


The Standard Model (SM) of Particle Physics

Particle content

Fermions (Quarks and leptons)
Spin 1/2 particles

Interactions mediated via gauge bosons
Spin 1

Masses included via Higgs mechanism
Higgs boson: Spin 0
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Hierarchy problem - an open question of the SM

Large differences between the Planck scale and the scale of electroweak SM sector

Higgs Boson
(125 GeV)2

=
raw mass

(1036 GeV2)
− quantum corrections

(1036 GeV2)

123456789012345678901234567890123456
-

123456789012345678901234567890107831
=

15625 = (125)2

Physics beyond the Standard Model will reduce these large corrections
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How to search for physics beyond the SM?

Indirect and direct searches for BSM physics

We are specifically sensitive to BSM physics at high transverse momenta
Hadronic decays of interest due to their large branching ratio
I am particularly interested in processes involving top quarks and W/Z bosons

We can only search for new physics if we understand the SM with utmost precision
January 23, 2024 Boosting precision measurements using jet substructure 4



Large Hadron Collider @ CERN
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ATLAS Experiment
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Challenge at the LHC - Pile-up

LuminosityPublicResultsRun3
January 23, 2024 Boosting precision measurements using jet substructure 7
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How does this look like in our detector?

We’re only interested in one of these collisions and the associated particles

January 23, 2024 Boosting precision measurements using jet substructure 8



How to reconstruct hadronically decaying objects

We cannot directly measure quarks from the
decay of heavy objects

W → qq̄′, Z → qq̄, t → qq̄′b

Instead define proxy for quarks - jet

Collimated spray of hadrons (cone)
Clustering based on distance parameter R

We would expect e.g. two (three) jets for the decay of a W/Z boson (top quark)

Jets have distance parameter of R = 0.4
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Boosted object reconstruction

What happens at high pT with decay products?
Decay products are collimated such that hadrons from quarks start overlapping

Reconstruct decay products instead as single R = 1.0 jet

Rule of thumb

∆R ≈ 2 ·mX

pT

Resolved W boson decay: two small-R jets with m2 = (p1 + p2)
2

Boosted W boson decay: one large-R jet with mass close to mW

January 23, 2024 Boosting precision measurements using jet substructure 10



What are the inputs to jet reconstruction?

Jets are comprised of 2/3 charged particles and
1/3 neutral particles

Tracker only sees charged particles, while
the calorimeter sees both types
Energy deposits in the calorimeter are
thus the key to jet reconstruction

Deposits in EM calorimeter from e.g. π0 → γγ

Topo-clusters constructed to suppress pile-up
Group of topologically connected cells
Pile-up creates add. energy or clusters

arXiv:1603.02934
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Pileup: major challenge for large-R jets

The larger catchment area results in a larger
pile-up susceptibility

Energy deposits from other simultaneous
collisions pollute large-R jet

Need to groom jet before studying its substructure

link to figure
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Impact of jet grooming

link to figures
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Pileup removal works even for pileup scenarios expected for the HL-LHC!
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Jet substructure

The number of background events significantly exceeds that of signal events

Background jets: jets initiated by one quark or gluon

Study the jet’s inner structure for signal vs. background separation: jet substructure

January 23, 2024 Boosting precision measurements using jet substructure 14



Jet substructure - II
arXiv:1808.07858
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τ32 is trying to determine if the jet is composed out of 3 or 2 subjets
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V V → JJ candidate ATLAS-CONF-2016-055

January 23, 2024 Boosting precision measurements using jet substructure 16

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-055/


V V → JJ candidate ATLAS-CONF-2016-055
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The machine learning era

Need powerful tools to distinguish signal from background

ML-based taggers (using various substructure variables), improved inputs to jet reco

arXiv:1808.07858
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Search for new heavy particle Z ′ → tt̄

arXiv:2005.05138
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Adding tracks to the mix

The tracker is less susceptible to pile-up and has a better pT resolution at low momenta

