Development of Integrated Cooling Solutions for the CALICE AHCAL

Herbstschule 2025 Bad Honnef

2nd – 12th September 2025

Andre Klotzbücher, Lucia Masetti, Bohdan Dudar,

Quirin Weitzel, Steffen Schönfelder, Fabian Piermaier, Konrad Briggl

Particle Flow

- Combining information from all subdetectors to reconstruct jet energies
- Momentum of charges particles measured in tracker
- Photons and electrons measured in ECAL, hadrons in HCAL

Future of Particle Colliders

- 2012: Higgs-particle has been found at the LHC
- Measurement of some decay: $H \rightarrow \gamma \gamma$, $H \rightarrow b\bar{b}$, $H \rightarrow \tau^+\tau^-$
- LHC pp Collider -> a lot of pile-up and QCD background
- ➤ e⁺e⁻- Collider for presicion measurement

Linear vs. Circular Collider

ILC (International Linear Collider):

- Proposed linear particle accelerator
- Bunch crossing rate: 5 Hz

- FCC (Future Circular Collider):
- Proposed circular particle accelerator
- Bunch crossing rate: 40 MHz

CALICE AHCAL

 CALICE collaboration developed an analog hadronic calorimeter (AHCAL) within the design requirements of the ILC

• Prototype build and tested with ca. 22000 channels

HBUs with SiPM-on-Tile technology

Picture taken from "A highly granular SiPM-on-tile calorimeter prototype" (https://arxiv.org/abs/1808.09281)

Picture taken from "International large detector: Technical design report: Volume 4: Detectors" (https://arxiv.org/abs/1306.6329)

Cooling of the Front-End Electronics

- Power consumption managed through power pulsing (1ms bunch trains at 5 Hz)
- The AHCAL will now be modified to also fit into a FCC-ee type accelerator
 - Higher bunch crossing rates than at the ILC
 - ➤ Power pulsing no longer possible

➤ Need for integrated cooling

Temperature Distribution on the HBU

• Temperature measurements with thermal imaging camera

Simulation of the Temperature Gradient

- Simulation done by a group in Heidelberg
- Layout with a slab made of 6 HBUs
- Simulation needs more information:
 - Contact pressure
 - Material
 - Thickness of heat spreader
- Information gathered in Mainz

Dummy HBU

- Dummy HBU to gather information in Mainz
- "Main board":
 - 18cm x 18cm (1/4 of HBU)
 - Voltage regulator as heat source
 - Temperature sensors
- "Extension":
 - 18cm x 5cm
 - Used for placement of power supply, sensors readout, etc.

Future Plans and Challenges

- Test and improve dummy HBU
- Scale dummy HBU to a full sized HBU
- Test different settings as:
 - Heat distribution with/without external copper plate
 - Thickness of the heat spreader (GND plane and copper plate)

- Challenges:
 - Working within the mechanical design of the CLD for the FCC-ee

Backup

Temperature Distribution on the DAQ modules

Main heat source are the DAQ interface modules

will need an extra cooling system

DAQ interface modules (POWER-, CALIB- and DIF-board)

Heat Transfer from ASIC to Copper Plate

CMS HGCAL cooling

Plot taken from: The Phase-2 Upgrade of the CMS Endcap Calorimeter - CERN Document Server