Measurement of $\sin(2\beta)$ at Belle II using $B^0 \to J/\psi K_S^0$ and $\psi(2S)K_S^0$ Decays

Xu Dong DESY

Herbstschule HEP September 11, 2025

1. The Belle II Experiment

The **Belle II** experiment at the SuperKEKB e^+e^- collider (KEK, Japan) is designed to search for **New Physics** (NP) in heavy flavor decays.

- SuperKEKB: World's highest luminosity ($\sim 5.1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$), produces $B\bar{B}$ pairs at the $\Upsilon(4S)$ resonance ($\sqrt{s} \approx 10.58 \text{ GeV}$).
- **Detector**: Features excellent vertexing and particle ID.
 - Vertex Detector (PXD+SVD): Precise Δt measurement.
 - CDC, TOP, ARICH: Tracking and PID.
 - **ECL**: Photon/electron detection.
- Goal: Perform high-precision studies of CP violation and rare decays.

2. The Theory of $\sin(2\beta)$

In the Standard Model (SM), CP violation is described by the CKM matrix. The angle β (ϕ_1) is a key parameter.

- The "Golden Channel": The decay $B^0 \to J/\psi K_S^0$ is ideal for measuring $\sin(2\beta)$. It is a **CP eigenstate** with low theoretical uncertainty.
- Time-Dependent CP Asymmetry:

$$A_{CP}(\Delta t) = \frac{N(\Delta t) - \bar{N}(\Delta t)}{N(\Delta t) + \bar{N}(\Delta t)} = S\sin(\Delta m_d \Delta t)$$

For the $b \to c\bar{c}s$ transition, the mixing parameter $S = \sin(2\beta)$.

• NP Sensitivity: The global CKM fit predicts $\sin(2\beta) = 0.699 \pm 0.011$. A significant deviation would be a clear sign of New Physics.

3. My Analysis: $\sin(2\beta)$ with $J/\psi K_S^0$ and $\psi(2S)K_S^0$

I measure $\sin(2\beta)$ using:

•
$$B^0 \to J/\psi K_S^0 \ (J/\psi \to \ell^+\ell^-, K_S^0 \to \pi^+\pi^-/\pi^0\pi^0)$$

•
$$B^0 \to \psi(2S) K_S^0 \ (\psi(2S) \to J/\psi \pi^+ \pi^-, \ J/\psi \to \ell^+ \ell^-)$$

The analysis is developed and validated on Monte Carlo (MC) simulation.

3.1 Signal Selection & Background Analysis

A robust event selection is crucial.

- Selection Criteria:
 - Kinematic Variables: Beam-constrained mass $(M_{\rm bc})$ and energy difference (ΔE) .

$$M_{\rm bc} = \sqrt{E_{\rm beam}^2 - p_B^2}$$
 (Peaks at M_B)
 $\Delta E = E_B - E_{\rm beam}$ (Peaks at 0)

- Particle ID (PID): Efficient K/π separation.
- Vertex Quality: For precise Δt measurement.
- Backgrounds:
 - Continuum $(e^+e^- \to q\bar{q})$: Suppressed with event shape variables (e.g., R_2).
 - **Generic** $B\bar{B}$: Studied using MC and sideband data.

3.2 Fitting Strategy & Δt Fit

- We performed fits on ΔE and $M_{\rm bc}$ distributions to extract the signal.
- Background estimation in the signal region was derived using the sideband regions, allowing for a cleaner extraction of the signal for the final Δt fit.

3.3 Conclusion & Outlook

- Conclusion: The final results indicate that our method of MC does not bias the extraction of $\sin(2\beta)$, which can be used for subsequent data processing. The analysis results will be crucial for refining measurement techniques and improving sensitivity to CP violation signals in future experiments.
- Outlook: This method will yield a world-leading precision measurement of $\sin(2\beta)$ with Belle II data, providing a powerful test of the SM.