# Vacuum Stability in the Standard Model and Beyond

A guide for BSM Model Building

#### Moritz Bosse

Department of High Energy Theory TU Dortmund University

September 4, 2025





#### Motivation: Current Situation

- Higgs boson discovered in 2012 with  $m_h \approx 125$  GeV [ATLAS, CSM, 2012].
- This implies the electroweak vacuum is **metastable** [Buttazzo et al, 2012].
- Not a problem for our lifetime, but... why so close to **absolute stability**?
- Can Stability be excluded?
- Could this hint at new physics beyond the Standard Model (BSM)?

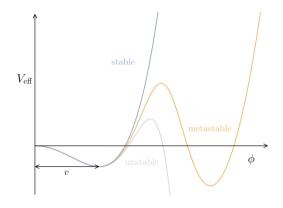
#### **Outline:**

- Stability in the SM (Updated results)
- BSM extensions to stabilise the potential

### Higgs Potential: Classical vs Quantum

Classically: 
$$V(\phi) = -\frac{1}{2}m^2\phi^2 + \frac{1}{4}\lambda\phi^4$$
.

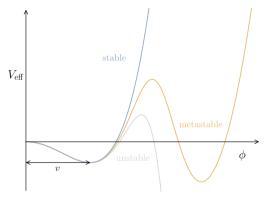
- Shape determined by  $m^2$  and  $\lambda$ ;  $m^2 > 0$  gives minimum at  $\phi \neq 0$ .
- stable if  $\lambda > 0$ .
- unstable if  $\lambda < 0$ .
- metastable state only possible with other couplings (e.g. φ³ term)
   → not present in SM



### Higgs Potential: Classical vs Quantum

Classically: 
$$V(\phi) = -\frac{1}{2}m^2\phi^2 + \frac{1}{4}\lambda\phi^4$$
.

- Shape determined by  $m^2$  and  $\lambda$ ;  $m^2 > 0$  gives minimum at  $\phi \neq 0$ .
- stable if  $\lambda > 0$ .
- unstable if  $\lambda$  < 0.
- metastable state only possible with other couplings (e.g. φ³ term)
   → not present in SM



Quantum corrections:  $\lambda$  becomes scale-dependent  $\lambda(\mu)$  via RGEs.

 $\Rightarrow$  Running  $\lambda$  can create an effective deeper minimum at large  $\phi$ .

#### Beta Functions and Running of $\lambda$

• **Definition:** Beta functions describe how couplings (here  $g_i$ ) change with the renormalization scale  $\mu$ :

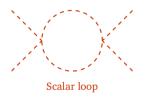
$$\beta_{g_i} \equiv \mu \frac{dg_i}{d\mu}$$

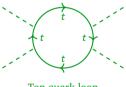
- $\beta_{g_i}$  can be computed in perturbation theory
- Physical predictions are *independent* of  $\mu$ , but couplings evolve with  $\mu$  to ensure that independence.
- The  $\beta$ -functions give a set of coupled differential equations that can be solved to find how couplings evolve with the energy scale.

### 1-loop Contributions to $\beta_{\lambda}$

For the SM Higgs quartic coupling (1-loop schematic):

$$\beta_{\lambda} \approx \frac{1}{16\pi^2} \left( 24\lambda^2 - 6y_t^4 + \dots \right) = \mu \frac{d\lambda}{d\mu}$$





Top quark loop

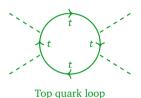
- Scalar self-interactions push  $\lambda$  up.
- Gauge interactions (e.g. W/Z-boson loops) also contribute positively.
- Yukawa interactions pull  $\lambda$  down (top quark is dominant).

### 1-loop Contributions to $\beta_{\lambda}$

For the SM Higgs quartic coupling (1-loop schematic):

$$\beta_{\lambda} \approx \frac{1}{16\pi^2} \left( 24\lambda^2 - 6y_t^4 + \dots \right) = \mu \frac{d\lambda}{d\mu}$$





- Scalar self-interactions push  $\lambda$  up.
- Gauge interactions (e.g. W/Z-boson loops) also contribute positively.
- Yukawa interactions pull  $\lambda$  down (top quark is dominant).

 $\Rightarrow$  Large  $y_t$  can possibly turn  $\lambda$  negative at high scales.

