

Search for $B^+ o K^{*+} au^+ au^-$ with hadronic tagging at Belle II

Lennard Damer, Torben Ferber, Pablo Goldenzweig

Motivation

$$R_{D^{(*)}} \; = \; rac{\mathcal{B}(B o D^{(*)} au
u_ au)}{\mathcal{B}(B o D^{(*)} \ell
u_\ell)} \quad (\ell = e, \mu), \quad R_{J/\psi} \; = \; rac{\mathcal{B}(B_c^+ o J/\psi \, au^+
u_ au)}{\mathcal{B}(B_c^+ o J/\psi \, \mu^+
u_\mu)}$$

- Recent Experiments: Intriguing hints of lepton flavor universality violation in $b \to c \ell \nu$ ratios $R_{D^{(*)}}$ and $R_{J/\psi}$
- FCNC $b \to s \mathcal{E}^+ \mathcal{E}^-$ involving **third generation** leptons
 - SM: BR $(B^+ \to K^{*+} \tau^+ \tau^-) \sim 10^{-7}$
 - NP effects interconnected to $b \to c\ell\nu$ could enhance the FCNC process up to three orders of magnitude

(Leading order contributions)

Capdevila, B.: Proceedings of FCPC 2023 [orig. Phys. Rev. Lett. 120, 181802 (2018)]

Experimental Landscape

- Direct Searches for physics processes
 - BaBar [PRL 118, 031802 (2017)]

■ BR
$$(B^+ \to K^+ \tau^+ \tau^-)$$
 < 2.25 × 10⁻³ @ 90 % CI

- •Leptonic τ decays
- Belle [PRD 108, L011102 (2023)]

■ BR
$$(B^0 \to K^{*0} \tau^+ \tau^-) < 3.1 \times 10^{-3} @ 90 \% CL$$

- Leptonic au decay channels and $au o \pi
 u_t$
- Direct measurement of $C_{9 au}$
 - **LHCb** [JHEP09(2024)026]
 - •Comprehensive analysis of $B^0 \to K^{*0} \mu^+ \mu^-$
 - •Nonlocal contributions from $B^0 \to K^{*0}[\tau^+\tau^- \to \mu^+\mu^-]$ rescattering
 - $|C_{9\tau}| < 500 @ 90 \% CL$

LHCb

- This overview **focuses** on searching directly for physics processes
- No significant signal observed → Most stringent results set by B Factories

The Belle II Experiment

- High precision experiment commissioned at the SuperKEKB accelerator in Tsukuba, Japan
- **B Factory**: e^+e^- collisions at $\Upsilon(4S)$ resonance
- Analysis specific improvements over previous B factory generations:
 - Targeted dataset: 50 ab⁻¹ (achieved with world-record inst. luminosity)
 - Improved detector subsystems: Tracking, PID, energy resolution, ...
 - Enhanced tagging algorithm FEI
- Main advantage compared to LHCb: Clean collision environment, well-known four momentum (beamenergy constrains)

T. Keck, et al. in CSBS, 2019

Search for $B^+ o K^{*+} au^+ au^-$ - Overview

- First ever search for $B^+ o K^{*+} au^+ au^-$
- Reconstruction of $B^+ \to K^{*+} \tau^+ \tau^-$ with **hadronic tag** using Run 1 events yielding $365 \, {\rm fb}^{-1}$ ($\sim 387 \times 10^6 \, B\overline{B}$ pairs)
- Reconstruction of K^{*+} via $K^{+}\pi^{0}$, $K_{S}^{0}\pi^{+}$
- Reconstruction of $\tau \to$ 1-prong combinations exclusively in four signal modes,
 - Leptonic: $\tau \to e \nu \nu$, $\tau \to \mu \nu \nu$
 - Hadronic: $\tau \to \pi \nu$, $\tau \to \rho \nu$

Search for $B^+ o K^{*+} au^+ au^-$ - Background

- Main physics background stem from two distinct sources
 - Light quark pairs: $e^+e^- \rightarrow q\overline{q}$
 - Generic $B\overline{B}$ events: Every nonsignal $\Upsilon(4S) \to B\overline{B}$ component

 Established event-shape based variables are outstanding discriminators (at least for some of the background)

 $p(B) \approx 0.3 \, GeV/c$

 $p(q)\approx 5\,\mathrm{GeV/c}$

Search for $B^+ o K^{*+} au^+ au^-$ - Background

- Multivariate analysis approach is chosen for optimizing the signal selection
 - → leverages complex correlations of variables (Missing energy, event-shape variables, ...)
- Boosted Decision Trees (BDTs) are employed for each signal channel
 - → Robust, interpretable and fast approach
- Transforming the BDT output:
 - Empirical cumulative density function (CDF) is determined for signal template and applied to all templates

Search for $B^+ o K^{*+} au^+ au^-$ - Validation

Search for $B^+ o K^{*+} au^+ au^-$ - Signal Extraction

- Goal: Determine $\mathcal{B}(B^+ \to K^{*+}\tau^+\tau^-)$
- Method: Binned maximum likelihood fit on transformed BDT output in all channels simultaneously
- Templates:
 - Background: $q\overline{q}$, $B\overline{B}$
 - Signal: $K^{*+}\tau^+\tau^-$
- Estimation of fit sensitivity through Asimov dataset:

$$CL_s \equiv \frac{p_{s+b}}{1 - p_b} < \alpha$$

Fit at $\mu = 0$ on **Asimov** data

Search for $B^+ o K^{*+} au^+ au^-$ - Systematics

- Uncertainties on e.g. detector calibrations, theory predictions enter the fit as nuisance parameters (extension of the binned likelihood function)
- Impact of a single nuisance parameter estimated in toy experiment by a likelihood scan
- Largest Impact: Amount of simulated events, propagating into other systematics as well
- Future prospect: We will be among the first analyses to include Run 2 data as well, expecting to directly mitigate this effect

