zustanden fihrt man eine neue Notation ein, das Tensorprodukt &

Ausgehend von [0] ® [1] = [01].



3.1.7 Produkt-Verteilungen

Flr diese unabhéngigen Zustanden fihrt man eine neue Notation ein, das Tensorprodukt &

Ausgehend von [0] ® [1] = [01].

Findet man ¢®7= (q0] + ai[1]) ® (70[0] + 7[1])



3.1.7 Produkt-Verteilungen

Flr diese unabhéngigen Zustanden fihrt man eine neue Notation ein, das Tensorprodukt &

Ausgehend von [0] ® [1] = [01].

Findet man ¢®r = (q[0] + ¢:[1]) ® (r[0] + r[1])
= qoro ([0] ® [0]) + gor1 ([0] ® [1]) + @17 ([1] ® [0]) + qur ([1] ® [1])

= qor[00] + qor1[01] + q17[10] + gy [11].



3.1.7 Produkt-Verteilungen

Flr diese unabhéngigen Zustanden fihrt man eine neue Notation ein, das Tensorprodukt &

Ausgehend von [0] ® [1] = [01].

Findet man ¢®r = (q[0] + ¢:[1]) ® (r[0] + r[1])
= qoro ([0] ® [0]) + gor1 ([0] ® [1]) + @17 ([1] ® [0]) + gv71 ([1] ® [1])

= qoro[00] + qor1[01] + q179[10] + gy [11].

Dies war unser ursprungliche 2 Bit Zustand von oben



3.1.7 Produkt-Verteilungen

Flr diese unabhéngigen Zustanden fihrt man eine neue Notation ein, das Tensorprodukt &

Ausgehend von [0] ® [1] = [01].

Findet man ¢®r = (q[0] + ¢:[1]) ® (r[0] + r[1])
= qoro ([0] ® [0]) + gor1 ([0] ® [1]) + @17 ([1] ® [0]) + gv71 ([1] ® [1])

= qoro[00] + qor1[01] + q179[10] + gy [11].

Dies war unser ursprungliche 2 Bit Zustand von oben

In Vektornotation:

WD) o (T) = ™ _ | Q71
1 ™1 o Qiro |

\Ch 1 ) qir1
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3.1.7 Produkt-Verteilungen

Wir hatten vorhin

Bit2:  [0] R(MB)=.
2.2%

2.2%

Bit1:  [0] RO .

2 4

(3014 2m) @ (501 + 2) = Lo+ 2o+ 2pt0)+ 41 /s
33 37 3°) 9 9 9 o 2 X

/ 11.1%

/91 _ [ 22.2%

/9]~ | 22.2% |’
44.4%

/

Finde zwei probabilistische Bits g und r, sodass folgende Gleichung gilt:

g®r = 0.48[00] + 0.32[01] + 0.12[10] + 0.08[11].
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3.1.7 Produkt-Verteilungen

Das Tensorprodukt erlaubt kompakte Schreibweisen, z.B. von 1 Bit Operationen:

Mi(la] ® [b]) = Mla] ® [b],  Ms(la] ® [b]) = |a] ® M]b].

Derartige Zustande nennt man Produkt-Zustande oder Produkt-Verteilungen
Ist jeder 2-Bit Zustand ein Produktzustand?

Nein!



3.1.8 Korrelierte Verteilungen

Es gibt auch 2-Bit Zustande, die nicht Produktzustande sind,
d.h. sie konnen nicht als [a] ® [D] geschrieben werden

Z.B l[oo] + l[11]
) g)

Derartige Zustande nennt man korreliert
Misst man das erste Bit, dann kennt man automatisch den Wert des zweiten!

In diesem Fall: Zustand des 1. Bits = Zustand des 2. Bits (perfekt korrelierte Zustande)
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3.1.8 Korrelierte Verteillungen

| 1
Konstruktion von E[OO] + 5[1 1] mit Quirky

Bit2:  [0] .

0.0%

0.0%

Bit1:  [0] (D R(1/2)

0%

Erklare, warum die obige Berechnung in Quirky den Zustand 1[00] + 4 [11] generiert.

v Losung.

Der Zustand vor der kontrollierten NOT-Operation ist

(L101+211) @0/ = 2{00] + 1 1a0L

Nachdem wir die kontrollierte NOT-Operation angewendet haben, erhalten wir

CNOT (%[00] T %[10]) = {00 + -[11].
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3.1.8 Korrelierte Verteilungen

Test: ist ein Zustand
P = Poo[00] + po1(01] + p1o[10] + py;[11]

ein Produkt-Zustand oder ein korrelierter Zustand?

Berechne: A(p) = pyoP11 — Po1P1o

Fir Produkt-Zustidnde erhélt man immer A(p) = 0,
andernfalls, ist der Zustand korreliert.

Beispiel: A [ —[00] + —[11]) = ~~ _ 0= _
eispiel: — — —_——— - —
P! 2 > 22 4



3.1.8 Korrelierte Verteillungen

Test: ist ein Zustand
P = P0[00] + po1(01] 4 p1o[10] + py1[11]

ein Produkt-Zustand oder ein korrelierter Zustand?

Berechne: A(p) = pyoP11 — Po1P1o

Fir Produkt-Zustande erhilt man immer A(p) = 0,
andernfalls, ist der Zustand korreliert.

11 1

1 1
Beispiel: A { —[00] +—[11] )| =—==—-0=—
eispie <2[ | 2[ ]> X 7

Beweis: jeder korrelierte Zustand liefert #= 0
(Siehe Skript)



3.1.8 Korrelierte Verteillungen

Nimm an, dass p sich in einer beliebigen Zwei-Bit-Verteilung befindet, sodass der Zustand des zweiten

Bits unabhangig vom Messergebnis des ersten Bit ist. Zeige, dass ein solches p eine Produktverteilung

ist. Das schaffst du in zwei Schritten:
1. Das Messergebnis des ersten Bits kann entweder 0 oder 1 sein. Mit Abb. 3.3 kannst du die

verbleibenden Zustédnde des zweiten Bits in beiden Fallen vergleichen und die folgenden Identitaten

zeigen:

Poo P1o Po1 P11

Poo + Po1 B P10 + P11 , Poo + Po1 B P1o + P11 .

2. Nutze diese Gleichungen sowie Gl. 3.29, um zu zeigen, dass A(p) = 0




Quest 3: Verzaubernde

Verschrankungen

In den letzten zwei Wochen haben wir dartber gesprochen, wie sich ein einzelnes probabilistisches Bit und
ein einzelnes Qubit verhalt. Diese Woche wirst du lernen, was passiert, wenn du zwei zur Verfligung hast.
Zunachst werden wir lernen, wie sich zwei klassische Bits verhalten, welche Zustande sie haben kénnen und
wie sie korrelieren. AnschlieBend werden wir uns analog zwei Qubits anschauen und herausfinden, was es

heiBt, wenn diese verschrédnkt (engl. entangled) sind.

3.1 Zweli probabilistische Bits _ _
3.2.1 Zwei Qubits messen

3.2 Zwei Quantenbits
3.2.2 Lokale Operationen
3.2.3 Parallele Operationen
3.2.4 Kontrollierte Operationen
3.2.5 Verschrankte Zustande

3.2.6 Verschrankung und Korrelati...

3.2.7 Die Macht von Verschrankung