#### 1. Experimental Inputs

- Higgs boson mass  $m_h$
- Top-quark pole mass  $m_t$
- QCD coupling  $\alpha_s^{(5)}(m_Z)$
- Z-boson mass  $m_Z$
- Fermi constant  $G_F$
- Fine-structure constant  $\alpha_e$  & hadronic shift  $\Delta \alpha_e^{(5),had}$
- Lepton masses  $m_{e,\mu,\tau}$
- $\overline{\text{MS}}$  light-quark masses:  $m_b(m_b)$ ,  $m_c(m_c)$ ,  $m_{u,d,s}(2 \text{ GeV})$
- ⇒ Newest PDG central values.

#### 1. Experimental Inputs

- Higgs boson mass  $m_h$
- Top-quark pole mass  $m_t$
- QCD coupling  $\alpha_s^{(5)}(m_Z)$
- Z-boson mass  $m_Z$
- Fermi constant  $G_F$
- Fine-structure constant  $\alpha_e$  & hadronic shift  $\Delta \alpha_e^{(5),had}$
- Lepton masses  $m_{e,\mu,\tau}$
- $\overline{\text{MS}}$  light-quark masses:  $m_b(m_b)$ ,  $m_c(m_c)$ ,  $m_{u,d,s}(2 \text{ GeV})$
- ⇒ Newest PDG central values.

#### 2. Conversion to $\overline{MS}$ scheme

- Matching: ≥ 2-loop electroweak + 3-loop QCD [Martin, Patel, 2018]
- Extract running couplings at reference scale:  $\mu_{\rm ref} = 200~{\rm GeV}$  [Alam, Martin, 2022]

#### 1. Experimental Inputs

- Higgs boson mass  $m_h$
- Top-quark pole mass  $m_t$
- QCD coupling  $\alpha_s^{(5)}(m_Z)$
- Z-boson mass  $m_Z$
- Fermi constant  $G_F$
- Fine-structure constant  $\alpha_e$  & hadronic shift  $\Delta \alpha_e^{(5),had}$
- Lepton masses  $m_{e,\mu,\tau}$
- $\overline{\text{MS}}$  light-quark masses:  $m_b(m_b)$ ,  $m_c(m_c)$ ,  $m_{u,d,s}(2 \text{ GeV})$
- ⇒ Newest PDG central values.

#### 2. Conversion to $\overline{MS}$ scheme

- Matching: ≥ 2-loop electroweak + 3-loop QCD [Martin, Patel, 2018]
- Extract running couplings at reference scale:  $\mu_{\rm ref} = 200~{\rm GeV}$  [Alam, Martin, 2022]

#### 3. Effective Potential Analysis

- Compute up to 3-loop (4-loop in QCD) + RG improvement
   [Ford, Jack, Jones, 1992] [Martin, 2013-17]
- Locate vacuum extrema/minima

#### 1. Experimental Inputs

- Higgs boson mass  $m_h$
- Top-quark pole mass  $m_t$
- QCD coupling  $\alpha_s^{(5)}(m_Z)$
- Z-boson mass  $m_Z$
- Fermi constant  $G_F$
- Fine-structure constant  $\alpha_e$  & hadronic shift  $\Delta \alpha_e^{(5),had}$
- Lepton masses  $m_{e,\mu,\tau}$
- $\overline{\text{MS}}$  light-quark masses:  $m_b(m_b)$ ,  $m_c(m_c)$ ,  $m_{u,d,s}(2 \text{ GeV})$
- ⇒ Newest PDG central values.

#### 2. Conversion to $\overline{MS}$ scheme

- Matching: ≥ 2-loop electroweak + 3-loop QCD [Martin, Patel, 2018]
- Extract running couplings at reference scale:  $\mu_{\rm ref} = 200 \; {\rm GeV}$  [Alam, Martin, 2022]

#### 3. Effective Potential Analysis

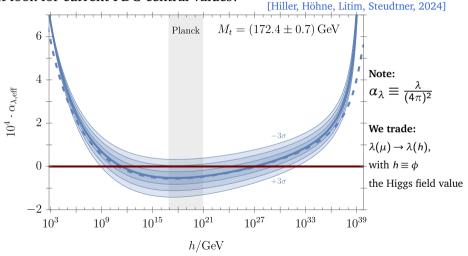
- Compute up to 3-loop (4-loop in QCD) + RG improvement
  [Ford, Jack, Jones, 1992] [Martin, 2013-17]
- Locate vacuum extrema/minima

#### 4. Decay Rate for Metastability

Only absolute stability considered

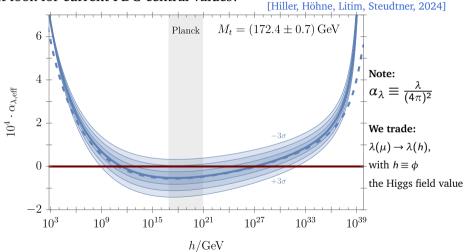
#### SM Renormalization Group Evolution

So how does it look for current PDG central values?



