

Experimental Lepton Flavour Physics

Ann-Kathrin Perrevoort

Van Swinderen Institute, University of Groningen

HEP Herbstschule Bad Honnef, Sept. 2025

Who am I?

Ann-Kathrin Perrevoort

2014-2018

PhD Heidelberg

2018-2021

Postdoc Nikhef&Nijmegen

> 2022-2023

Fellow KIT

Since 2024

Ass. Prof. Univ. Groningen

Research interests

charged Lepton Flavour Violation
data acquisition

ATLAS

Mu3e

LHCb

Experimental Lepton Flavour Physics

- Selection of experiments that investigate lepton flavour
 - Focus on Lepton Flavour Violation (LFV)
 - Leaving out a lot of other interesting searches: Lepton Flavour Universality, (g-2) of muon, electron EDM, neutrino mass, ...

Wed: Leptons @ Collider Experiments

Thu: Muon Experiments

> Fri: Neutrinos

Experimental Lepton Flavour Physics

Introduction and Leptons @ Collider Experiments

Lecture 1

Today

- Indirect searches for BSM with Leptons
 - Lepton Flavour Violation
- Leptons @ Colliders
 - . Detection of e, μ, τ
 - Example: Search for Z→et and Z→µt with the ATLAS Experiment

Indirect Searches for BSM with Leptons

Indirect Searches for BSM Physics

- Standard Model (SM) is not an ultimate theory of particle physics
- Search for signs of beyond SM (BSM) physics

Indirect Searches for BSM Physics

- Standard Model (SM) is not an ultimate theory of particle physics
- Search for signs of beyond SM (BSM) physics
- > **Energy** frontier
 - Direct production of heavy BSM particles
- > Precision / Intensity frontier
 - Indirect search for tiny deviations from SM predictions
 - Sensitive to small couplings and/or heavy particles in loops
 - Use processes that are rare or forbidden in the SM

Indirect Searches for BSM Physics

- Standard Model (SM) is not an ultimate theory of particle physics
- Search for signs of beyond SM (BSM) physics
- > **Energy** frontier
 - Direct production of heavy BSM particles
- > Precision / Intensity frontier
 - Indirect search for tiny deviations from SM predictions
 - Sensitive to small couplings and/or heavy particles in loops
 - Use processes that are rare or forbidden in the SM

Physics Briefing Book, ESPPU2020

Lepton Flavour Violation

- Lepton flavour is conserved due to an accidental symmetry in the SM
- Lepton Flavour Violation (LFV) is a forbidden process

Physics Briefing Book, ESPPU2020

- Lepton flavour is conserved due to an accidental symmetry in the SM
- Lepton Flavour Violation (LFV) is a forbidden process
- > And in **BSM**?
 - LFV frequently predicted
 - No LFV would hint at additional symmetry

Lepton Flavour Violation

- Lepton flavour is conserved due to an accidental symmetry in the SM
- Lepton Flavour Violation (LFV) is a forbidden process
- > And in **BSM**?
 - LFV frequently predicted
 - No LFV would hint at additional symmetry
- > And in **nature**?
 - Neutrino oscillations are LFV!
 - But what about charged leptons?

Illustration: © Johan Jarnestad/The Royal Swedish Academy of Sciences

Charged Lepton Flavour Violation

- LFV with charged leptons (cLFV)
 - forbidden in the SM
 - predicted in BSM models
 - not (yet?) observed
- If neutrino mixing is added to SM, cLFV still heavily suppressed:

$$\mathcal{B}_{\mu \to eee} \propto \left(\frac{\Delta m_{\nu}^2}{m_W^2}\right)^2 \to \mathcal{B}_{\mu \to eee} < 10^{-54}$$

Detecting Leptons @ Collider Experiments

Detecting Leptons

- > Detect
 - Charged leptons
 - Photons
 - Hadrons
 - No neutrinos

Example: CMS Experiment

- Muons are rather light
 m = 105.66 MeV
 with rather long lifetime
 τ = 2.197 × 10⁻⁶s
 - Decays via µ[±]→e[±]vv̄,
 but most muons don't decay within detector
- Minimum-ionizing particle (MIP)
 - Passes through all detectors
 - Characteristic signal in muon system

Detecting Leptons: Muons

- > Reconstructed from
 - Combined tracking and muon system signals
 - Also possible:
 - Tracking + calorimeter
 - Muon system alone
- > Identification of prompt muons (from PV)
 - . Distinguish from $K/\pi \rightarrow \mu$
 - Track fit quality
 - Mismatch of momenta measured in tracking and muon system
- > Isolation
 - Reject muons produced in jets
 - Selections based on activity around reconstructed muon candidate

Fig. 1. Components of a "traditional" particle physics experiment. Each particle type has its own signature in the detector. For example, if a particle is detected only in the electromagnetic calorimeter, it is fairly certain that it is a photon.