Combine information from tracker and calorimeter to form inputs for jet reconstruction
⇒ Particle-Flow Algorithm (arXiv:1703.10485)

Better angular resolution of tracks

January 23, 2024 Boosting precision measurements using jet substructure 18
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Another set of UFOs at the LHC

At very high pT, decay products could be reconstructed in only one cluster
→ loss of substructure information

Split cluster based on tracks and replace
angular position with track measurement

UFOs: Unified Flow Objects

arXiv:2009.04986
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This does not work for clusters purely from neutral hadrons
→ development of new splitting algorithms

January 23, 2024 Boosting precision measurements using jet substructure 21

https://arxiv.org/abs/2009.04986


The machine learning era - the good

Community is moving towards constituent-based taggers with improved performance
More sophisticated neural networks being developed

ATL-PHYS-PUB-2022-039
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The machine learning era - the bad

Community is moving towards constituent-based taggers with improved performance
More sophisticated neural networks being developed

But new taggers show increase in modelling differences

ATL-PHYS-PUB-2022-039

January 23, 2024 Boosting precision measurements using jet substructure 23

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-039/


Calibration chain of large-R jets
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MC-based calibration of large-R jets
Correct the reconstructed jet energy on average to the truth jet energy
Energy lost due to non-compensating calorimeter, inactive material, noise thresholds, ...
Previously, energy and mass (despite their correlation) were calibrated individually
Improved closure with DNN taking into account shower evolution, substructure
Accounts for differences between jet types, e.g. quark vs. gluon or q/g vs. W/Z/H/top

arXiv:2311.08885
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Calibration chain of large-R jets
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In situ calibration of large-R jets arXiv:1807.09477
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Large-R jet mass in tt̄ events ATLAS-CONF-2020-022

without in situ JES correction with in situ JES correction
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Uncertainties on large-R jet energy scale

JETM-2019-05
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Precision measurements using jet substructure

Tools shown before are fantastic for e.g BSM searches or to select objects in measurements

But we can use them for much more
⇒ e.g. tuning of simulation

Comparison to diff. generators to disentangle
effects like parton shower vs. hadronization

Grooming algorithms reduce sensitivity of
observables to soft physics
→ less affected by non-perturbative effects

arXiv:1903.0294
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Jet substructure in tt̄ events

Provide unfolded data to test analytic predictions and
tune MC generators in tt̄ events

Measurement performed using full Run 2 data in
lepton+jets and all-had channel

arXiv:2312.03797

Require two b-tagged jets matched to large-R jet
Suppresses large multi-jet background

Non-probe jet has to be top tagged

Extended ABCD method for bkg estimation

Only charged-particle tracks used to measure
substructure
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Jet substructure in tt̄ events - yields

Category Event yields Number of large-𝑅 jets
ℓ+jets selection all-hadronic selection

Data 83 069 30 524

Predictions 97 200 ± 3 700 36 500 ± 1 400
𝑡𝑡 (ℓ+jets) 90 600 ± 3 400 1 610 ± 140
𝑡𝑡 (all-hadronic) – 25 700 ± 1 400
Multĳet – 8 100 ± 300
Single-top quark 2 200 ± 300 710 ± 70
NP/Misid. leptons 1 500 ± 600
𝑊+jets 1 500 ± 700 –
𝑡𝑡𝑉 (𝑡𝑡𝑍+ 𝑡𝑡𝑊+ 𝑡𝑡𝐻) 920 ± 120 310 ± 40
Other 400 ± 200 –

Data/Predictions 0.85 ± 0.03 0.84 ± 0.03

(Data – Background)/Signal 0.84 ± 0.03 0.77 ± 0.05

Signal purity 0.92 ± 0.01 0.65 ± 0.01January 23, 2024 Boosting precision measurements using jet substructure 32



Jet substructure in tt̄ events - yields
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Jet substructure in tt̄ events - τ32
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Small interlude - why tuning is important

