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In this talk, I will discuss the stability of the electroweak vacuum in the Standard Model
(SM) and its implications for Beyond Standard Model (BSM) physics. The discovery of
the Higgs boson with a mass around 125 GeV has profound consequences for the stability
of our universe. Current measurements suggest that we are in a metastable state, where
the vacuum could potentially decay to a lower energy state, albeit with a lifetime much
longer than the age of the universe. This metastability relies on the precise measurements,
particularly of the top quark mass, and the strong coupling constant which is therefore
prone to uncertainties. Furthermore, I will discuss the relevance of vacuum stability for
BSM model building by the example of a simple scalar singlet extension of the SM.

1 Vacuum Stability in the Standard Model

On a classical level, the Higgs potential of the SM is given by

V (ϕ) = −m2(ϕ†ϕ) + λ(ϕ†ϕ)2, (1)

where ϕ is the SU(2)L Higgs field, m2 is the mass parameter, and λ is the quartic
coupling. The potential has a minimum at a non-zero value of ϕ for m2 > 0. This field
value at the minimum is known as the vacuum expectation value (VEV), measured to
be v ≈ 246 GeV. The physical Higgs boson mass mh is related to the quartic coupling
λ and the VEV by m2

h = 2λv2. Due to the measurement of the Higgs boson mass
mh ≈ 125 GeV, the quartic coupling λ can be inferred at the electroweak scale. Now, on
the classical level, it is sufficient to demand λ > 0 to ensure that the potential is bounded
from below and has a stable vacuum. However, quantum corrections modify the potential,
leading to the effective potential Veff(ϕ), which includes loop corrections. The process
of choosing a renormalization scheme, mostly the MS scheme, introduces the ambiguity
of a renormalization scale µ. This suggests that the parameters of the theory are not
directly physical but change with µ to fit observables at different energy scales. This scale
dependence is captured within a set of differential equations, called renormalization
group equations (RGEs). The scale dependence of λ is particularly interesting. If the
quartic λ becomes negative at some scale µ̃, the potential develops a second minimum
at large field values, which can be deeper than the electroweak minimum. This situation
is depicted in Fig. 1 (left) for current PDG central values, where λ becomes negative
at around 1011 GeV. The exact scale at which λ turns negative is particularly sensitive
to the top quark mass mt and the strong coupling constant αs. This dependence is
illustrated in the phase diagram in Fig. 1 (right) which shows regions of absolute stability
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Abbildung 1: Left: Shown is the running of αλ = λ
(4π)2

(blue dashed line) depending

on the field value ϕ ≡ h. Right: Shown is the SM stability phase space
depending on mt and αs. Blue denotes absolute stability, red metastability
and instability combined.

(blue), metastability and instability combined (red) in the αs-mt plane. The current
experimental values place us in the metastable region, but close to the boundary with
absolute stability. The proximity to this boundary is intriguing and has led to various
speculations about its significance, including the possibility of new physics at high scales
that could stabilize the vacuum.

2 Guide for BSM Model Building

The metastability of the SM vacuum has important implications for BSM physics. Many
extensions of the SM can significantly affect the running of λ and the stability of the
vacuum. For instance, consider a simple extension of the SM by a real scalar singlet S
with a Z2 symmetry. The potential reads

V (ϕ, S) = −m2ϕ2 + λϕ4 −
m2
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where v is its quartic coupling, and δ the portal coupling between the Higgs and the
singlet. Now within this theory the RGEs are modified (at one-loop)

βλ ≡ dλ

d logµ
∼ βSM

λ +
1

16π2
2δ2. (3)

So a non-zero portal coupling δ can have a stabilizing effect on the running of λ and
thus the vacuum stability. Such a theory can be probed experimentally, for instance, via
direct searches for the new scalar at colliders, or indirectly through its effects on Higgs
boson properties and electroweak precision observables. In my thesis, I study the effects
of different types of scalar extensions on vacuum stability and its dynamics regarding
cosmology.
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