Detecting Leptons: Electrons

- > Electrons are very light (m = 0.511 MeV) and stable
- Reconstructed from
 - Signal in electromagnetic calorimeter (ECAL) same for electrons and photons
 - Need matching track
 - Recover bremsstrahlung losses

Fig. 1. Components of a "traditional" particle physics experiment. Each particle type has its own signature in the detector. For example, if a particle is detected only in the electromagnetic calorimeter, it is fairly certain that it is a photon.

faculty of science and engineering

Detecting Leptons: Electrons

Electrons are very light (m = 0.511 MeV) and stable

- Reconstructed from
 - Signal in ECAL and matching track
 - Recover bremsstrahlung losses
- Identification
 - Distinguish from jets
 - Shower and track parameters
 - Leakage into hadronic calorimeter (HCAL)
- > Isolation
 - Reject electrons produced in jets
 - Selections based on activity around reconstructed electron candidate

Fig. 1. Components of a "traditional" particle physics experiment. Each particle type has its own signature in the detector. For example, if a particle is detected only in the electromagnetic calorimeter, it is fairly certain that it is a photon.

Detecting Leptons: Taus

- Taus are heavy m = 1777 MeV and **short-lived** τ = 2.9×10⁻¹³s
- > Multiple decay modes
 - Leptonic (BR ~ 35%)
 - $T^{\pm} \rightarrow \ell^{\pm} v \overline{v}$, $\ell = e, \mu$
 - Reconstruct as e, μ
 - Hadronic (BR ~ 65%)
 - $\tau^{\pm} \rightarrow \pi^{\pm} v$ or $3\pi^{\pm} v + \pi^{0} s$
- Neutrinos from tau decay not directly detected
 - . Reconstruct visible products
 - Neutrinos partially reconstructed via missing transverse momentum

$$E_{
m T}^{
m miss} = \sum_{
m visible} ec{p}_{
m T}$$

Detecting Leptons: Hadronic Taus

- Reconstruct visible hadronic tau decay products
 - Decay τ[±]→π[±]v or 3π[±]v + π⁰s
 has 1 or 3 associated tracks
 within a cone (1-prong / 3-prong)
 + calorimeter activity
 - Improve by
 - Exploiting substructure:
 π[±] have tracks, π⁰ don't
 - Jet rejection via tracking and calorimeter information, ex. displaced vertex
 - Electron rejection via activity in ECAL vs. HCAL

Example: $Z \rightarrow e\tau$ and $Z \rightarrow \mu\tau$ with ATLAS

→ ATLAS search for $Z \rightarrow \ell^{\pm} \tau^{\mp}$ ($\ell = e \text{ or } \mu$) with full Run 2 dataset (8 billion Z)

> Signal Z→ℓτ

- Opposite sign ℓ[±]τ[∓] pair
- Back-to-back in Z rest frame
- τ_{lep} and $\tau_{had\text{-vis}}$ channel
- v collinear with τ_{had-vis} / ℓ from τ decay

- > ATLAS search for $Z \rightarrow \ell^{\pm} \tau^{\mp}$ ($\ell = e \text{ or } \mu$) with full Run 2 dataset (8 billion Z)
- Signal Z→ℓτ
- > Background
 - Same final state
 - $Z \rightarrow TT$, $Z \rightarrow \ell \ell$
 - Decays of ttbar, two gauge bosons, ...
 - Estimate from simulation
 - Misidentification
 - µ→e in Z→ℓℓ
 - $jet \rightarrow \ell / \tau_{had-vis}$, ex. $W(\rightarrow \ell v)$ +jet
 - Data-driven estimate

Misidentification

- \rightarrow Misidentification: $\mu \rightarrow e$ (leptonic τ decays)
 - . A $Z \rightarrow \mu\mu$ event can look like signal if a μ gets mistaken for an electron
 - Reasons: muon decay to electron, enhanced activity in ECAL
 - Expect mismatch of p_T measured in tracking and in ECAL

