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Motivation: Current Situation

Higgs boson discovered in 2012 with m;, ~ 125 GeV [ATLAS, CSM, 2012].

This implies the electroweak vacuum is metastable [Buttazzo et al, 2012].

Not a problem for our lifetime, but... why so close to absolute stability?
Can Stability be excluded?
Could this hint at new physics beyond the Standard Model (BSM)?

Outline:
¢ Stability in the SM (Updated results)
® BSM extensions to stabilise the potential
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Higgs Potential: Classical vs Quantum

Classically: V(¢) =—2m?$p> + 1A%,
e Shape determined by m? and A;
m? > 0 gives minimum at ¢ # 0.
e stable if A > 0.
® unstable if A < 0.

® metastable state only possible with
other couplings (e.g. ¢3 term) P
— not present in SM v
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Classically: V(¢) =—2m?$p> + 1A%,
e Shape determined by m? and A;
m? > 0 gives minimum at ¢ # 0.
e stable if A > 0.
® unstable if A < 0.

® metastable state only possible with
other couplings (e.g. ¢3 term) P
— not present in SM v

Quantum corrections: A becomes scale-dependent A(u) via RGEs.

= Running A can create an effective deeper minimum at large ¢.
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Beta Functions and Running of A

Definition: Beta functions describe how couplings (here g;) change with the
renormalization scale u:

B¢, can be computed in perturbation theory

Physical predictions are independent of u, but couplings evolve with u to ensure
that independence.

The pB-functions give a set of coupled differential equations that can be solved to
find how couplings evolve with the energy scale.
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1-loop Contributions to f3,

For the SM Higgs quartic coupling (1-loop schematic):

dA

1
~—— (2422 — 6y} + ... )=pu—
Ba 167[2( Yi + “an

Scalar loop

Top quark loop

® Scalar self-interactions push A up.
® Gauge interactions (e.g. W/Z-boson loops) also contribute positively.
® Yukawa interactions pull A down (top quark is dominant).
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dA

1
~—— (2422 — 6y} + ... )=pu—
Ba 167[2( Yi + “an

Scalar loop

Top quark loop

® Scalar self-interactions push A up.
® Gauge interactions (e.g. W/Z-boson loops) also contribute positively.
® Yukawa interactions pull A down (top quark is dominant).

= Large y, can possibly turn A negative at high scales.
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How do we compute stability in the SM?

1. Experimental Inputs

® Higgs boson mass my,

® Top-quark pole mass m,

® QCD coupling a( )( 7)

® Z-boson mass m

® Fermi constant Gg

® Fine-structure constant a, &
hadronic shift Aa(5) had

® Lepton masses m, , .

e MS light-quark masses: m,(m;),
mc(mc): mu,d,s(2 GCV)

= Newest PDG central values.
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How do we compute stability in the SM?

1. Experimental Inputs 2. Conversion to MS scheme
* Higgs boson mass m, e Matching: > 2-loop electroweak +
® Top-quark pole mass m, 3-loop QCD [Martin, Patel, 2018]
e QCD coupling a{” (my) * Extract running couplings at

reference scale: u..f =200 GeV

e /7-boson mass m
z [Alam, Martin, 2022]

® Fermi constant Gg
® Fine-structure constant a, &
5),had
hadronic shift Aa( yha

® Lepton masses m, , .

e MS light-quark masses: m,(m;),
mc(mc): mu,d,s(2 GCV)

= Newest PDG central values.
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How do we compute stability in the SM?

1. Experimental Inputs 2. Conversion to MS scheme
* Higgs boson mass m, e Matching: > 2-loop electroweak +
® Top-quark pole mass m, 3-loop QCD [Martin, Patel, 2018]
e QCD coupling a{” (my) * Extract running couplings at

reference scale: u..f =200 GeV

e /7-boson mass m
z [Alam, Martin, 2022]

® Fermi constant Gg
e Fine-structure constant a, & 3. Effective Potential Analysis

hadronic shift Aa(5) had e Compute up to 3-loop (4-loop in
QCD) + RG improvement

® Lepton masses m, , .
o [Ford, Jack, Jones, 1992] [Martin, 2013-17]

e MS light-quark masses: m,(m;),
mc(mc): mu,d,s(2 GCV)

= Newest PDG central values.

® ] ocate vacuum extrema/minima
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How do we compute stability in the SM?

