Physics Beyond the SM Under The Higgs Lamppost

- 1. The Quest for the SM & Beyond
- 2. A Strongly-coupled EW Sector
- 3. A Weakly-coupled Extension
- 4. Flavors of Matter Fields & EFT

The Fermions: Gauge interactions §

$$egin{aligned} \mathcal{L}_f &= \sum_{m=1}^F \left(ar{q}_{mL}^0 i \not\!\!\!D q_{mL}^0 + ar{l}_{mL}^0 i \not\!\!\!D l_{mL}^0 + ar{u}_{mR}^0 i \not\!\!\!D u_{mR}^0
ight. \\ &+ ar{d}_{mR}^0 i \not\!\!\!D d_{mR}^0 + ar{e}_{mR}^0 i \not\!\!\!D e_{mR}^0 + ar{
u}_{mR}^0 i \not\!\!\!D
u_{mR}^0
ight) \end{aligned}$$

$$\begin{split} D_{\mu}q_{mL}^{0} &= \left(\partial_{\mu} + \frac{ig}{2}\vec{\tau} \cdot \vec{W}_{\mu} + \frac{ig'}{6}B_{\mu}\right)q_{mL}^{0} & D_{\mu}u_{mR}^{0} = \left(\partial_{\mu} + \frac{2ig'}{3}B_{\mu}\right)u_{mR}^{0} \\ D_{\mu}l_{mL}^{0} &= \left(\partial_{\mu} + \frac{ig}{2}\vec{\tau} \cdot \vec{W}_{\mu} - \frac{ig'}{2}B_{\mu}\right)l_{mL}^{0} & D_{\mu}d_{mR}^{0} = \left(\partial_{\mu} - \frac{ig'}{3}B_{\mu}\right)d_{mR}^{0} \\ D_{\mu}e_{mR}^{0} &= \left(\partial_{\mu} - ig'B_{\mu}\right)e_{mR}^{0} \\ D_{\mu}\nu_{mR}^{0} &= \partial_{\mu}\nu_{mR}^{0}, \end{split}$$

Gauge invariant, massless.

This leads to a large accidental global symmetry. for 3 generations of quarks:

$$U(3)_{QL} \otimes U(3)_{UR} \otimes U(3)_{dR}$$

$$\rightarrow SU(3)_{QL} \otimes SU(3)_{UR} \otimes SU(3)_{dR} \otimes U(1)_{B} \otimes U(1)_{Y}$$

and similarly for leptons.

[§] P. Langacker: TASI Lectures 2007.

The Fermions: Masses §

However, a fermion mass must flip chirality:

$$-m_e \bar{e}e = -m_e \bar{e} \left(\frac{1}{2}(1-\gamma_5) + \frac{1}{2}(1+\gamma_5)\right)e = -m_e (\bar{e}_R e_L + \bar{e}_L e_R)$$

→ not SM gauge invariant L(doublet) ≠ R(singlet)!

Need something like a doublet constructing a gauge singlet:

$$y_f(ar{f_1},f_2)_L \left(egin{array}{c} \phi_1 \ \phi_2 \end{array}
ight)_L f_R$$

that's the Higgs-like doublet!

(We could have guessed the Higgs!)

The gauge invariant Yukawa interactions:

(S. Weinberg, "A Model of Leptons", 1967)

Need a doublet with a flip Y: $\tilde{\phi} = i\sigma_2 \phi^*$

$$\mathcal{L}_{Yuk} = -\sum_{m,n=1}^{F} \left[\Gamma_{mn}^{u} \bar{q}_{mL}^{0} \tilde{\phi} u_{nR}^{0} + \Gamma_{mn}^{d} \bar{q}_{mL}^{0} \phi d_{nR}^{0} \right] + \Gamma_{mn}^{e} \bar{l}_{mn}^{0} \phi e_{nR}^{0} + \Gamma_{mn}^{\nu} \bar{l}_{mL}^{0} \tilde{\phi} \nu_{nR}^{0} + h.c.,$$

After the EWSB,

$$\begin{split} -\mathcal{L}_{Yuk} &\to \sum_{m,n=1}^{F} \bar{u}_{mL}^{0} \Gamma_{mn}^{u} \left(\frac{\nu + H}{\sqrt{2}} \right) u_{mR}^{0} + (d,e,\nu) \text{ terms} \\ &= \bar{u}_{L}^{0} \left(M^{u} + h^{u} H \right) u_{R}^{0} + (d,e,\nu) \text{ terms } + h.c., \\ -\mathcal{L}_{Yuk} &= \sum_{i} m_{i} \bar{\psi}_{i} \psi_{i} \left(1 + \frac{g}{2M_{W}} H \right) = \sum_{i} m_{i} \bar{\psi}_{i} \psi_{i} \left(1 + \frac{H}{\nu} \right) \end{split}$$

