Search for **Light Pseudoscalar Bosons from Higgs Boson Decays** in the Four-Kaon **Final State**

56th Herbstschule HEP Johannes Hornung September 8, 2025

Q & A Session

Please scan this QR code, it'll bring you to a Google Doc, where I'll answer questions after the talk.

Motivation

- h_{125} decay width $\Gamma_{\text{theo}} = 4.1 \text{ MeV}$
 - Indirect off-shell measurements exist assuming no BSM contribution
 - No direct measurements possible at the LHC
- Branching ratios still measured via signal strengths with the κ -framework
- Branching ratios of individual
 Higgs decay channels measurable
- Branching ratio of h_{125} into undetected decay modes BR_{undet}
 - non-detectable decays into SM particles
 - decays into BSM particles
- Current upper limit on BR_{undet}:
 0.16 at 95 % CL
- \rightarrow Searches for exotic h_{125} decays

(The CMS Collaboration, A portrait of the Higgs boson by the CMS experiment ten years after the discovery, Nature 607, 60-68 (2022))

Signal Model

- $h_{125} \to aa \to K^+K^-K^+K^-$
 - Decay chain possible if $2 \cdot m_{K^{\pm}} \leq m_a \leq m_{h_{125}}/2$
 - $a \rightarrow K^+K^-$ dominant for 1 GeV $\leq m_a \leq$ 2 GeV
 - Pseudoscalar ALPs, additional Higgs bosons, ...
- Properties of pseudoscalar bosons a
 - Mass $m_a = 1.5 \,\mathrm{GeV}$
 - Decay promptly
 - No electric charge, color charge or spin

(Y. Gershtein et al., Probing naturally light singlets with a displaced vertex trigger, Physics Letters B, Vol. 823 (2021), 136758)

Signal Topology

- Zh₁₂₅ production
 - lacksquare $Z o \ell\ell$ decay provides clean signature
 - → Suppress QCD multijet background
- lacksquare K^{\pm} assumed to be highly energetic
 - Measured in detector before decaying
 - Reconstructed as individual Particle-Flow candidates
 - Charge information available for offline reconstruction

Analysis Overview

- Objective: Agnostic search for h_{125} resonance in invariant four-kaon mass m_{4K}
- Considered data-taking periods: 2016 (36.3 fb^{-1}), 2017 (41.5 fb^{-1}), 2018 (59.8 fb^{-1})
- Two signal regions based on the Z boson decay: $\mu\mu$, ee
- lacktriangle Control regions: Sidebands of the SRs, $e\mu$
- Selection for model building based on distribution of m_{4K} :

Cut Variable	$\mu\mu/ee$ SR
Dilepton mass $m_{\ell\ell}$	$75\mathrm{GeV} < m_{\ell\ell} < 105\mathrm{GeV}$
Dilepton $oldsymbol{ ho}_{ m T}^{\ell\ell}$	$oldsymbol{ ho}_{ ext{T}}^{\ell\ell} > 30 ext{GeV}$
Four-kaon mass m_{4K}	$70{ m GeV} < m_{4K} < 200{ m GeV}$
Four-kaon η_{4K}	$ \eta_{4K} < 2.4$
Leading constituent p_{T}^{K}	$p_{\mathrm{T}}^{K^\pm} > 10\mathrm{GeV}$
Di-kaon mass $m_{K^+K^-}$	$m_{K^+K^-} < 3\mathrm{GeV}$
$\Delta m_{K^+K^-}$	$ \Delta m_{K^+K^-} < 0.06\mathrm{GeV}$
Blinded region	$110 \text{GeV} < m_{4K} < 140 \text{GeV}$

Reconstruction of the Z Boson

- Reconstructed from leptons that pass additional quality criteria
 - Isolation
 - Compatibility with the primary vertex
 - lacktriangle Criteria on $oldsymbol{p}_{\mathrm{T}}^{\ell}$ and η_{ℓ}
- Lepton pair chosen that
 - \blacksquare passes separation requirement $\Delta R > 0.5$
 - has the invariant dilepton mass $m_{\ell\ell}$ closest to the Z boson mass
 - → Reject events without a suitable lepton pair

Reconstruction of the h₁₂₅ Boson

- h_{125} candidate reconstructed by adding up four highest- p_T PF cands in an event
- Resulting distribution of m_{4K} after all cuts
 - Sharp signal resonance peak
 - SM backgrounds suppressed well
 - Good agreement between data and background simulation in sidebands

Relative Isolation of the Two Leading K^{\pm} in the h_{125} System

- \blacksquare K^{\pm} from h_{125} decay highly energetic
 - More isolated than charged PF candidates from background events

Relative Isolation of the Two Leading K^{\pm} in the h_{125} System

- \blacksquare K^{\pm} from h_{125} decay highly energetic
 - More isolated than charged PF candidates from background events
- Problem: In low relative isolation regime, statistics gets low for data and simulated background
- Solution:
 - Model the m_{4K} distributions for signal and background through parametric fits
 - Extrapolate the norm parameter of the parametric background model to the low relative isolation regime

Modeling of Signal and Background

Signal Model

- Fit to data of signal simulation
- h_{125} resonance: Crystal ball function + Gaussian distribution

Modeling of Signal and Background

Background Model

- Fit to sidebands of experimentally recorded data
- Exponential function

Extrapolation into Low Relative Isolation Regime

- Perform successive cuts on relative isolation of two leading K^{\pm}
- Fit parametric function

$$f(x) = \frac{a}{\left(1 - \exp\left(-\frac{x}{x_0}\right)\right)^b}$$

to recorded event yields

■ Extrapolate this model to f(0.5) to get the norm for the background model

Extrapolation into Low Relative Isolation Regime

- Perform successive cuts on relative isolation of two leading K^{\pm}
- Fit parametric function

$$f(x) = \frac{a}{\left(1 - \exp\left(-\frac{x}{x_0}\right)\right)^b}$$

to recorded event yields

- Extrapolate this model to f(0.5) to get the norm for the background model
- Exponential parameter α unaffected by cuts on the relative K^{\pm} isolation

Limits

2016: 0.049

2017: 0.060

2018: 0.027

combined: 0.019

Summary and Outlook

Summary

- First look into $h_{125} \rightarrow aa \rightarrow K^+K^-K^+K^-$
 - Data from 2016 (36.3 fb^{-1}), 2017 (41.5 fb^{-1}) and 2018 (59.8 fb^{-1}) processed
 - Zh_{125} as production mode of h_{125}
 - $m_a = 1.5 \, \mathrm{GeV}$
- Combined expected limit on BR($h_{125} \rightarrow aa \rightarrow K^+K^-K^+K^-$) 0.019 at 95 % CL

Outlook

- Scan m_a values: $1 \text{ GeV} \leq m_a \leq 2 \text{ GeV}$
- \blacksquare Process Run 3 (> 180 fb⁻¹) data
- Incorporate machine learning techniques
- Expand analysis to different production modes using scouting data
- Search for long lived a bosons

Thank you for your attention!

Google Doc for questions.

