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The Gradient Flow first arose in the context of perturbation theory in the late 2000s.
It provides a bridge between lattice calculations and continuum perturbation theory,
since it is both implementable on the lattice and in the continuum. The main idea is to
extend the regular fields by an auxiliary parameter, the flow-time t ≥ 0. The behavior of
such a new flowed field with respect to the flow-time is governed by a linear differential
equation called the flow equation. The original idea behind this flow equation was a
gradient descent towards the stationary point of the classical action,

∂tΦ(t, x) = − δS[Φ]

δΦ(x)
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Φ→Φ(t,x)

, (1)

with the boundary condition that at the flowed field should recover the regular field at
vanishing flow-time: Φ(t = 0, x) = Φ(x).

This choice of flow equation implies that the Feynman rules of the flowed fields acquire
an additional exponential damping factor e−tp2 , which suppresses UV-modes. In position
space, this corresponds to a Gaussian smearing with a smearing radius Rs(t) ∼

√
t. As a

consequence, composite operators built from flowed fields, Õn(t), do not mix under re-
normalization, unlike their unflowed counterparts On. They can instead be renormalized
multiplicatively, using only the parameter and flowed field renormalization constants.
This makes it very useful to express an observable R in terms of these finite flowed
operators

R =
∑
n

Cn ⟨On⟩ =
∑
n

C̃n(t)
〈
Õn(t)

〉
. (2)

The matrix elements are typically computed using lattice simulations, where the intro-
duction of the flow-time ensures the existence of the continuum limit. Our task on the
perturbative side is to calculate the new flowed Wilson coefficients C̃n(t). We can cal-
culate these coefficients by making the following observation: the flowed fields reduce
to the regular fields at t = 0, and therefore the flowed operators must also admit an
expansion in terms of the regular operators as t → 0

Õn(t)
t→0
=

∑
m

ζnm(t)Om . (3)

This relation is known as the short-flow-time expansion (SFTX) and contains the central
object of interest: the matching matrix ζ(t). From this expansion it follows immediately
that C̃n(t) = Ck

[
ζ−1(t)

]
kn
. Thus, the matching matrix ζ(t) provides the essential bridge

between the ”flowed world” and the regular theory.



The extraction of ζ is conceptually very similar to matching procedures in effective field
theories (EFTs). We employ the method of projectors: one computes suitable Greens
functions of the SFTX, applies appropriate derivatives with respect to the external scales,
and finally sets these scales to zero. In this limit, the right-hand side of Eq. (3) reduces
to its leading-order contributions, while on the left-hand side the t-dependent terms
survive. By evaluating these matrix elements explicitly, one can determine the entries of
the matching matrix.

Our actual calculations are carried out using a tool chain: first, we generate the Feyn-
man diagrams with qgraf; next, we assign abstract Feynman rules and distribute the
momenta using tapir and exp; finally, we perform the explicit computations, such as
applying derivatives and taking traces, in FORM. At 2-loop, the resulting integrals are
known analytically, at 3-loop, we calculate them numerically using ftint.

The underlying goal is to work towards a full flowed standard model and apply the
Gradient Flow to EFTs like SMEFT or LEFT.


