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Parton evolution

Partons in the proton are not quite free: the parton distributions 

𝑓𝑎(𝑥, 𝛼𝑆, 𝜇𝐹) evolve as scale 𝜇𝐹   at which they are resolved varies

large F, ~ mZ

small F, ~ few GeV

     

Example:

pT(g) ~ 10 GeV, say
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Parton evolution (cont.)

•  parton distributions are nonperturbative 

•  must be measured experimentally, e.g. in 𝑒𝑝 collisions at HERA (DESY)

•  experimental data typically at much lower 𝜇𝐹 than 100-1000 GeV

•  fortunately, evolution at 𝜇𝐹 ≥ 2 GeV is perturbative

•  DGLAP equation:

LO (1974) NLO (1980) NNLO (2004) NNNLO 
(partial)

e.g. 𝑃𝑞𝑞
0

𝑥 =  𝐶𝐹[
1+𝑥2

1−𝑥 +
+

3

2
𝛿 1 − 𝑥 ]



Precision PDFs
• From deep inelastic scattering experiments, especially HERA, 

other experiments, and now LHC data, know PDFs to few percent

• Essential input for all LHC predictions
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Still few % differences between groups
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NNPDF + MSHT, 2411.05373

pdfs available via 

LHAPDF interface:

https://www.lhapdf.org/
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Infrared safety 

Infrared-safe observables O:   

- Behave smoothly in soft limit as any parton momentum → 0

- Behave smoothly in collinear limit as any pair of partons → parallel (||)

• Cannot predict perturbatively infrared-unsafe quantities, such as:

- number of partons (hadrons) in event

- observables requiring no radiation in some region (rapidity gaps 

or overly strong isolation cuts)

- pT(W, Z or Higgs) precisely at pT = 0



Jets are an incredibly versatile, powerful concept at hadron colliders 
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Infrared safety (cont.)

Examples of IR safe quantities at LHC:

• most kinematic distributions of “electroweak” objects, W, Z, Higgs

  (photons tricky because of collinear issues)

• jets, defined by cluster or (suitable) cone algorithm

jet cluster algorithm            n = -2, 0, 2    →   anti-kT ,  CA,  kT

• Construct list of objects, starting with particles i, plus “the beam” b

• Define “distance” between objects, vanishing in soft/collinear limits: 

• If a dij is smallest, cluster together i and j.                                                  

If a dib is smallest, declare i to be a jet and remove

it from the list of particles

• Repeat until all objects are jets

𝜂 ≡ − ln tan
𝜃

2



“Catchment area” for soft particle 

depends heavily on jet algorithm

anti-𝑘𝑡 picks up soft 

radiation from 

underlying event 

more predictably

→ easier to correct 

for underlying event 

→ anti-𝑘𝑡 widely 

adopted at LHC
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Cacciari, Salam, Soyez 

0802.1189, anti-𝑘𝑡



L. Dixon   QCD & Jets @ LHC - L3 Herbstschule-HEP Sept. 2025 9

Overall structure

of higher-order QCD corrections

Example of Z production at hadron colliders

LO
convolute with pdfs

apply cuts

tree

NLO

tree + 1 parton
1 loop

first, cancel infrared

divergences (       )

between virtual & real

dim. reg.

intricate (       ) IR cancellations

NNLO

2 loops
1 loop + 1 parton tree + 2 partons
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The Drell-Yan process
(simplest hadron collider process)

LO partonic cross section:

LO hadronic cross section:
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Drell-Yan rapidity distribution

rapidity

double distribution

measures product of quark and antiquark distributions at

combined with mass measurement,
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NLO QCD corrections to 

Drell-Yan production

where singular distribution

as  

[See backup slides for more details of the calculation.]
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•  Remove 𝑔 → 𝑞 ത𝑞 collinear singularity in same way

QCD corrections to DY (cont.)

and

comes from the 𝑞𝑔 → 𝑞𝛾∗ subprocess:

•  Cross section related by crossing

   to 𝑞 ത𝑞 → 𝑔𝛾∗ 

•  Note that there is no 
1

1−𝑧
 (soft gluon) singularity in this term, 

and no 𝛿(1 − 𝑧) virtual term.



