PHYSICS BEYOND THE SM

UNDER THE HIGGS LAMPPOST

Tao Han
Pitt PACC, Univ. of Pittsburgh

Herbstschule of High Energy Physics 2025 Bad Honnef, Sept. 8 – 11, 2025

PHYSICS BEYOND THE SM UNDER THE HIGGS LAMPPOST

- 1. The Quest for the SM & Beyond
- 2. A Strongly-coupled EW Sector
- 3. A Weakly-coupled Extension
- 4. Flavors of Matter Fields & EFT

The BIG Hierarchy Problem

Why the weak scale M_W is so much smaller than M_{Pl} ?

- 1. Dynamical generation: dimensional transmutation
- 2. Controlled by symmetry:
- Shift symmetry (Nambu-Goldstone boson)
- Super-symmetry (elementary particles)
- Discrete symmetries

Supersymmetry: an elegant formalism

Julius Wess & Bruno Zumino (in 1974)

- Generalized extension of Poincare group of spacetime symmetry
- Critical ingredients for string theory:
 World sheet/Spacetime SUSY
- Low energy effective field theory from compactification
- Eliminate the cosmological constant upto symmetry breaking
- · Stabilizes weak scale at all orders
- Potential Grand Unification of EW & QCD
- Natural WIMP dark matter candidate

Supersymmetry: fermion <-> boson

The SUSY generators Q transform fermions into bosons and vice-versa

 $Q|Fermion\rangle >= |Boson\rangle$, $Q|Boson\rangle = |Fermion\rangle$

Under SUSY, the two partners must

- Have the same mass, the same coupling
- Spin different by ½

Since we have not seen a partner of same mass, SUSY must be broken, at a higher scale.

Minimal Supersymmetric Standard-Model (MSSM)

Extended symmetry between opposite spin & statistics

particles	symbol	spin	mass param.
gluino	$ ilde{g}$	1/2	M_3
charginos	$ ilde{\chi}_1^\pm$, $ ilde{\chi}_2^\pm$	1/2	M_2
neutralinos	$ ilde{\chi}_1^\pm, \ ilde{\chi}_2^\pm \ ilde{\chi}_2^0, \ ilde{\chi}_3^0, \ ilde{\chi}_4^0 \ ilde{\chi}_4^0$	1/2	M_1, μ, B
			$m_{H_u}^2,\; m_{H_d}^2$
sleptons	$ ilde{e}_L$, $ ilde{ u}_{e_L}$, $ ilde{e}_R$	0	$m_{\ell L}^2$
	$ ilde{\mu}_L$, $ ilde{ u}_{\mu_L}$, $ ilde{\mu}_R$	0	
	$ ilde{ au}_1, ilde{ au}_2, ilde{ u}_{ au_L}$	0	$m_{\ell R}^2$
squarks	$ ilde{u}_L$, $ ilde{d}_L$, $ ilde{u}_R$, $ ilde{d}_R$	0	$m_{q_L}^2$
	$ ilde{c}_L, ilde{s}_L, \ ilde{c}_R, ilde{s}_R$	0	
	\tilde{t}_1 , \tilde{t}_2 , \tilde{b}_1 , \tilde{b}_2	0	$m_{q_R}^2$
Higgs	h^0, H^0, A^0, H^{\pm}	0	m_A^2 , tan eta

 $ilde{t}$ versus t; $ilde{W}$ versus W; $ilde{H}$ versus H; H_d versus H_u ,

$$\Delta m_H^2 \sim (M_{SUSY}^2 - M_{SM}^2) rac{\lambda_f^2}{16\pi^2} \ln\left(rac{\Lambda}{M_{SUSY}}
ight).$$

only if the "soft-SUSY breaking": $M_{SUSY} \sim \mathcal{O}(M_{SM})$.

→ "Weak scale" supersymmetry!

What about M_{SUSY} (in a hidden sector)?

× Supersymmetry breaking mechanism is unknown.