_	Source	Impact on \mathcal{B}
(Simulated sample size	0.46
	FEI calib error	0.13
	LeptonID error	0.11
	f_{+-}	$^{+0.10}_{-0.11}$
	B Counting	0.07
	Comb. calib ρ	0.06
	Comb. calib $\ell\ell$	0.05
	Offres. norm. ρ	0.04
	Total combined uncertainty	0.52

Summary & Outlook

- General theory descriptions of $R_{D^{(*)}}$ and $R_{J/\psi}$ could enhance $b \to s \tau^+ \tau^-$ transitions $10^{-7} \to 10^{-4}$
- Belle II is **uniquely positioned** for $b \to s\tau^+\tau^-$ searches given the missing energy products
- First search for $B^+ \to K^{*+}\tau^-\tau^+$:
 - Reconstruction overview
 - Calibrating & validating on control regions
 - Optimization of BDT-based selection
 - Signal Extraction Method, Systematics
- Target: Winter Conferences 2025

Backup Slides

Lennard Damer - Search for $B^+ o K^{*+} au^+ au^-$ with hadronic tagging at Belle II

12

Search for $B^+ o K^{*+} au^+ au^-$ - Background

L. Damer, T. Ferber, P. Goldenzweig (KIT)

- Much more challenging is the $B\overline{B}$ background
- Given 2-4 neutrinos for signal → no (sharp) kinematic peak
- Key observable: Neutral Extra E_{ECL}
 - Residual (neutral) energy after $\Upsilon(4S)$ reconstruction
 - $\hbox{ Prone to Data/MC discrepancies as Extra E_{ECL} is sensitive to entire event description } \\$

 Data/MC inconsistencies may bias the end result, reliable validation is required (on recorded data)

Background Suppression

- Individual BDT-based event selection is employed in each signal channel
- Exploiting a variety of event shape and (missing) kinematic variables
- BDT output is **transformed** and Punzi FOM is computed

$$FoM = \frac{\varepsilon}{3/2 + \sqrt{B}}$$

- Global maximum determines area of the start of the fitting region
- Fitting region is determined by a scanbased approach

FoM

Background Suppression

Signal Extraction

- Goal: Determine $\mathcal{B}(B^+ \to K^{*+}\tau^+\tau^-)$
- Method: Binned template ML fit on transformed BDT output
- Templates (all after preselection, corrections & BDT selection):
 - Background: $q\overline{q}$, $B\overline{B}$
 - Signal: $K^{*+}\tau^+\tau^-$
- Extraction of branching ratio via

$$\mathcal{B}(B^+ \to K^{*+} \tau^+ \tau^-) = \frac{N_{\text{Signal}}}{2 \times \varepsilon_{\text{Signal}} \times N_{B^+ B^-}}$$

with
$$\varepsilon_{\mathrm{Signal}} pprox 5 imes 10^{-4}$$
 and $N_{B^+B^-} pprox 2 imes 10^8$

Post-fit distribution at $\mu = 0$ on **Asimov** data

Signal Extraction Bias

- The signal extraction method is validated on different signal hypothesis (e.g. SM prediction)
- For each hypothesis, 5k toy samples are generated from a poisson distribution with mean equal to the expected yields in the bins
- Profile likelihood is not entirely Gaussian (given that the most sensitive bins have the smallest number of expected events)
- Instead, I check the median and the central 68% quantile of the extracted μ

Pull distribution for SM prediction ($\mu = 0$)

Systematic Components

 Uncertainties on e.g. detector calibrations, theory predictions enter the fit as nuisance parameters

 Impact of a single nuisance parameter estimated in toy experiment by a likelihood scan

- Largest Impact: Amount of simulated events (*)
 - Solution: Producing more samples
- 2nd largest: FEI Calibration (*)
 - Relative high uncertainties on calibration
 - Reason more subtle

	Source	Impact on $\mathcal B$
K	Simulated sample size	0.46
k	FEI calib error	0.13
	LeptonID error	0.11
	f_{+-}	$^{+0.10}_{-0.11}$
	B Counting	0.07
	Comb. calib ρ	0.06
	Comb. calib $\ell\ell$	0.05
	Offres. norm. ρ	0.04
	Comb. calib $\pi\pi$	0.03
	HadronID error	0.02
	Offres. norm. $\ell\pi$	0.02
	Comb. calib $\ell\pi$	0.02
	Luminosity	< 0.01
	Offres. norm. $\pi\pi$	< 0.01
	Offres. norm. $\ell\ell$	< 0.01
-	Total combined uncertainty	0.52

FEI Calibration

- Algorithm performance mismatch on recorded data and simulation
- **FEI calibration** weights obtained from $B \to X \mathcal{C} \nu$ and $B \to D \pi$ with combined χ^2 fitting
- Largest systematic on calibration factors arise from uncertainties on branching fractions ($B \to X \ell \nu$ modes) and simulation statistics

