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Mysteries

Neutrino Mass and oscillations
Muon g-2

Hierarchy problem
Matter-Antimatter asymmetry
QCD-CP problem
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Arms of galaxies rotate faster than out expectations!
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Arms of galaxies rotate faster than out expectations!

Galaxy Cluster Abell 2218 HST » W?PCé

NASA, A. Fruchter and the ERO Team (STScl) * STScl-PRC00-08

Clusters bend light too much!
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Galaxy Cluster Abell 2218

NASA, A. Fruchter and the ERO Team (STScl) * STScl-PRC00-08

Clusters bend light too much!

Bullet Cluster is very weird
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Supersymmetry

We pick a very
general category
of particles

ALPs

Little Higgs
QCD Axions

. Axion-like Particles \\ &\ .
. made by Tim M.P. Tait Littlest Higgs
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Axion-Like-Particles

® Pseudoscalar

o Shiftsymmetric @ — A + X
e Mass is independent of the symmetry breaking scale!

e Modeled by EFTs
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Axion-Like-Particles

® Pseudoscalar

o Shiftsymmetric @ — A + X
e Mass is independent of the symmetry breaking scale!

e Modeled by EFTs
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The most probed part: el g‘?%a}?“yﬁwv
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The most probed part: e ”C]C?%G,FMVF“V

Allows for the Primakoff effect:
Pseudoscalar

Photon (Pions, ALPs etc.)

Mg e— :
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The most probed part: e ”C]C?%G,FMVF“V

Allows for the Primakoff effect:
Pseudoscalar

Photon Effective Coupling (Plons, ALPs etc.)

N /

Classical magnetic field
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CERN Axion Solar Telescope (CAST)

These, and many more, aim to constraint the ALP-Photon-Photon
coupling using the Primakoff effect!
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CERN Axion Solar Telescope (CAST)

These, and many more, aim to constraint the ALP-Photon-Photon
coupling using the Primakoff effect!

.... Or basically any process where magnetic fields are
present: lon collisions, magnetars....
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But we are interested in something different:
How does the ALP-Photon-Photon coupling term even behave under external
fields?
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Schwinger Formalism

Typically we work with “free” particle states.

If there is an external magnetic field, this can be treated as a classical
potential, instead of dynamic photon fields!
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Schwinger Formalism

Typically we work with “free” particle states.

If there is an external magnetic field, this can be treated as a classical
potential, instead of dynamic photon fields!

But we also have the usual, quantized, dynamic photons.

A, = A+ A
o

Non-Perturbative - Classical | Quantum ——  Perturbative




QED Lagrangian becomes:
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Dirac wave functions do not work anymore!
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We do not have to compute the solution to the modified Dirac Eq., only the
propagators are needed.

(P — m)Sr(z,z') = 6*(z — o)
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We do not have to compute the solution to the modified Dirac Eq., only the
propagators are needed.

(P — m)Sr(z,z') = 6*(z — o)
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But we are interested in something different:
How does the ALP-Photon-Photon coupling term even behave under external

fields?
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Lorentz-invariance is lost, and the resulting propagator is kinda complicated.
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Lorentz-invariance is lost, and the resulting propagator is kinda complicated.
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Lorentz-invariance is lost, and the resulting propagator is kinda complicated.
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Explicit form of the integral:
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Explicit form of the integral:
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These variables live on the perpendicular plane!
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Evaluate the delta distributions:
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All the nasty stuff is now
hidden here.
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Closed form when the external momenta are parallel to the magnetic field:

Full Result HE m,=0.1me
109 ——=Strong Field Approx. HE m.=0.5m.
EE m,=1.0me
l m,=15m¢

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
eB [keV?] 166
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Summary Outlook

e For external fields, Schwinger e Particles with different
formalism can be used mathematical structures can be

e Effective couplings have used
non-trivial external field e Bosonic corrections are a
dependance possibility

e C(Closed form for specific kinetic e Phenomenology work
configurations e Other BSM candidates can be

considered