Fermionic masses:

$$M_1,\ M_2,\ M_3,\ \mu\ o M_{\chi_{1,2}^\pm},\ M_{\chi_{1,2,3,4}^0};$$

Scalar masses:

$$M_{ ilde{q}_{L,R}},\ M_{ ilde{l}_{L,R}};$$

Mixings:

 $\tan \beta$, $\sin \alpha$

CP Phases:

$$\phi_{1,2,3\mu}$$
 ··· ···

Parameter count in the SM and MSSM (no $m'_{\nu}s$ yet)

model	masses and mixing ang.	CP-viol. phases	TOTAL
SM	17	2	19
MSSM	79	45	124
(MSSM) _{BV}	97	62	159
(MSSM) _{LV}	157	122	279
(MSSM) _{BLV}	175	140	315

Based on observation:

- * Proton stability:
 - \Rightarrow R-parity conservation; or B, L not broken simultaneously (in $1^{st}, 2^{nd}$ generations).
- * No excessively large CP-violation/FCNC:
 - \Rightarrow no (or small) phases; sfermion mass degenerate (or heavy).

General parameter selection: Phenomenological MSSM (pMSSM)

The 20 dimensional pMSSM parameter space then includes

$$M_1, M_2, M_3,$$
 $m_{Q_1}, m_{U_1}, m_{D_1}, m_{L_1}, m_{E_1},$ $m_{Q_3}, m_{U_3}, m_{D_3}, m_{L_3}, m_{E_3},$ $A_t, A_b, A_\tau,$ $m_{H_u}^2, m_{H_d}^2, \mu, B.$

scan over parameters

SUSY is still relevant!

Hitoshi Murayama (Berkeley, Kavli IPMU) SUSY 2025, Santa Cruz, Aug 23, 2025

"Natural SUSY": Radiative EWSB

√ radiative EWSB by the large top Yukawa coupling:

$$M_Z^2/2 = \frac{m_{H_d}^2 - m_{H_u}^2 \tan^2 \beta}{\tan^2 \beta - 1} - \mu^2.$$

Assume higher scales correlated, only insist on light Higgsinos:

Cohen, Kaplan, Nelson, 1996 Hall, Pinner, Ruderman, 2012 Baer, Barger, Huang, Tata, 2012

Higgs mass corrections & Heavy Higgs bosons

 $m_H^2 \approx M_Z^2 \cos^2 2\beta + \Delta m_{SUSY}^2$ Tree-level <(80 GeV)² + loop-level: >(45 GeV)²

 \rightarrow Need large tanβ; m_{stop} & mixing $X_t >> m_t$ sensitive to μ , the Higgsino parameter

"Little hierarchy problem"

SUSY Grand Unification

Proton decay bounds --- SUSY helps!

SUSY breaking/mediation scenarios:

(*) "Minimal Super-gravity" (mSUGRA) scenario:

Gravity mediates the SUSY breaking from M_{GUT} to M_{EW} .

At the high scale: m_0 , $m_{1/2}$, A, $\tan \beta$, and $sign(\mu)$

However,

Currently, $\Delta_{BG}(mSUGRA) > 1000$

All masses at the EW scale predicted.

mSUGRA/CMSSM highly unnatural under all measures: ruled out by LHC!

(*) "Gauge mediation" scenario: * parameters: Λ , M_m , N, $\tan \beta$, $sign(\mu)$

$$N$$
: no. of messengers, M_m (10 - 100 TeV): messenger mass scale, $\Lambda = F/M_m$ (10 - 100 TeV): SUSY breaking scale.

Spin- $\frac{1}{2}$ Goldstino LSP:

$$m_{\widetilde{G}} = rac{F}{\sqrt{3}M_{pl}} pprox \left(rac{\sqrt{F}}{100~{
m TeV}}
ight)^2~{
m eV}$$

leading to missing energy.

Sparticle masses:

$$\tilde{M}_{\tilde{\chi}} \sim \kappa N \frac{\alpha_a}{4\pi} \Lambda,$$

 $\tilde{m}_{\tilde{f}}^2 \sim \kappa' N \sum_i C_i \frac{\alpha_i}{4\pi} \Lambda^2.$

$$\tilde{e} \to e^+ \chi_1^0, \quad \chi_1^0 \to \gamma \tilde{G}$$

- (*) "Anomaly mediation" scenario: †
 Scalar and gaugino masses generated by one-loop Super-Weyl anomaly (Gravity as bluk messengers).
- (*) "Gaugino mediation" scenario: †
 Gauginos as bulk messengers.
- (*) "Mixed Modulus-Anomaly mediation" scenario: ‡
 Only experiments can tell: A real challenge!

Smoking gun signal for SUSY ---Large missing transverse momentum:

Top-partner is the most likely suspect SUSY on Trial:

Gluinos are the next candidate!

