Search for **Light Pseudoscalar Bosons from Higgs Boson Decays** in the Four-Kaon **Final State** 56th Herbstschule HEP Johannes Hornung September 8, 2025 ## **Q & A Session** Please scan this QR code, it'll bring you to a Google Doc, where I'll answer questions after the talk. #### **Motivation** - h_{125} decay width $\Gamma_{\text{theo}} = 4.1 \text{ MeV}$ - Indirect off-shell measurements exist assuming no BSM contribution - No direct measurements possible at the LHC - Branching ratios still measured via signal strengths with the κ -framework - Branching ratios of individual Higgs decay channels measurable - Branching ratio of h_{125} into undetected decay modes BR_{undet} - non-detectable decays into SM particles - decays into BSM particles - Current upper limit on BR_{undet}: 0.16 at 95 % CL - \rightarrow Searches for exotic h_{125} decays (The CMS Collaboration, A portrait of the Higgs boson by the CMS experiment ten years after the discovery, Nature 607, 60-68 (2022)) ## **Signal Model** - $h_{125} \to aa \to K^+K^-K^+K^-$ - Decay chain possible if $2 \cdot m_{K^{\pm}} \leq m_a \leq m_{h_{125}}/2$ - $a \rightarrow K^+K^-$ dominant for 1 GeV $\leq m_a \leq$ 2 GeV - Pseudoscalar ALPs, additional Higgs bosons, ... - Properties of pseudoscalar bosons a - Mass $m_a = 1.5 \,\mathrm{GeV}$ - Decay promptly - No electric charge, color charge or spin (Y. Gershtein et al., Probing naturally light singlets with a displaced vertex trigger, Physics Letters B, Vol. 823 (2021), 136758) ## **Signal Topology** - Zh₁₂₅ production - lacksquare $Z o \ell\ell$ decay provides clean signature - → Suppress QCD multijet background - lacksquare K^{\pm} assumed to be highly energetic - Measured in detector before decaying - Reconstructed as individual Particle-Flow candidates - Charge information available for offline reconstruction ## **Analysis Overview** - Objective: Agnostic search for h_{125} resonance in invariant four-kaon mass m_{4K} - Considered data-taking periods: 2016 (36.3 fb^{-1}), 2017 (41.5 fb^{-1}), 2018 (59.8 fb^{-1}) - Two signal regions based on the Z boson decay: $\mu\mu$, ee - lacktriangle Control regions: Sidebands of the SRs, $e\mu$ - Selection for model building based on distribution of m_{4K} : | Cut Variable | $\mu\mu/ee$ SR | |---|---| | Dilepton mass $m_{\ell\ell}$ | $75\mathrm{GeV} < m_{\ell\ell} < 105\mathrm{GeV}$ | | Dilepton $oldsymbol{ ho}_{ m T}^{\ell\ell}$ | $oldsymbol{ ho}_{ ext{T}}^{\ell\ell} > 30 ext{GeV}$ | | Four-kaon mass m_{4K} | $70{ m GeV} < m_{4K} < 200{ m GeV}$ | | Four-kaon η_{4K} | $ \eta_{4K} < 2.4$ | | Leading constituent p_{T}^{K} | $p_{\mathrm{T}}^{K^\pm} > 10\mathrm{GeV}$ | | Di-kaon mass $m_{K^+K^-}$ | $m_{K^+K^-} < 3\mathrm{GeV}$ | | $\Delta m_{K^+K^-}$ | $ \Delta m_{K^+K^-} < 0.06\mathrm{GeV}$ | | Blinded region | $110 \text{GeV} < m_{4K} < 140 \text{GeV}$ | #### Reconstruction of the Z Boson - Reconstructed from leptons that pass additional quality criteria - Isolation - Compatibility with the primary vertex - lacktriangle Criteria on $oldsymbol{p}_{\mathrm{T}}^{\ell}$ and η_{ℓ} - Lepton pair chosen that - \blacksquare passes separation requirement $\Delta R > 0.5$ - has the invariant dilepton mass $m_{\ell\ell}$ closest to the Z boson mass - → Reject events without a suitable lepton pair ## Reconstruction of the h₁₂₅ Boson - h_{125} candidate reconstructed by adding up four highest- p_T PF cands in an event - Resulting distribution of m_{4K} after all cuts - Sharp signal resonance peak - SM backgrounds suppressed well - Good agreement between data and background simulation in sidebands # Relative Isolation of the Two Leading K^{\pm} in the h_{125} System - \blacksquare K^{\pm} from h_{125} decay highly energetic - More isolated than charged PF candidates from background events # Relative Isolation of the Two Leading K^{\pm} in the h_{125} System - \blacksquare K^{\pm} from h_{125} decay highly energetic - More isolated than charged PF candidates from background events - Problem: In low relative isolation regime, statistics gets low for data and simulated background - Solution: - Model the m_{4K} distributions for signal and background through parametric fits - Extrapolate the norm parameter of the parametric background model to the low relative isolation regime ## Modeling of Signal and Background #### Signal Model - Fit to data of signal simulation - h_{125} resonance: Crystal ball function + Gaussian distribution ## **Modeling of Signal and Background** ## **Background Model** - Fit to sidebands of experimentally recorded data - Exponential function ## **Extrapolation into Low Relative Isolation Regime** - Perform successive cuts on relative isolation of two leading K^{\pm} - Fit parametric function $$f(x) = \frac{a}{\left(1 - \exp\left(-\frac{x}{x_0}\right)\right)^b}$$ to recorded event yields ■ Extrapolate this model to f(0.5) to get the norm for the background model ## **Extrapolation into Low Relative Isolation Regime** - Perform successive cuts on relative isolation of two leading K^{\pm} - Fit parametric function $$f(x) = \frac{a}{\left(1 - \exp\left(-\frac{x}{x_0}\right)\right)^b}$$ to recorded event yields - Extrapolate this model to f(0.5) to get the norm for the background model - Exponential parameter α unaffected by cuts on the relative K^{\pm} isolation ## **Limits** 2016: 0.049 2017: 0.060 2018: 0.027 combined: 0.019 ## **Summary and Outlook** #### **Summary** - First look into $h_{125} \rightarrow aa \rightarrow K^+K^-K^+K^-$ - Data from 2016 (36.3 fb^{-1}), 2017 (41.5 fb^{-1}) and 2018 (59.8 fb^{-1}) processed - Zh_{125} as production mode of h_{125} - $m_a = 1.5 \, \mathrm{GeV}$ - Combined expected limit on BR($h_{125} \rightarrow aa \rightarrow K^+K^-K^+K^-$) 0.019 at 95 % CL #### **Outlook** - Scan m_a values: $1 \text{ GeV} \leq m_a \leq 2 \text{ GeV}$ - \blacksquare Process Run 3 (> 180 fb⁻¹) data - Incorporate machine learning techniques - Expand analysis to different production modes using scouting data - Search for long lived a bosons ## Thank you for your attention! Google Doc for questions.