Quark mixings between gauge & mass states:

$$\frac{\sqrt{g}}{2}(\overline{u_{L}}, \overline{c_{L}}, \overline{t_{L}})\gamma^{\mu} W_{\mu}^{+} V_{CKM} \begin{pmatrix} d_{L} \\ s_{L} \\ s_{L} \end{pmatrix} + \text{h.c.}$$

$$\frac{\sqrt{g}}{2}(\overline{u_{L}}, \overline{c_{L}}, \overline{t_{L}})\gamma^{\mu} W_{\mu}^{+} V_{CKM} \begin{pmatrix} d_{L} \\ s_{L} \\ s_{L} \\ \lambda \end{pmatrix} + \text{h.c.}$$

$$\frac{\sqrt{g}}{s_{L}} + \text{h.c.}$$

$$\frac{\sqrt{$$

- Generation mixing, but no tree-level FCNC:
 - → follow the Higgs?!
- Mixing highly hierarchical
 - → family symmetry?
- Insufficient CP violation for baryon asymmetry

High successful description: CKM

$$V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$$

This leads to the "Minimal Flavor Violation" (MFV) hypothesis: Flavor violation interactions follows the same pattern as that in the SM $U(3)_{Ol} \otimes U(3)_{UR} \otimes U(3)_{dR}$

$$-\mathcal{L}_{\mathrm{Yukawa}}^{\mathrm{SM}} = Y_d^{ij} \bar{Q}_L^i \phi D_R^j + Y_u^{ij} \bar{Q}_L^i \tilde{\phi} U_R^j + \text{h.c.}$$

$$Y^u \sim (3,\bar{3},1)\,,$$

For BSM: $Y^u \sim (3, \bar{3}, 1), \qquad Y^d \sim (3, 1, \bar{3}).$

Tremendous experimental efforts:

LHCb, Belle II, tau-charm factories, kaons ...

Lepton universality (anomalies?)

$$R(D^{(*)}) = \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau^{-}\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^{(*)}\mu^{-}\bar{\nu}_{\mu})}$$

Rare B decays – sensitive to BSM @ high scales!

Flavor physics in theory: a serious challenge!

BSM: much harder to accommodate!

- Generate multiple mass scales
- Avoid FCNC
- Avoid Excessive CP violation

- → Minimal Flavor Violation (MFV)
- Horizontal flavor symmetry: Froggatt-Nielson mechanism

$$(Y_u)_{ij} \sim \left(\frac{\langle \phi \rangle}{M}\right)^{[q_i]-[u_j]}, \qquad (Y_d)_{ij} \sim \left(\frac{\langle \phi \rangle}{M}\right)^{[q_i]-[d_j]}$$

- Warped extra-dimension: Couplings determined by the overlap with the EW brane.
- Radiative generation of m_f:

light generation masses loop suppressed ~ $1/16\pi^2$ ~ 10^{-2} .

Vibrant field in experimental explorations!

Neutrinos are massive thus mix as well

 ν 's: the most elusive/least known particle in the SM:

- How many species: $3 \nu_L$'s + N_R ?
- Absolute mass scale: $m_{\nu} \sim y_{\nu} \nu < 1 \text{ eV}$?

or a new physics scale via "see-saw": $m_{\nu} \sim \kappa \frac{\langle H^0 \rangle^2}{M}$

- Flavor oscillations & CP violation?
- Mixing with sterile ν 's?
- Portal to dark sector?

Studying neutrino physics has been rewarding: 6+ Nobel Prizes related to ν 's!

Great playground for theory & experimentation!