1. Experimental Inputs 2. Conversion to MS scheme
* Higgs boson mass m, e Matching: > 2-loop electroweak +
® Top-quark pole mass m, 3-loop QCD [Martin, Patel, 2018]
e QCD coupling a{” (my) * Extract running couplings at

reference scale: u..f =200 GeV

e /7-boson mass m
z [Alam, Martin, 2022]

® Fermi constant Gg

° Fine_structure constant ae & 3. Effective POtential AnalySiS
hadronic shift Aa(5) had e Compute up to 3-loop (4-loop in

QCD) + RG improvement

® Lepton masses m, , .
o [Ford, Jack, Jones, 1992] [Martin, 2013-17]

e MS light-quark masses: m,(m;),
mc(mc): mu,d,s(2 GCV)
= Newest PDG central values. 4-Deecay Rate-for-Metastability

® Only absolute stability considered

® ] ocate vacuum extrema/minima
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SM Renormalization Group Evolution

So how does it look for current PDG central Values?

[Hlller Hohne L1t1m Steudtner, 2024]
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SM Renormalization Group Evolution

So how does it look for current PDG central Values?
[Hlller Hohne L1t1m Steudtner, 2024]
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= The SM is metastable due to the sign-flip of A(u) at ~ 10! GeV.
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Experimental Inputs and Their Impact

® Z-boson mass my
® Fermi constant Gg

. L had
® Fine-structure constant a, & hadronic shift Aa(es)’ ?

¢ Lepton masses m, ,

MS light-quark masses: mj,(m,), m.(m.), m, 4+(2GeV)

Higgs boson mass m,

Top-quark pole mass m;

QCD coupling a§5)(m 7)
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® Fermi constant Gg Uncertainty small
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Experimental Inputs and Their Impact

® Z-boson mass my
® Fermi constant Gg Uncertainty small

. L had
® Fine-structure constant a, & hadronic shift Aa(es)’ ?

¢ Lepton masses m, ,

MS Impact small
MS light-quark masses: my(m,), m.(m.), m, 4 s(2GeV) } mpact sma

Higgs boson mass my, my, = 125.20(11) GeV

Top-quark pole mass m; m, = 172.40(70) GeV

QCD coupling a{? (my) a®(m) = 0.1180(9)

} Impact large!
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Impact of m, and a, on Stability

0.125
0.120 Updated results!
We are not far off from the
§ 0.115 critical boundary!
~ ¢ Stability sensitive to

—

=2 0.110 m, and a..

® The correlation is crucial.

¢ Stability is roughly 1.2 0
away from current central

values.

0.105

0.100
166 168 170 172 174 176

me/GeV
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The Standard Model and Beyond
Taken from L. Biermann

We still know fairly little about the Higgs potential!

What we do know:

® Ground state of Higgs potential with vy = 246.22
GeV spontaneously breaks the EW symmetry:

SU(2). x U(1)y = U(L)em

® Higgs boson mass mj, ~ 125 GeV.

!’

(D5 = Ve = 246.22 eV
mMy = 125 GeV
Ak = 2
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The Standard Model and Beyond
Taken from L. Biermann

We still know fairly little about the Higgs potential!

What we do know:
® Ground state of Higgs potential with vy = 246.22

GeV spontaneously breaks the EW symmetry:
SU(2),x U(1)y = U(1)em

® Higgs boson mass mj, ~ 125 GeV.

Scalar sector is realized in nature!
= Shape of the potential still unknown...
= Need precise A,,, measurement.

= BSM extensions of scalar sector could explain
matter—antimatter asymmetry, dark matter, etc.
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(D5 = Ve = 246.22 eV
mMy = 125 GeV
Ak = 2
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Stabilising with a scalar portal

® Minimal extension: real scalar singlet S with coupling
&5 —3miS?— 5% — 54252
® Portal coupling 6 modifies 3, positively (at 1-loop):

1
APy ~+—— 2624 ...
Fa om0 T

¢ Thus A can be kept positive up to high scales if & is large enough.
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Stabilising with a scalar portal
L 2524 ...

® Minimal extension: real scalar singlet S with coupling
L o—imiS?—5S*—SHHS?, with A, ~+
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Summary / Take-home messages

® The measured Higgs mass places the SM near a critical boundary: metastability.
® The fate of the vacuum is extremely sensitive to m, and a, and their correlation.

® Minimal BSM physics (e.g. scalar portal) can stabilise the potential and also offer
links to DM and EW baryogenesis.

® Many open questions remain: why (near-)criticality? what does it tell us about

UV physics?
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Example: parameter space where stability is restored

Real Singlet Model (Zj limit) Real Singlet Model (Z limit)
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Cosmological connections

® Scalar singlet can be a Dark Matter candidate (i.e. in a Complex Singlet Model).

® Modified scalar potential can allow a strong first-order EW phase transition
(SFOEWPT) — relevant for electroweak baryogenesis.

® Can be probed by modified hZZ-coupling measurements, Higgs self-coupling
measurements, and direct searches for S.
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Cosmological connections

® Can be probed by modified hZZ-coupling measurements, Higgs self-coupling

measurements, and direct searches for S.
Real Singlet Model, m;, € 200, 1000]GeV
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