DY/Z now known at N3LO

L. Dixon   QCD & Jets @ LHC - L3 Herbstschule-HEP Sept. 2025 14

Duhr, Dulat, Mistlberger, 2001.07717;

Baglio, Duhr, Mistlberger, Szafron, 

n3loxs, 2209.06138

Total cross section

Differential distributions

Chen, Gehrmann, Glover, Huss, Monni, 

Re, Rottoli, Torrielli, 2203.01565
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Real radiation in general case

Dalitz plotCannot perform the phase-space

integral analytically in D=4-2

especially not for generic 

experimental cuts

Also can’t do it numerically, 

because of 1/2 poles

2 solutions: 

1. Slice out singular regions of phase-space, with (thin) width smin  

Perform integral there approximately. Rest of integral done 

numerically.  Check cancellation of smin dependence.

2. Subtract a function that mimics the soft/collinear behavior of the 

radiative cross section, and which you can integrate (analytically). 

Integral of the difference can be done numerically.



Subtraction methods 
for more complex, differential processes
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• Subtraction term d A should match d R 

pointwise on (n+1) phase space

• Factorization of d A  needed to allow integral to 

be split, combined with d V
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Two types of subtraction methods

• More recently, Lorentz-invariant subtraction terms

built up for general processes in 2 different ways:

Long history of developments, including: Ellis, Ross, Terrano (1980)

Frixione, Kunszt, Signer (1995)

1) Start with collinear approximation, 

add “half of soft behavior” on each side.

“Dipole” subtraction  

[N.B.: not the dipole shower used in MC community]           

Catani, Seymour (1996)

2) Start with soft radiation pattern, 

add “half of collinear behavior” on each side.

“Antenna” subtraction NLO Kosower (1997,2003),

NNLO Gehrmann, 

Gehrmann-de-Ridder, 

Glover, Heinrich, … 2005→current
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+ 100%

 for some 

gluon-initiated ( 𝑔𝑔 → Higgs + 𝑋 )

Why are (N)NLO corrections so large?

+ 30% typical for 

quark-initiated (𝑊, 𝑍, …)

This is much bigger than, e.g. 

Anastasiou, Duhr, Dulat, 

Herzog, Mistlberger, 1503.06056

50

8

20

14
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1. LO parton distribution fits not very reliable due to large 

theory uncertainties

2. New processes can open up at NLO.  In 𝑊 or 𝑍 

production at LHC, 𝑞𝑔 → 𝛾∗𝑞 opens up, and 𝑔(𝑥) is 

very large – but the 𝑞𝑔 correction is negative!

3. Large 2 from analytic continuation from space-like 

region where pdfs are measured (DIS) to time-like 

region (Drell-Yan/W/Z):

Some answers (not all for all processes)

2 Re
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4. Soft-gluon/Sudakov resummation

• A prevalent theme in QCD whenever one is at an

    edge of phase space  

• Infrared-safe but sensitive to a second, smaller scale

• Same physics as in (high-energy) QED: 𝑒+𝑒− → 𝑒+𝑒−(𝛾)
• What is prob. of no photon with 𝐸 > Δ𝐸 𝐚𝐧𝐝 𝜃 > Δ𝜃 

soft collinear
exponentiation because soft emissions

are independent in QEDleading double logarithms

-- in contrast to single logs 

of renormalization group, 

DGLAP equations.
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Hadron collider examples 

pT(Z), pT(W) [latter needed for mW  measurement at hadron colliders]

Production of heavy states, like

• top quark at Tevatron or LHC

• even a light Higgs boson at the LHC, via gg → H

Called threshold resummation or 𝜏 → 1 limit, where 𝜏 = 𝑀2/𝑠.  

Can be important for  << 1 though.

For M = mH = 125 GeV at 14 TeV LHC,   = 10-4  !

Radiation is being suppressed because you are

running out of phase space – parton distributions are falling fast.
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Threshold Resummation 

Can see the first threshold log in the NLO corrections

to Drell-Yan/W/Z production:

It is a double-log expansion:

For gg -> H, same leading behavior at large z.