The neutrino mixing: PMNS

(Pontecorvo-Maki-Nakagawa-Sakata)

$$U = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \end{bmatrix} \times \text{diag}(1, e^{i\frac{\alpha_{21}}{2}}, e^{i\frac{\alpha_{31}}{2}})$$

$$s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} - c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix} \times \text{diag}(1, e^{i\frac{\alpha_{21}}{2}}, e^{i\frac{\alpha_{31}}{2}})$$

Parameter	best-fit
$\Delta m_{21}^2 [10^{-5} eV^2]$	7.37
$\Delta m_{31(23)}^2 [10^{-3} eV^2]$	2.56 (2.54)
$\sin^2\theta_{12}$	0.297
$\sin^2 \theta_{23}$, $\Delta m_{31(32)}^2 > 0$	0.425
$\sin^2 \theta_{23}$, $\Delta m_{32(31)}^2 < 0$	0.589
$\sin^2 \theta_{13}$, $\Delta m_{31(32)}^2 > 0$	0.0215
$\sin^2 \theta_{13}$, $\Delta m_{32(31)}^2 < 0$	0.0216
δ/ π	1.38 (1.31)

- Bi-maximal mixing, only small θ_{13}
- New sources of CP violation?
- Dirac mass (Yukawa)? or Majorana (not from h)?

SM as a low-energy effective field theory:

The leading SM gauge invariant operator is at dim-5:*

$$\frac{1}{\Lambda} (y_V LH)(y_V LH) + h.c. \Rightarrow \frac{y_V^2 v^2}{\Lambda} \nabla_L v_R^c.$$
*S. Weinberg, Phys. Rev. Lett. 1566 (1979)

Implications:

```
The See-saw spirit: ^{\dagger}
If m_V \sim 1 eV, then \Lambda \sim y_V^2 (10<sup>14</sup> GeV).

\Lambda \Rightarrow \begin{cases} 10^{14} \text{ GeV for } y_V \sim 1; \\ 100 \text{ GeV for } y_V \sim 10^{-6}. \end{cases}
```


- Observational:
 - △L=2 → Majorana mass (Majorana neutrinos)
- \rightarrow Opens the door to BSM ν physics at low & high energies!

[†]Yanagita (1979); Gell-Mann, Ramond, Slansky (1979), S.L. Glashow (1980); Mohapatra, Senjanovic (1980) ...

UV-complete theoretical Models:

The Weinberg operator non-renormalizable

→ Need Ultra-Violet completion at/above 1.

Group representations based on SM SU_L(2) doublets:

$$2 \otimes 2 = 1(\text{singlet}) + 3(\text{triplet})$$

- → There are three possibilities:
- Type I: Fermion singlets \otimes (L H)_S
- Type II: Scalar triplet ⊗(L L)_T
- Type III: Fermion triplets \otimes (L H)_T

E. Ma: PRL 81, 1771 (1998).

For recent reviews: Z.Z. Xing: arXiv:1406.7739;

Y. Cai, TH, T. Li & R. Ruiz: arXiv:1711.02180.

Type I Seesaw: Singlet N_R's – Sterile neutrinos

$$L_{aL} = \begin{pmatrix} V_a \\ I_a \end{pmatrix}_L$$
, $a = 1, 2, 3$; N_{bR} , $b = 1, 2, 3, ... n \ge 2$.

Dirac plus Majorana mass terms: $(\overline{v_L} \ \overline{N^c_L}) \begin{pmatrix} 0_{3\times3} & \overline{D^v_{3\times p}} \\ D^v_{n\times3} & \overline{M^c_{n\times p}} \end{pmatrix} \begin{pmatrix} v^c_R \\ N_R \end{pmatrix}$

Majorana neutrinos:

$$v_{aL} = \sum_{m=1}^{3} U_{am} v_{mL} + \sum_{m'=4}^{3+n} V_{am'} N_{m'L}^{c},$$

$$N_{aL}^{c} = \sum_{m=1}^{3} X_{am} v_{mL} + \sum_{m'=4}^{3+n} Y_{am'} N_{m'L}^{c},$$

The charged currents:

$$-L_{CC} = \frac{\sqrt{9}}{2}W_{\mu}^{+} \sum_{\ell=e}^{T} \sum_{m=1}^{3} U_{\ell m}^{*} \nabla_{m} \gamma^{\mu} P_{L} \ell + h.c.$$

$$+ \frac{\sqrt{9}}{2}W_{\mu}^{+} \sum_{\ell=e}^{T} \sum_{m'=4}^{3+n} V_{\ell m'}^{*} \overline{N_{m'}^{c}} \gamma^{\mu} P_{L} \ell + h.c.$$

Type I Seesaw features:

$$U_{\ell m}^2 \sim V_{PMNS}^2 \approx \mathcal{O}(1); \ V_{\ell m}^2 \approx m_{\nu}/m_N.$$

 $U_{\ell m}$, Δm_{ν} are from oscillation experiments

 m_N a free parameter: could be accessible!