- Mis-identification background difficult to simulate
- Fakes from jet→ℓ / T_{had-vis} mis-identification estimated with data-driven Fake Factor method
 - Count events passing/failing quality criteria in fake enriched (FR) region
 - Ratio is fake factor F
 - Count events failing quality criteria in signal region (SR)
 - Multiply by fake factor
 ⇒ Estimate of fakes in SR

Observables

- > Closest **proxy to invariant mass** of ℓ - τ_{vis} -v system is **collinear mass**
 - · Invariant mass of ℓ-τ_{vis}-E_T^{miss} system
 - Assume E_T^{miss} has z-component such that $\eta(E_T^{miss}) = \eta(\tau_{vis})$

Κinematic discriminant Δα

τ_{vis} **collinear** with τ:

$$p(\tau) = a p(\tau_{vis})$$

- Invariant mass $Z \rightarrow \ell \tau$ $m_Z^2 m_\tau^2 = 2p(\ell)p(\tau) = 2\alpha p(\ell)p(\tau_{vis})$
- ℓ and τ back-to-back in $Z \rightarrow \ell \tau$:

$$p_T(\ell) = p_T(\tau) = a p_T(\tau_{vis})$$

- . Ag as difference
 - Close to zero for signal
 - But not for background

- Closest proxy to invariant mass of ℓ-T_{vis}-v system is collinear mass
 - Invariant mass of ℓ-τ_{vis}-E_T^{miss} system
 - Assume E_T^{miss} has z-component such that $\eta(E_T^{miss}) = \eta(\tau_{vis})$

Kinematic discriminant Δα

 T_{vis} **collinear** with T:

Invariant mass ∠→tr

$$m_Z^2 - m_{\tau}^2 = 2p(\ell)p(\tau) = 2ap(\ell)p(\tau_{vis})$$

 ℓ and τ back-to-back in $Z \rightarrow \ell \tau$:

$$p_T(\ell) = p_T(\tau) = a p_T(\tau_{vis})$$

Δa as difference

- Close to zero for signal
- But not for background

- Exploit all correlations of the ℓ - τ_{vis} - E_T^{miss} system
- Binary neural net (NN) classifier to discriminate against dominant backgrounds

- Binned maximum likelihood fit to data of NN distribution in signal and control regions
- Extract signal branching fraction 38
 (Z→ℓτ) and background
 normalization

No statistically significant deviation observed

→upper limits on \$\mathcal{B}\$

(Z→{\tau})

Nature Physics 17, 819–825 (2021) Phys.Rev.Lett. 127, 271801 (2021)

Observed (expected) upper limit on ℬ(Z→ℓτ) [×10-6] at 95% confidence level (CL)		
Final state	ет	μτ
Data set	Run 2	Run 1 (τ _{had-vis}) + Run 2
Combined τ _{lep} and τ _{had-vis}	5.0 (6.0)	6.5 (5.3)
OPAL & DELPHI at LEP	9.8	12

World-leading upper limit on $\mathfrak{B}(Z \rightarrow \ell \tau)$

- Superseding LEP limits
 by a factor of ~2 for 1st time @ LHC
- Statistically limited

Summary

Summary

- > Indirect searches for BSM
 - Testing flavour symmetries in the lepton sector, ex. LFV
- Leptons at colliders
 - . Detection and reconstruction
 - Several challenges
 - Bremsstrahlung
 - Neutrinos in the final state
 - Misidentification
 - ..

Backup

cLFV Z→lt Decays

(b) SUSY (slepton flavour mixing)

Examples for BSM in Z→ℓτ

- Heavy neutrinos
- Supersymmetry
- Extended Higgs sector

Contact Details

Ann-Kathrin Perrevoort

Assistant Professor in Experimental Particle Physics (LHCb)

University of Groningen
Faculty of Science and Engineering
Van Swinderen Institute
for Particle Physics and Gravity

a.perrevoort@rug.nl
https://www.rug.nl/staff/a.perrevoort/

university of groningen

faculty of science and engineering

- → ATLAS search for $Z \rightarrow \ell^{\pm} \tau^{\mp}$ ($\ell = e \text{ or } \mu$) with full Run 2 dataset
- Signal and most backgrounds modelled with MC simulation
- → jet→ℓ / T_{had-vis} misidentification estimated Fake Factor method

	FR	SR
pass ID		N _{SR} fakes
fail ID	N _{FR} fail	N _{SR} fail