Except color factor is much bigger:  CA = 3, not CF = 4/3
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A. Because the same

suppression happens

in the DIS process used

to measure the pdfs.

Both parton distributions 

“bigger than you thought”:

2 – 1 > 0.

Fast falling pdfs -- worse for gluons 

gg → light Higgs at LHC

qq → W,Z at Tevatron
_qq → W,Z at LHC

_

Q: If it is called Sudakov

suppression, why 

does it increase the 

cross section?

pdfs
partonic cross section
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NNLO

• Required for high precision at LHC, because NLO results often 

have 10% or more residual uncertainties

• High precision needed for:

•  parton distributions

- evolution (NNLO DGLAP kernels)

- fits to DIS, Drell-Yan, and jet data

•  LHC production of single Ws and Zs

-   “partonic” luminosity monitor

-   precision mW

•  Higgs production via gluon fusion and extraction of Higgs 

couplings

• LHC production of 𝑡 ҧ𝑡 

• pairs of Ws and Zs 

• More recently, the beginnings of 2 → 3 processes …



Massless internal 2 → 2

• Here, 2 loop integrals typically are multiple 

polylogarithms (MPLs), e.g. Goncharov, 1105.2076

• Together with advances in handling real radiation, 

and stable one-loop 2 → 3 amplitudes, made 

possible a large class of 2 → 2 processes at NNLO
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NNLO QCD @ LHC
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G. Zanderighi, CERN Courier (2017)

2 → 1 2 → 2

NNLO 2 → 2 enabled by understanding multiple polylogarithms (MPLs)



Top pair production

• At subleading color at 2 loops (NNLO) in the partonic 

process 𝑔𝑔 → 𝑡 ҧ𝑡, one finds

• More complicated function:

 elliptic polylogarithm 

• Done numerically first

Czakon, Fiedler, Mitov, 1303.6254 
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• State of art: much computing power required!

NNLO 3 jet production
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𝐻𝑇 = ෍

𝑖

𝐸𝑇,𝑖

Czakon, Mitov, Poncelet, 2106.05331 



Asymmetry in transverse

energy-energy correlator 

(ATEEC)

• Leads to

Application: NNLO energy correlators for 𝛼𝑆
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EECs represent another class of IR safe QCD observables. Although no jets in

measurement, can still use calculation by Czakon, Mitov, Poncelet, 2106.05331 

ATLAS, 2301.09351

𝛼𝑆 𝑀𝑍 = 0.1185 ± 0.0009 𝑒𝑥𝑝 −0.0012
+0.0025(𝑡ℎ)

𝜙
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Levels of Approximation

• Monte Carlos (PYTHIA, HERWIG,SHERPA)

• LO, fixed-order matrix elements (MEs)

• LO MEs matched to parton showers       
(ALPGEN, SHERPA, MADGRAPH/EVENT, …)

• NLO MEs (parton level) (MCFM, BLACKHAT, 
MADGRAPH, OPENLOOPS,…)

• NLO MEs matched to showers     
(MC@NLO, POWHEG, SHERPA)

• NNLO MEs (FeWZ, HNNLO, DYNNLO, …)

• MC@NNLO (MiNNLO, …)

• N3LO MEs
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Monte Carlos

• Based on properties of soft and collinear radiation in QCD

• Partons surrounded by “cloud” of soft and collinear partons

• Leading double logs of Qhard/Qsoft  exponentiate, can be 

generated probabilistically

• Shower starts with basic 2 → 2 parton scattering

  -- or basic production process for W, Z, tt, etc.

• Further radiation approximate, requires infrared cutoff

• Shower can be evolved down to very low Qsoft , where 

models for hadronization and spectator interactions can be 

applied

• Complete hadron-level event description attained

• Normalization of event rates unreliable

• Event “shapes” sometimes unreliable
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Monte Carlos in pictures
Splitting probability:

Sudakov factor (no splitting probability):form strings or 

clusters
based on color flow

make hadrons
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Matching MEs to showers

• Would like to have both:

– accurate hard radiation pattern of MEs

– hadron-level event description of parton-shower MCs

• Why not just use 2 → 3,4,… parton processes as starting 

point for the shower?

