

Wafer-to-wafer bonded hybrid pixel detectors

J. Vischer¹⁾, Y. Dieter²⁾, J. Dingfelder²⁾, F. Hügging²⁾, K. Kröninger¹⁾, M. Mucha²⁾, J.Weingarten¹⁾, S. Zhang²⁾

1) TU Dortmund University 2) University of Bonn

janna.vischer@tu-dortmund.de

Herbstschule of High-Energy Physics 2025

Hybrid semiconductor pixel detectors are widely established in HEP and medical physics

Sensor: Active volume to detect particles

Front End (FE): Amplification & Pulse shaping

Hybrid semiconductor pixel detectors are widely established in HEP and medical physics

Sensor: Active volume to detect particles

Front End (FE): Amplification & Pulse shaping

- Current manufacturing process:
 - Limited area
 - Limited thinness
 - Uses outdated industry processes

- + Individual development of wafers
- + Thinning after bonding possible
- + Larger surface area
- Layout needs to match on wafer level
- Surface needs to be uniform, plane and smooth
- Need of through silicon vias

W2W-Bonding

Thinning

••••••

Bump Bonds &

Polymer layer

Dicing

Ultimate Goal

Investigate new wafer-to-wafer (W2W) bonded hybrid pixel detectors using Timepix3 FE wafers and dedicated sensor wafers

23 wafer with 105 dices and 246 x 256 pixels each

Ultimate Goal

Complete characterization of all sensors on sensor wafer (IV & CV curves, breakdown voltage, depletion voltage)

Investigation of W2W-bonds on non-detector wafers

Implementation of Timepix 3 readout system

Investigation of W2W bonded detector wafers before dicing

Investigation of W2W bonded detector wafers after dicing

Thermal stability of bonds

Test beam measurements

Measurement Setup

- Semi automatic wafer prober station
 - Ambient temperature: 20°C
 ± 1°C
 - Dehumidified air
 - Light shielding
 - Electromagnetic interference shielding
- Voltage applied via probes on bias pads and chuck on backside metallization
- Automatic measurement of several dices

 Charge carrier free depletion zone where n+ and p doped regions meet

- Charge carrier free depletion zone where n+ and p doped regions meet
 - Particles induce charges in depletion zone

- Charge carrier free depletion zone where n+ and p doped regions meet
 - Particles induce charges in depletion zone
 - Outside of depletion zone charges recombine
 - Electric field in depletion zone let charges drift and can be measured

- Charge carrier free depletion zone where n+ and p doped regions meet
 - Particles induce charges in depletion zone
 - Outside of depletion zone charges recombine
 - Electric field in depletion zone let charges drift and can be measured
 - Collected charges can be measured

- Charge carrier free depletion zone
 where n+ and p doped regions meet
- Reverse bias voltage increases thickness of depletion layer

- Charge carrier free depletion zone where n+ and p doped regions meet
- Reverse bias voltage increases thickness of depletion layer
- Depletion zone reaches backplate metallization: Fully depleted sensor
 - → maximum active volume

- High currents might break the sensor and need to be avoided!
- Breakdown voltage: 20% current increase during 5V step

- High currents might break the sensor and need to be avoided!
- Breakdown voltage: 20% current increase during 5V step
- Early break down caused by physical damages
- 20/105 dices with early breakdown

- Breakdown voltage: 20% current increase during 5V step
 - Some curves too flat to determine V_{Breakdown}
 - → Wide spread of breakdown voltages

Capacitance-Voltage Dependency

- Impedance measurements using an LCR-meter
- Depletion voltage determined through fit

Sensor dependent depletion voltage

Conclusion

W2W bonding is a promising technology for ultra-thin, large-area hybrid pixel detectors

First sensor wafer has been successfully tested:

- Determination of breakdown voltage
- 20 broken sensors have been identified
- Determination of depletion voltage:
 - 3 failed measurements (missing contact)
 - 12 dices with Vdepl > Vbreakdown (defects at backside?)

70 / 105 dices ≈ 67% operational

Next: Investigation of bond quality using daisy chain wafer

Acknowledgments

Thank You!

Y. Dieter

J. Dingfelder

F. Hügging

M. Mucha

S. Zhang

K. Kröninger

J. Vischer

J.Weingarten

Backup Slides

Use daisy chain wafers with copper pads to test bond quality

- Use daisy chain wafers with copper pads to test bond quality
 - W2W bond using copper pilars, bump bonds and polymer layer for stability

- Use daisy chain wafers with copper pads to test bond quality
 - W2W bond using copper pilars, bump bonds and polymer layer for stability
 - Etch and fill Through Silion Vias (TSV) for contacting

- Test of bonds:
 - Resistance per bond
 - Bond quality before and after dicing
 - Thermal stability

Sensor Layout

Sensor edge:

"ULTRA-THIN HYBRID PIXEL DETECTORS USING WAFERTO-WAFER BONDING." Accessed: Dec. 10, 2024.

1. Manufacturing of wafers

Timepix 3

- 1. Manufacturing of wafers
- 2. Application of copper pads, pillars and solder bonds

- 1. Manufacturing of wafers
- 2. Application of copper pads, pillars and solder bonds
- 3. Application of photo-structured polymer layer

- 1. Manufacturing of wafers
- 2. Application of copper pads, pillars and solder bonds
- 3. Application of photo-structured polymer layer
- 4. Wafer bonding

- 1. Manufacturing of wafers
- 2. Application of copper pads, pillars and solder bonds
- 3. Application of photo-structured polymer layer
- 4. Wafer bonding
- 5. Backside grinding

- 1. Manufacturing of wafers
- 2. Application of copper pads, pillars and solder bonds
- 3. Application of photo-structured polymer layer
- 4. Wafer bonding
- 5. Backside grinding
- 6. Etching of through silicon via (TSV)

- 1. Manufacturing of wafers
- 2. Application of copper pads, pillars and solder bonds
- 3. Application of photo-structured polymer layer
- 4. Wafer bonding
- 5. Backside grinding
- 6. Etching of through silicon via (TSV)
- 7. TSV filling and backside distribution layer

Picture from Fraunhofer IZM, Berlin

- 1. Manufacturing of wafers
- 2. Application of copper pads, pillars and solder bonds
- 3. Application of photo-structured polymer layer
- 4. Wafer bonding
- 5. Backside grinding
- 6. Etching of through silicon via (TSV)
- 7. TSV filling and backside distribution layer

Charge carrier free depletion zone where n+ and p doped regions meet

- Charge carrier free depletion zone where n+ and p doped regions meet
- Reverse bias voltage increases thickness of depletion layer

- Charge carrier free depletion zone where n+ and p doped regions meet
- Reverse bias voltage increases thickness of depletion layer
- Depletion zone reaches backplate metalisation: Fully depleted sensor

Visual Defects

- Careful handling of wafer
- Don't apply too high current!
- Protected transport
- Limit handling
- Work in clean room

Depletion Zone

Intrinsic (Undoped)

Extrinsic (Doped)

"Basic diagram showing examples of P and N Type dopings on pure silicon" by VectorVoyager (2024), via Wikimedia Commons. Licensed under CCBY-SA 4.0.

"A PN junction in thermal equilibrium [...]" by TheNoise (2007), via Wikimedia Commons. Licensed under CC BY-SA 3.0.