Long-lived particles (LLP)

18 August 2025

ATLAS Searches for SUSY

Missing siblings:

Two Higgs-Doublet Model

5 Higgs bosons: h^0 , H^0 , A^0 , H^{\pm} Tree-level mass given by: M_A , $\tan \beta$

General 2HDM with Z₂ symm

Types	Φ_1	Φ_2	u_R	d_R	ℓ_R	Q_L,L_L	Φ_1	$\overline{\Phi_2}$
Type-I	+	_	_	_	_	+		u,d,ℓ
Type-II	+	_	_	+	+	+	d,ℓ	u
Type-L	+	_	_	_	+	+	ℓ	u, d,
Type-F	+	_	_	+	_	+	d	u,ℓ

$$egin{aligned} egin{pmatrix} H^\pm \ G^\pm \end{pmatrix} &= egin{pmatrix} c_eta & -s_eta \ s_eta & c_eta \end{pmatrix} egin{pmatrix} \phi_2^\pm \ \phi_1^\pm \end{pmatrix} \ egin{pmatrix} A^0 \ G^0 \end{pmatrix} &= egin{pmatrix} c_eta & -s_eta \ s_eta & c_eta \end{pmatrix} egin{pmatrix} G_2^0 \ G_1^0 \end{pmatrix} \ egin{pmatrix} egin{pmatrix} h \ G^0 \ s_eta & c_eta \end{pmatrix} egin{pmatrix} \phi_2^0 \ \phi_1^0 \end{pmatrix} \ egin{pmatrix} \phi_0^0 \ \phi_1^0 \end{pmatrix} \ egin{pmatrix} \phi_1^0 \ \phi_1^0 \ \phi_1^0 \end{pmatrix} \ egin{pmatrix} \phi_1^0 \ \phi_1$$

"Naturally speaking":

 H^0 should not be a lonely particle; has an "interactive friend circle": t, W^{\pm}, Z and partners $\tilde{t}, \tilde{W}^{\pm}, \tilde{Z}, \tilde{H}^{\pm,0} \dots$

"Little hierarchy problem"

The Jury is still out (again) ...

Future prospects: pushing the "Naturalness" limit

The searches for top quark partners & gluinos, gauginos ...

 \rightarrow Higgs mass fine-tune: $\delta m_H/m_H \sim 1\%$ (1 TeV/ Λ)² Thus, $m_{stop} > 8$ TeV \rightarrow 10⁻⁴ fine-tune!

SUSY WIMP DM

The lightest neutralino could be a natural WIMP dark matter candidate!

Utilizing the missing-mass technique for DM search, covering the thermal target

TH, Z. Liu, L.T. Wang, X. Wang: arXiv:2009.11287; arXiv:2203.07351

Alternative to "Naturalness": SUSY "splitted"?

Mind of SUSY theorists

Nima Arkani-Hamed, Giudice, Delgado, ...

Split Supersymmetry: Philosophy

- · SUSY is irrelevant to the hierarchy problem
 - Cosmological constant problem suggests fine-tuning mechanism → may also apply to the gauge hierarchy
- Break SUSY at the GUT scale
 - Scalars become ultra-heavy (except 1 light Higgs): $m_s \sim 10^{9-12} \text{ GeV}$
 - Fermions protected by chiral symmetry
- Phenomenological Successes:
 - Retain gauge coupling unification
 - Higgs mass predicted to be `heavier': $m_H \sim 120-150 \text{ GeV}$
 - Flavor & CP problems are automatically solved
 - Proton decay is delayed (occurs via dimension-6 operator)
- Collider signatures & Dark Matter implications substantially different!

Alternatives to "Naturalness"?

Anthropic Landscape – not a dynamical explanation

String theory predicts: there are at least 10^{272,000} vacau! And we just so happen to live here ...(Don't ask why!)

• Cosmological Relaxation (Graham, Kaplan, Rajendran 2015)

$$\mathcal{L} \supset g\Lambda^3\phi - (M^2 - g\Lambda\phi)|h|^2$$

 Λ is the EFT cutoff scale; "bare" Higgs mass is $M{\sim}\Lambda$

Technically natural-- shift symmetry for ϕ broken only by small coupling g

 ϕ must vary over a range $\Delta \phi \sim \Lambda/g$ to scan the Higgs mass by O(1)

``...settling the ultimate fate of naturalness is perhaps the most profound theoretical question of our time"

-- Nima Arkani-Hamed

The central questions

today are not details—

but structural: origin of

spacetime, UV/IR connection,

standard model > real theory