But difficult to see N_R:

The mixing is typically small, mass wide open:

$$V_{\ell m}^2 \approx (m_{\nu}/eV)/(m_N/GeV) \times 10^{-9}$$
$$< 6 \times 10^{-3} (low\ energy\ bound)$$

- Fine-tune or hybrid could make it sizeable.
- "Inverse seesaw"

Casas and Ibarra (2001);

A. Y. Smirnov and R. Zukanovich Funchal (2006);

A. de Gouvea, J. Jenkins and N. Vasudevan (2007);

W. Chao, Z. G. Si, Z. Z. Xing and S. Zhou (2008).

Complementarity @ high & low masses

- For displaced HNL signatures, more experiments can join the search
- ► HL-LHC timescale: FASER2, MATHUSLA, CODEXb, DUNE can probe low masses

Type II Seesaw: No need for N_R, with Φ-triplet*

With a scalar triplet Φ (Y = 2): φ^{\pm} , φ^{\pm} , φ^{0} (many representative models). Add a gauge invariant/renormalizable term:

$$Y_{ij}L_i^TC(i\sigma_2)\Phi L_j + h.c.$$

That leads to the Majorana mass:

$$M_{ij} v_i^T C v_j + h.c.$$

where

$$M_{ij} = Y_{ij} \langle \Phi \rangle = Y_{ij} v' \lesssim 1 \text{ eV},$$

Very same gauge invariant/renormalizable term:

$$\mu H^{T}(i\sigma_{2})\Phi^{\dagger}H + h.c.$$

$$v' = \mu \frac{v^{2}}{M_{\phi}^{2}},$$

leading to the Type II Seesaw. †

*Magg, Wetterich (1980); Lazarides, Shafi (1981); Mohapatra, Senjanovic (1981). ...

†In Little Higgs model: T.Han, H.Logan, B.Mukhopadhyaya, R.Srikanth (2005).

Type II Seesaw features*

• Triplet vev \rightarrow Majorana mass \rightarrow neutrino mixing pattern! $H^{\pm\pm} \rightarrow \ell_i^{\pm} \ell_i^{\pm} \rightarrow$ neutrino mixing pattern! $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$. Competing channel

Variations

Naturally embedded in L-R symmetric model:[#]

$$W^{\pm}_{R} \rightarrow N_{R} e^{\pm}$$

(* Large Type I signals via W_R-N_R)

[†]Pavel Fileviez Perez, Tao Han, Gui-Yu Huang, Tong Li, Kai Wang, arXiv:0803.3450 [hep-ph]

[#] Mohapatra, Senjanovic (1981). ...

Type II continued: H^{± ±} & H[±]

BSM Whitepaper: arXiv:2203.08039

Type III Seesaw: with a fermionic triplet*

```
With a lepton triplet T (Y = 0): T^+ T^0 T^-, add the terms: -M_T(T^+T^- + T^0T^0/2) + y_T^i H^T i\sigma_2 T L_i + h.c.
```

These lead to the Majorana mass:

$$M_{ij} \approx y_i y_j \frac{v^2}{2M_T}$$

Again, the seesaw spirit: $m_v \sim v^2/M_T$.

Features:

Demand that $M_T \lesssim 1$ TeV, $M_{ij} \lesssim 1$ eV, Thus the Yukawa couplings:

$$y_j \lesssim 10^{-6}$$
,

making the mixing T[±],0 - l[±] very weak.

T⁰ a Majorana neutrino;

Decay via mixing (Yukawa couplings);

TT Pair production via EW gauge interactions.

^{*}Foot, Lew, He, Joshi (1989); G. Senjanovic et al. ...

Radiative Seesaw Models*

- New fields + (Z_2) symmetry \rightarrow no tree-level mass terms
- Close the loops: Quantum corrections could generate m_v.
 Suppressions (up to 3-loops) make both m_v and M low:

$$m_{\nu} \sim (\frac{1}{16\pi^2})^{\ell} (\frac{v}{M})^k \mu$$

With (Majorana) mass scale µ

Generic features:

- New scalars: φ^0 , H^{\pm} , $H^{\pm\pm}$, ...
- → BSM Higgs physics, possible flavor relations
- Additional Z_2 symmetry \rightarrow Dark Matter η $h^0 \rightarrow \eta \eta$ invisible!

^{*} Zee (1980, 1986); Babu (1988); Ma (2006), Aoki et al. (2009).