### SM Renormalization Group Evolution

So how does it look for current PDG central values?



 $\Rightarrow$  The SM is metastable due to the sign-flip of  $\lambda(\mu)$  at  $\approx 10^{11}$  GeV.

- Z-boson mass  $m_Z$
- Fermi constant  $G_F$
- Fine-structure constant  $\alpha_e$  & hadronic shift  $\Delta \alpha_e^{(5),had}$
- Lepton masses  $m_{e,\mu,\tau}$
- $\overline{\text{MS}}$  light-quark masses:  $m_b(m_b)$ ,  $m_c(m_c)$ ,  $m_{u,d,s}(2\,\text{GeV})$
- Higgs boson mass  $m_h$
- Top-quark pole mass  $m_t$
- QCD coupling  $\alpha_s^{(5)}(m_Z)$

- Z-boson mass  $m_Z$
- Fermi constant  $G_F$
- Fine-structure constant  $\alpha_e$  & hadronic shift  $\Delta \alpha_e^{(5),had}$
- Lepton masses  $m_{e,\mu,\tau}$
- $\overline{\text{MS}}$  light-quark masses:  $m_b(m_b)$ ,  $m_c(m_c)$ ,  $m_{u,d,s}(2\,\text{GeV})$
- Higgs boson mass  $m_h$
- Top-quark pole mass  $m_t$
- QCD coupling  $\alpha_s^{(5)}(m_Z)$

Uncertainty small

- Z-boson mass  $m_7$
- Fermi constant  $G_{\mathcal{F}}$
- Fine-structure constant  $\alpha_e$  & hadronic shift  $\Delta \alpha_e^{(5), {\rm had}}$
- Lepton masses  $m_{e,\mu,\tau}$
- $\overline{\text{MS}}$  light-quark masses:  $m_b(m_b)$ ,  $m_c(m_c)$ ,  $m_{u.d.s}(2\,\text{GeV})$

Uncertainty small

- Higgs boson mass  $m_h$
- Top-quark pole mass  $m_t$
- QCD coupling  $\alpha_s^{(5)}(m_Z)$

- Z-boson mass  $m_7$
- Fermi constant  $G_{\mathcal{F}}$
- Fine-structure constant  $\alpha_e$  & hadronic shift  $\Delta \alpha_e^{(5), {\rm had}}$
- Lepton masses  $m_{e,\mu,\tau}$
- $\overline{\text{MS}}$  light-quark masses:  $m_b(m_b)$ ,  $m_c(m_c)$ ,  $m_{u,d,s}(2\,\text{GeV})$

- Higgs boson mass  $m_h$  Top-quark pole mass  $m_t$  QCD coupling  $\alpha_s^{(5)}(m_Z)$   $m_h = 125.20(11) \, \text{GeV}$   $m_t = 172.40(70) \, \text{GeV}$   $\alpha_s^{(5)}(m_Z) = 0.1180(9)$

Uncertainty small

Impact small

7/11

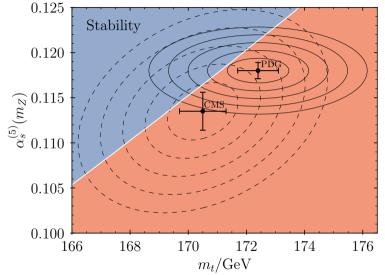
- Z-boson mass  $m_7$
- Fermi constant  $G_{\mathcal{F}}$
- Fine-structure constant  $\alpha_e$  & hadronic shift  $\Delta \alpha_e^{(5), {\rm had}}$
- Lepton masses  $m_{e,\mu,\tau}$
- $\overline{\text{MS}}$  light-quark masses:  $m_b(m_b)$ ,  $m_c(m_c)$ ,  $m_{u.d.s}(2\,\text{GeV})$

• Higgs boson mass  $m_h$ • Top-quark pole mass  $m_t$ • QCD coupling  $\alpha_s^{(5)}(m_Z)$   $m_h = 125.20(11) \,\text{GeV}$   $m_t = 172.40(70) \,\text{GeV}$   $\alpha_s^{(5)}(m_Z) = 0.1180(9)$  Impact large!

Uncertainty small

Impact small

### Impact of $m_t$ and $\alpha_s$ on Stability



#### **Updated results!**

We are not far off from the critical boundary!

- Stability sensitive to  $m_t$  and  $\alpha_s$ .
- The correlation is crucial.
- Stability is roughly  $1.2 \sigma$  away from current central values.