• Problem of double-counting: 

    When does radiation “belong” 

    to the shower, and 

   when to the hard matrix element?



Conclusions

• LHC physics is very rich:  wide range of processes and rates

• Since we don’t know what form new physics will take, need 

theoretical control over many types of processes → higher 

order QCD (also EW)!

• Much recent progress in high precision, both experimentally 

and theoretically (up to N3LO in some cases!)

• Higher experimental precision coming with HL-LHC, so 

theory must try to keep up!

• High multiplicity final states remain very difficult beyond NLO

• Not only because amplitudes are tough, but so are real 

radiative corrections

• Large effort needed for future progress!
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Extra Slides
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NLO QCD corrections to 

Drell-Yan production

As at LO, average over 

decay direction of e+ and e-:
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Phase space for DY @ NLO

Could use gluon energy, angle in CM frame, 𝐸4 , 𝜃

Trade for 𝑧, 𝑦 ∈ [0,1] defined by: 

cross section:

P.S. measure

 in 𝐷 = 4 − 2𝜀
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QCD corrections to DY (cont.)

Hard collinear divergences are at 𝑦 = 0,1

Integral to do:

Separate using 

related by symmetry

Expand 1/𝑦 term in cross section about 𝑦 = 0 
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QCD corrections to DY (cont.)

Including a few other omitted prefactors:

correction to 

cross section
artifact of my using

unconventional FDH scheme 

with 2 gluon helicities, vs.

standard 2-2 of CDR – drop!  

divergence absorbed into q(x) 

in MS factorization scheme
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QCD corrections to DY (cont.)

Finally, virtual graph has support only at 𝑧 = 1
→ kinematics same as at LO.  Regulates

1

1−𝑧
 into plus distribution.  Final result:

where singular distribution

as  
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•  Remove 𝑔 → 𝑞 ത𝑞 collinear singularity in same way

QCD corrections to DY (cont.)

and

comes from the 𝑞𝑔 → 𝑞𝛾∗ subprocess:

•  Cross section related by crossing

   to 𝑞 ത𝑞 → 𝑔𝛾∗ 

•  Note that there is no 
1

1−𝑧
 (soft gluon) singularity in this term.
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Virtual Corrections

The simplest process:



cancellation of UV & IR divergences!

overlap of soft & collinear IR divergences
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More complicated 1-loop amplitudes

More legs, 

or massive

legs, rapidly

increases

complexity!

Bern, LD, Kosower, 

hep-ph/9302280

Bern, LD, Kosower, 

hep-ph/9708239

Some

helicity 

config’s

more 

complex

than others

16 pages

~ 1 page

→ “numerical” approaches eventually



Two loop integrals

• Become non-polylogarithmic – “elliptic 

polylogarithms” – very quickly if there are internal 

particle masses, e.g. the massive sunset integral
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P → 

m

m

m

Broadhurst-Fleischer-Tarasov, 9304303, Berends-Böhm-Buza-Scharf (1994), 

Laporta-Remiddi, 0406160, Adams-Bogner-Weinzierl, 1302.7004, 

Bloch-Vanhove, 1309.5865,…
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IR safe/unsafe

examples from ep scattering

Deep Inelastic Scattering (DIS) 

ep → eX (inclusive in hadronic 

state X: OK)

ep → ep exclusive 

scattering (very small rate)

Diffraction

(forbids soft 

gluon radiation)

(Similar discussion for pp.)



Some NLO QCD Feynman diagrams
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virtual gg → H 

real, gg → Hg 

Amplitude | Amplitude*   =  cross section



Very few of the NNNLO QCD diagrams
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+ …

+ quarks

+ operator renormalization

+ 1/𝑚𝑡
2 corrections

+ parton distributions

gg → Hg

@ 2 loops, 

was state of 

art in QCD 

until 2025

Scattering amplitudes are underlying building blocks
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Granularity vs. Fluidity

L. Dixon   QCD & Jets @ LHC - L2 Herbstschule-HEP Sept. 2025
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Fluid Tree Amplitudes

Tree amplitude is a rational function of kinematic variables. 