Effective Field Theory

In terms of a large physical scale \(\Lambda\). below which the theory is valid:

(relevant operators)

$$\mathcal{L} = \sum c_i \Lambda^n \mathcal{O}_n = \frac{c_0 \Lambda^4 + c_2 \Lambda^2 \mathcal{O}_{\text{dim } 2} + c_3 \Lambda \mathcal{O}_{\text{dim } 3}}{c_0 \Lambda^n \mathcal{O}_{\text{dim } 3}}$$

$$+ \frac{c_4 \mathcal{O}_{\text{dim 4}}}{\Lambda^2} + \frac{c_6}{\Lambda^2} \mathcal{O}_{\text{dim 6}} + \dots$$

(marginal operators) (irrelevant operators)

1st example: beta decay $n \rightarrow p^+ e^- v$

→ Charged current interaction: W[±]

$$-\mathcal{L}_{eff}^{cc}=rac{G_F}{\sqrt{2}}J_W^{\mu}J_{W\mu}^{\dagger}, \hspace{0.5cm} J_{\lambda}^{(\pm)}=\sum_iar{\psi}_i au_{\pm}\gamma_{\lambda}(1-\gamma_5)\psi_i,$$

The fact $G_F = (300 \text{ GeV})^{-2}$ implies that:

Partial-wave Unitarity requires E < 300 GeV!

Many successful example:

- Weak interactions at low energies (Fermi theory).
- Chiral perturbation theory low energy interactions of hadrons
- Heavy quark effective theory (B and D mesons)

EFT is a consistent systematic approach for calculations.

A "poor man's approach":

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{C_{i}}{M^{2}} \mathcal{O}_{i}^{(6)} + \sum_{j} \frac{D_{j}}{M^{4}} \mathcal{O}_{j}^{(8)} + \cdots$$

- Don't know the couplings C_i & D_i, but O(1)?
- Don't know the scale M, but O(1 50 TeV)?
- Each order is smaller by 1/M², but how many terms?

Standard Model Effective Field Theory: SMEFT A gauge invariant EFT with SM fields, H-doublet

(Buchmüller and Wyler, Grzadkowski, Iskrzyński, Misiak, Rosiek)

At dim-6, there 8 types of operators:

 $(H^+H)^3$, $D^2(H^+H)$, $G^2(H^+H)$, G^3 , F^2H^3 , F^2GH^3 , F^2DH^2 , F^4

where H the Higgs, D derivative, G gauge tensor, F fermion

76 hermitian operators which preserve *B* and *L* 2499 including flavor indices

Lepton flavor violation bounds $\Lambda > 10^2 - 10^4$ TeV

K-Kbar mixing, heavy quark bounds $\Lambda > 1 - 6$ TeV

LHC bounds on EW physics ∧ > a few TeV

Gino Isidori, David M. Straub: Minimal Flavour Violation and Beyond		
Operator	Bound on Λ	Observables
$\overline{H^{\dagger}\left(\overline{D}_{R}Y^{d\dagger}Y^{u}Y^{u\dagger}\sigma_{\mu\nu}Q_{L}\right)\left(eF_{\mu\nu} ight)}$	$6.1~{ m TeV}$	$B \to X_s \gamma, B \to X_s \ell^+ \ell^-$
$rac{1}{2}(\overline{Q}_L Y^u Y^{u\dagger} \gamma_\mu Q_L)^2$	$5.9 \mathrm{TeV}$	$\epsilon_K, \Delta m_{B_d}, \Delta m_{B_s}$
$H_D^\dagger \left(\overline{D}_R Y^{d\dagger} Y^u Y^u{}^\dagger \sigma_{\mu u} T^a Q_L ight) (g_s G_{\mu u}^a)$	$3.4 \mathrm{TeV}$	$B \to X_s \gamma, B \to X_s \ell^+ \ell^-$
$\left(\overline{Q}_L Y^u Y^{u\dagger} \gamma_\mu Q_L ight) \left(\overline{E}_R \gamma_\mu E_R ight)$	$2.7 \mathrm{TeV}$	$B \to X_s \ell^+ \ell^-, B_s \to \mu^+ \mu^-$
$i\left(\overline{Q}_L Y^u Y^{u\dagger} \gamma_\mu Q_L ight) H_U^\dagger D_\mu H_U$	$2.3 \mathrm{TeV}$	$B \to X_s \ell^+ \ell^-, B_s \to \mu^+ \mu^-$
$\left(\overline{Q}_L Y^u Y^{u\dagger} \gamma_\mu Q_L ight) \left(\overline{L}_L \gamma_\mu L_L ight)$	$1.7 \mathrm{TeV}$	$B \to X_s \ell^+ \ell^-, B_s \to \mu^+ \mu^-$
$\left(\overline{Q}_L Y^u Y^{u\dagger} \gamma_\mu Q_L\right) \left(e D_\mu F_{\mu u}\right)$	$1.5 \mathrm{TeV}$	$B \to X_s \ell^+ \ell^-$