ATL-PHYS-PUB-2022-021

New AHADIC tune from Sherpa authors using LEP data (hadron fractions within jet)
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The Lund plane - introduction

Lund plane is a useful tool to display emissions

Expect uniform emission pattern in
ln(1/z) and ln(1/θ)

However not directly usable because we
don’t observe quarks/gluons

arXiv:2004.03540
ln

(1
/z

)

hard & wide-

angle

soft-
collinear

hard-
collinear

UE,
MPI

ln(R/∆R)

non-pert. (small kt : zθ ≲ Λ
QCD)
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Re-clustering with the Cambridge/Aachen algorithm

Cluster jet constituents with C/A alg
Based on angular separation

Reverse of parton shower
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The Lund jet plane - arXiv:2004.03540

Measured Lund Jet Plane in dijet events using R = 0.4 jets

Only tracks are used here to allow for precise measurement of small splittings
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The Lund jet plane - arXiv:2004.03540

Measured Lund Jet Plane in dijet events using R = 0.4 jets

Only tracks are used here to allow for precise measurement of small splittings
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The Lund jet plane - arXiv:2004.03540

Measured Lund Jet Plane in dijet events using R = 0.4 jets

Only tracks are used here to allow for precise measurement of small splittings
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Improvements for future measurements

Lately, precision jet substructure measurements have been only performed with tracks

Uncertainties associated with topoclusters are relatively large compared to tracks
We could be missing important discrepancies stemming from neutral particles

ATL-PHYS-PUB-2023-019
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jet
 > 20 GeV, |yJES

T,jet
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BNN training

DNN training

EM scale

LCW hadronic scale

ML-based calibrations for topoclusters
Response for hadronic clusters lower
than for electromagnetic ones

Efforts on-going to reduce pile-up
dependence, e.g. cell-level timing cuts
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Summary

Jet substructure is a versatile tool to probe the SM
Tuning of the simulation, αs determination, jet quenching, searches for BSM ...

Large-R reconstruction has significantly improved over the past 10 years
We can determine the jet energy scale with 1% precision, same level as for small-R jets

There is much more that I couldn’t show here today ...
e.g. quark vs. gluon tagging, multijet event isotropies, mass measurements, ....

Interested? Join us at BOOST in Genova
Annual meeting on jet reconstruction, tagging, pileup mitigation, QCD calculations, ...
Agenda: link

January 23, 2024 Boosting precision measurements using jet substructure 40

https://agenda.infn.it/event/37093/


Backup
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Hadronic shower

A hadronic shower has two components: a hadronic and an electromagnetic one
Escaped energy: e.g. muons and/or neutrinos (from hadron decays)
Electromagnetic component: π0 → γγ
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Jet composition

Jets are not only composed of charged &
neutral hadrons but also of e, µ, γ

e.g. hadron decays, soft photon emissions

≈ 2/3 charged and 1/3 neutral particles

Tracker
Reconstructs only charged particles

Calorimeter:
Reconstructs neutral + charged particles
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Topological clusters

Cells are grouped together in topoclusters
based on the cell significance ς (4-2-0)

Cell significance: ratio of signal to noise

seed cells, ς > 4

growth cells, ς > 2

boundary cells, ς > 0

cells from pile-up vertices

Clusters do not necessarily contain the calorimeter response to only one single particleJanuary 23, 2024 Boosting precision measurements using jet substructure 44



Calorimeter noise

Topo-cluster formation depends on the cell noise which is dominated by pile-up noise

Noise from pile-up needs to be determined prior to data-taking and well tuned
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Cluster formation
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Cluster formation
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Cluster formation
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EM vs. LCW scale

The hadronic calorimeter is a non-compensating calorimeter:
i.e. smaller signal for hadrons than e, γ of the same incident energy
caused by invisible energy: energy used to release nucleons from nuclei + µ + νx

We measure the hadronic signal at the electromagnetic (EM) scale
Local Cell Weighted scale: extra calibration for hadronic signals to account for:

Non-compensating character of the calorimeter
Signal losses due to inactive material
Energy falling in unclustered cells

Clusters first have to be identified as either
hadronic or electromagnetic

LCW used only for large-R jets in Run-2
Small-R jets showed larger pile-up dependence
New efforts on-going to improve LCW using ML
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Particle Flow - continued

1. Match charged-particle tracks to topo-clusters in the calorimeter

2. Subtract energy deposited in the calorimeter by charged particles from matched clusters

3. Add only tracks associated with hard-scatter vertex to list of inputs to jet reconstruction
(Charged Hadron Subtraction)
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E/p

Need to know how much energy a particle with ptrk deposits on average in the calorimeter

⟨Edep⟩ = ptrk

〈
Eclus

preftrk

〉
⟨Edep⟩ is determined in single-particle simulations without pile-up

⟨Edep⟩ provided as a function of ptrk, η and the layer of highest energy density (LHED)
Shower core has a well-defined ellipsoidal shape in η − ϕ

First perform subtraction in LHED before progressing to less regular shower periphery

If ⟨Edep⟩ > Eclus: remove cluster, else cell-by-cell subtraction

...

January 23, 2024 Boosting precision measurements using jet substructure 49



pT balance techniques

Need to measure the jet response in data and simulation, correction factor defined as

c = Rin situ
MC /Rin situ

data

Response is calculated by balancing the jet pT
against a well-calibrated reference object with
approx. no other hadronic activity

Rin situ
MC,data =

〈
pjetT

prefT

〉

Distribution fitted in bins of prefT with Gaus
→ extract mean

Δϕ

J1

j1

Z boson or γ

precoilT

j1

J1

j2

j3
α Δϕ

J1

J2

J3

Uncertainties of ref. object are propagated, thus use objects with high precision, e.g.
Z → µµ, Z → ee, γ or system of well-calibrated low pT jets
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The small-R JES calibration chain

Relative in-situ JES: correct jets with |η| > 0.8 to the same energy scale as |η| < 0.8
Absolute in-situ JES: correct jets with |η| < 0.8 to a precise reference object
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Relative in situ JES - η-intercalibration JETM-2022-01

Aim: flatten the JES across the detector

Matrix method used to increase stat.: neither of the jets needs to be within |η| < 0.8

Multiple reference regions are defined which are calibrated against each other
Calibration derived using dijet events

Response difference between two regions

A =
pleftT − prightT

pavgT

Response ratio R of the two jets defines
the calib factor c for each jet

R =
cleft
cright

=
2 + ⟨A⟩
2 + ⟨A⟩ ≃ pleftT

prightT

Dominating uncertainties are Monte Carlo generator differences and the third jet veto
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Absolute in situ JES - V +jet calibration - direct balance

Reference objects are either Z(→ µµ), Z(→ ee) or γ
Z+jets covers lowest pT range (pT > 17 GeV), γ+jets starting at ≈ 25 GeV
Jets required to be calibrated with η-intercalibration for second jet veto

Δϕ

J1

j1

Z boson or γ

RDB =

〈
pjetT

prefT

〉

with prefT = p
Z/γ
T | cos(∆ϕ(X, jet))|

pT imbalance may be introduced by out-of-cone
(OOC) effects, pile-up or ISR/FSR

→ MPF technique
Technique also used to derive JES for b-jets,
see e.g. JETM-2022-01
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Absolute in situ JES - Multijet balance (MJB) JETM-2018-05

Reference object: system of low-pT small-R jets
Those jets are calibrated with combination of Z+jets & γ+jets calib
Uncertainties from low-pT calibration are propagated through the MJB

MJB covers roughly the range pT > 400 GeV up to 2.5 TeV
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prefT is the vectorial sum of the recoil system

Multiple iterations to extend the reach of the
technique

Dominating uncertainties are the flavour
uncertainties, propagated γ+jets uncertainties
and MC generator differences
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