### The Standard Model and Beyond

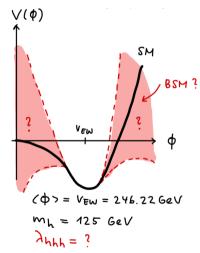
# We still know fairly little about the Higgs potential! What we do know:

• Ground state of Higgs potential with  $v_{EW} = 246.22$  GeV spontaneously breaks the EW symmetry:

$$SU(2)_L \times U(1)_Y \rightarrow U(1)_{EM}$$

• Higgs boson mass  $m_h \approx 125$  GeV.

#### Taken from L. Biermann



### The Standard Model and Beyond

# We still know fairly little about the Higgs potential! What we do know:

• Ground state of Higgs potential with  $v_{EW} = 246.22$  GeV spontaneously breaks the EW symmetry:

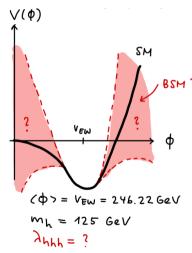
$$SU(2)_L \times U(1)_Y \to U(1)_{EM}$$

• Higgs boson mass  $m_h \approx 125$  GeV.

#### Scalar sector is realized in nature!

- ⇒ Shape of the potential still unknown...
- $\Rightarrow$  Need precise  $\lambda_{hhh}$  measurement.
- ⇒ BSM extensions of scalar sector could explain matter–antimatter asymmetry, dark matter, etc.

Taken from L. Biermann



### Stabilising with a scalar portal

• Minimal extension: real scalar singlet *S* with coupling

$$\mathcal{L} \supset -\frac{1}{2}m_S^2 S^2 - \frac{v}{4}S^4 - \frac{\delta}{2}\phi^2 S^2.$$

• Portal coupling  $\delta$  modifies  $\beta_{\lambda}$  positively (at 1-loop):

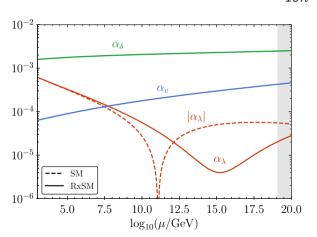
$$\Delta eta_{\lambda} \sim + \frac{1}{16\pi^2} 2\delta^2 + \dots$$

• Thus  $\lambda$  can be kept positive up to high scales if  $\delta$  is large enough.

### Stabilising with a scalar portal

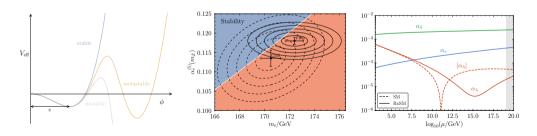
• Minimal extension: real scalar singlet *S* with coupling

$$\mathscr{L} \supset -\frac{1}{2}m_S^2S^2 - \frac{\nu}{4}S^4 - \frac{\delta}{2}H^{\dagger}HS^2$$
, with  $\Delta\beta_{\lambda} \sim +\frac{1}{16\pi^2}2\delta^2 + \dots$ 



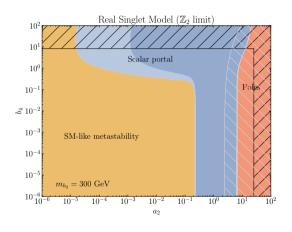
#### Summary / Take-home messages

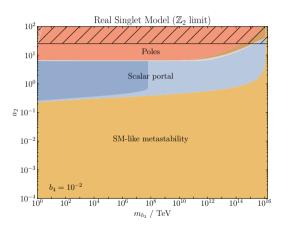
- The measured Higgs mass places the SM near a critical boundary: metastability.
- The fate of the vacuum is extremely sensitive to  $m_t$  and  $\alpha_s$  and their correlation.
- Minimal BSM physics (e.g. scalar portal) can stabilise the potential and also offer links to DM and EW baryogenesis.
- Many open questions remain: why (near-)criticality? what does it tell us about UV physics?



# **Backup**

### Example: parameter space where stability is restored





#### Cosmological connections

- Scalar singlet can be a Dark Matter candidate (i.e. in a Complex Singlet Model).
- Modified scalar potential can allow a strong first-order EW phase transition (SFOEWPT) — relevant for electroweak baryogenesis.
- Can be probed by modified *hZZ*-coupling measurements, Higgs self-coupling measurements, and direct searches for *S*.

#### Cosmological connections

• Can be probed by modified *hZZ*-coupling measurements, Higgs self-coupling measurements, and direct searches for *S*.