Higgs Effective Field Theory: HEFT A gauge invariant EFT non-linear realization, no SM Higgs doublet

$$U = e^{2i\phi^a T_a/v} \quad \text{with} \quad \phi^a T_a = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\phi^0}{\sqrt{2}} & \phi^+ \\ \phi^- & -\frac{\phi^0}{\sqrt{2}} \end{pmatrix},$$
$$\mathcal{L}_{Uh} = \frac{v^2}{4} \operatorname{tr}[D_{\mu} U^{\dagger} D^{\mu} U] F_U(H) + \frac{1}{2} \partial_{\mu} H \partial^{\mu} H - V(H)$$

125-GeV Higgs boson is a "singlet-like"! SU(2)_L relations for H are absent.

SMEFT BSM

HEFT BSM VS.

$$\varphi = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}\phi^{+} \\ v + H + i\phi^{0} \end{pmatrix},$$

$$\mathcal{L}_{\text{SMEFT},\mu\phi} = -\sum_{n=1}^{\infty} \frac{c_{\varphi}^{(2n+4)}}{\Lambda^{2n}} (\varphi^{\dagger}\varphi)^{n+2}$$

$$\varphi = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}\phi^{+} \\ v + H + i\phi^{0} \end{pmatrix}, \qquad U = e^{2i\phi^{a}T_{a}/v} \quad \text{with} \quad \phi^{a}T_{a} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\phi^{0}}{\sqrt{2}} & \phi^{+} \\ \phi^{-} & -\frac{\phi^{0}}{\sqrt{2}} \end{pmatrix},$$

$$\mathcal{L}_{\text{SMEFT},\mu\phi} = -\sum_{n=1}^{\infty} \frac{c_{\varphi}^{(2n+4)}}{\Lambda^{2n}} (\varphi^{\dagger}\varphi)^{n+2} \qquad \mathcal{L}_{Uh} = \frac{v^{2}}{4} \operatorname{tr}[D_{\mu}U^{\dagger}D^{\mu}U]F_{U}(H) + \frac{1}{2}\partial_{\mu}H\partial^{\mu}H - V(H)$$

weakly coupled @ / (SUSY, 2HDM ...)

strongly coupled @ $4\pi \nu$ (Composite, T', ρ_{TC} ...)

LHC → Higgs coupling SM-like ~ few %

but (light) fermion Yukawa's wide open to explore:

$$-\sum_{n=1}^{\infty} \frac{c_{\ell\varphi}^{(2n+4)}}{\Lambda^{2n}} (\varphi^{\dagger}\varphi)^{n} (\bar{\ell}_{L}\varphi\mu_{R} + \text{h.c.}) - \frac{v}{\sqrt{2}} \left[\bar{\ell}_{L}Y_{\ell}(H)UP_{-}\ell_{R} + \text{h.c.} \right]$$
$$Y_{\ell}(H) = \frac{\sqrt{2}m_{\mu}}{v} + \sum_{k \geq 1} y_{\ell,k} \left(\frac{H}{v} \right)^{k}$$

E. Celada, TH et al., arXiv:2312.13082

In these lectures:

1. The Quest for the SM & Beyond

The SM is tested to the highest energy scale accessible to date, and can be valid to an exponentially high scale.

Yet it is incomplete: neutrino mass; DM; baryonic asymmetry.

Higgs boson may serve as a portal to BSM physics.

2. Strongly-coupled EW Sector

Higgs

is a composite state, as a Nambu-Goldstone boson, showing up with a form factor, or with T', W', Z' partners.

3. A Weakly-coupled Extension

SUSY

extension: top-squark, gluino, multiple Higgs, DM... 4.

Flavors of Matter Fields & EFT

Precision

flavor / neutrino physics keep the promise to probe higher scales.

Concluding Remarks

Uninterrupted discoveries in the past 50 years led us to ...

Exploration of BSM Physics remains Exciting!

Danke Sehr!