Falls apart into simpler tree amplitudes in special limits

20 years ago:

picture led directly to BCFW 

(on-shell) recursion relations:

Reconstruct amplitude from poles 

in complex plane, where it

factorizes into simpler amplitudes 
Britto, Cachazo, Feng, Witten, hep-th/0501052



Beyond tree level

• Loop level Feynman diagrams come with an 

instruction to integrate over all loop momenta 
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=  Li2 1 −
𝑠123

𝑠12
+ Li2 1 −

𝑠123

𝑠23
+

1

2
ln2

𝑠12

𝑠23
+ ⋯

H

g g

g

= න
𝑑4𝑝

𝑝2(𝑝 − 𝑝1)2(𝑝 − 𝑝1 − 𝑝2)2(𝑝 − 𝑝1 − 𝑝2 − 𝑝3)2

where the dilogarithm is    Li2 𝑥 ≡ − 0׬

𝑥 𝑑𝑡

𝑡
ln(1 − 𝑡) 

• For example, at one loop the amplitude for    

gg → Hg involves the “scalar box” integral



One loop not too bad

• For any number of external particles,                

all one-loop integrals (even in dimensional 

regularization, 𝐷 = 4 − 2𝜖) can be reduced to 

scalar box integrals + simpler
Brown-Feynman (1952), Melrose (1965), ‘t Hooft-Veltman (1974), Passarino-

Veltman (1979), van Neerven-Vermaseren (1984), Bern, LD, Kosower (1992)

→ combinations of  Li2 𝑥 ≡ − 0׬

𝑥 𝑑𝑡

𝑡
ln(1 − 𝑡) 

where 𝑥 is (many different) functions of the 

kinematic variables (Mandelstam invariants),

plus logarithms
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1-loop progress 

→ NLO QCD @ LHC
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G. Salam 

(2012)

2013: NLO H+3j 

in gluon fusion

[GoSam, Sherpa,

MadEvent:

Cullen et al.]



Dipole subtraction
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Catani, Seymour, hep-ph/9602227, hep-ph/9605323

includes sum over colors,

convolution over 

momentum fractions

Poles in  cancel universal IR poles in

In the case of hadrons in the initial state, some terms have 

a more complicated structure, involving convolution over an

initial-state splitting



Momentum map
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If no initial state hadrons, have only final-state dipoles ij and spectators k

map (n+1) -body to n-body:

Spectator k recoils so that ij 

can be massless:

~

Spectator k also used to 

define collinear fractions:
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Sample dipole

Using Altarelli-Parisi kernels,

build dipole subtraction 

function Dij,k for each 

pair of partons i,j that can 

get singular, and for each 

“spectator” parton k

all final-state case

The Dij,k multiply the LO

cross section, at a boosted

phase-space point:

All dipole integrals can be done analytically

Tk = color operators



Multi-loop much more complex
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• At L loops, instead of just Li2’s, get special 

functions with up to 2L integrations 

• Weight 2L “iterated integrals”

• Best case: generalized polylogarithms,           

defined iteratively by

𝐺 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑥 =  න
0

𝑥 𝑑𝑡

𝑡 − 𝑎1
𝐺 𝑎2, … , 𝑎𝑛, 𝑡

and 𝐺 0𝑛, 𝑥 =
(ln 𝑥)𝑛

𝑛!

• Still very intricate multi-variate functions



Multi-loop much more complex
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• At L loops, instead of just Li2’s, get special 

functions with up to 2L integrations 

• Weight 2L “iterated integrals”

• Best case: generalized polylogarithms,           

defined iteratively by

𝐺 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑥 =  න
0

𝑥 𝑑𝑡

𝑡 − 𝑎1
𝐺 𝑎2, … , 𝑎𝑛, 𝑡

and 𝐺 0𝑛, 𝑥 =
(ln 𝑥)𝑛

𝑛!

• Still very intricate multi-variate functions
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