The Electroweak Standard Model

facilitating precision physics at LHC and beyond

Steffen Schumann

Institute for Theoretical Physics Georg-August-University Göttingen

HEP Herbstschule 2025 Bad Honnef Lecture 2

Recap: lecture I

QED as a role model

■ QED as quantized gauge field theory of dynamical fields A^{μ} and ψ \rightarrow minimal coupling photon field with charged fermions (matter)

$$\mathcal{L}_{\mathsf{QED}} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \frac{1}{2\xi} (\partial_{\mu} A^{\mu})^2 + \bar{\psi} (i \partial \!\!\!/ + q e A \!\!\!/ - m) \psi$$

- QED is a renormalizable QFT
 - → all UV divergences absorbed into field/parameter renormalizations

the road ahead

- lift gauge symmetry to construction principle for weak & strong forces $\leadsto SU(2)$ and SU(3) symmetries
- however, while QED is parity conserving, the weak force is not
 - \rightsquigarrow charged weak interaction maximally parity violating

[Wu experiment 1956; Nobel price Lee, Yang 1957]

→ need to consider chiral fermions

Towards EW SM: chiral fermions

- consider massless Dirac fermion ψ satisfying $i\partial\!\!\!/\psi=0$ \leadsto based on $\{\gamma_5,\gamma^\mu\}=0$ it then also holds $i\partial\!\!\!/\gamma_5\psi=0$
- lacksquare define superpositions $\psi_{R/L}$ of definite chirality $\left(\gamma_5\psi_{R/L}=\pm\psi_{R/L}\right)$

$$\psi_L = rac{1}{2} \left(1 - \gamma_5
ight) \psi = P_L \psi$$
 and $\psi_R = rac{1}{2} \left(1 + \gamma_5
ight) \psi = P_R \psi$

Lagrangian for chiral fermions (using $P_L P_R = P_R P_L = 0$, $P_{R/L}^2 = P_{R/L}$)

$$\mathcal{L} = i\bar{\psi}\partial\psi = i\bar{\psi}_L\partial\psi_L + i\bar{\psi}_R\partial\psi_R$$

ightharpoonup exhibits invariance under *global* phase trafo $\psi_{L/R} o \exp\left(i\alpha_{L/R}\right)\psi_{L/R}$

$$\partial_{\mu}J_{L/R}^{\mu}=0 \quad \text{with} \quad J_{L/R}^{\mu}=\bar{\psi}_{L/R}\gamma^{\mu}\psi_{L/R}$$

however, mass term breaks chiral symmetry

$$m\bar{\psi}\psi = m\bar{\psi}_L\psi_R + m\bar{\psi}_R\psi_L$$

 \rightsquigarrow breaks $SU(2)_L$ gauge invariance, need different source for mass term

Towards EW SM: non-abelian gauge symmetry I

 $lue{}$ consider doublet of fermions and a unitary transformation U

$$\Psi = \left(\begin{array}{c} \psi_1 \\ \psi_2 \end{array} \right) \to \Psi' = \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array} \right) \left(\begin{array}{c} \psi_1 \\ \psi_2 \end{array} \right) \equiv U \Psi$$

with

$$UU^{\dagger} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} \alpha^* & \gamma^* \\ \beta^* & \delta^* \end{pmatrix} = \mathbb{1}_{2 \times 2}$$

 \leadsto 4 constraints for 4 complex elements: leaves 4 real parameters α_i \leadsto employ traceless, hermitian Pauli matrices τ_i with: $[\tau_i, \tau_i] = 2\epsilon_{ijk}\tau_k$

$$U = \exp(i\alpha_0 \mathbb{1}_{2\times 2} + i\alpha_1 \tau_1 + i\alpha_2 \tau_2 + i\alpha_3 \tau_3)$$

=
$$\exp(i\alpha_0) \exp(i\alpha_1 \tau_1 + i\alpha_2 \tau_2 + i\alpha_3 \tau_3)$$

• define unit-determinant matrices $V = \exp(-i\alpha_0) U$

$$\det(V) = \exp(i\operatorname{Tr}(\vec{\alpha} \cdot \vec{\tau})) = \exp(0) = 1$$

$$V = \exp(i\vec{\alpha} \cdot \vec{\tau}) \approx \mathbb{1}_{2 \times 2} + i\vec{\alpha} \cdot \vec{\tau} + \mathcal{O}(\vec{\alpha}^2) \in SU(2)$$

 \rightsquigarrow note, $V_1V_2 \neq V_2V_1$, SU(2) is non-abelian

Towards EW SM: non-abelian gauge symmetry II

lacksquare consider small local SU(2) transformation, i.e. $lpha_i=lpha_i(x)=rac{g}{2}\omega_i(x)$

$$\Psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \to \Psi' = \left(\mathbb{1}_{2 \times 2} + i \frac{g}{2} \vec{\omega} \cdot \vec{\tau}\right) \Psi$$

 \blacksquare as for QED minimal coupling to vector fields W_1^μ , W_2^μ , W_3^μ

$$D^{\mu} = \partial^{\mu} + i \frac{g}{2} \vec{W}^{\mu} \cdot \vec{\tau}$$

for covariant derivative it has to hold

$$D^{\mu}\Psi \to D'^{\mu}\Psi' = \left(\mathbbm{1}_{2\times 2} + i\frac{g}{2}\vec{\omega}\cdot\vec{\tau}\right)D^{\mu}\Psi$$

 \leadsto dictates gauge transformation of fields W_i^μ

$$\vec{W}^{\prime\mu} = \vec{W}^{\mu} - \partial^{\mu}\vec{\omega} - g\vec{\omega} \times \vec{W}^{\mu}$$

gauge invariant kinetic terms for the vector fields

$$\begin{array}{ccc} \mathcal{L}_{SU(2)}^{\mathsf{gauge}} & = & -\frac{1}{4}G_i^{\mu\nu}G_{i,\mu\nu} \\ G_i^{\mu\nu} & = & \partial^{\mu}W_i^{\nu} - \partial^{\nu}W_i^{\mu} - g\epsilon_{ijk}W_j^{\mu}W_k^{\nu} \end{array}$$

Towards EW SM: non-abelian gauge symmetry III

 \blacksquare $\mathcal{L}_{SU(2)}^{\mathsf{gauge}}$ contributes to W_i^μ propagator and gives rise to self interactions

$$V_{W_iW_jW_k} = -\frac{1}{2}g\epsilon_{ijk}\left(\partial^{\mu}W_i^{\nu} - \partial^{\nu}W_i^{\mu}\right)W_{j,\mu}W_{k,\nu}$$

$$W_2$$

$$W_3$$

$$W_1$$

$$V_{W_jW_kW_lW_m} = -\frac{1}{4}g^2\epsilon_{ijk}\epsilon_{ilm}W_j^{\mu}W_k^{\nu}W_{l,\mu}W_{m,\nu}$$

Towards EW SM: weak interactions

- lacksquare represent two charge states of lh lepton/quark species as SU(2) doublet
- lacksquare describe weak interaction by SU(2) gauge theory: weak isospin $I_w=rac{1}{2}$

$$\Psi_L^l \equiv P_L \Psi^l = \left(\begin{array}{c} \psi_{\nu_e} \\ \psi_e \end{array} \right)_L \; , \; \; \Psi_L^q = \left(\begin{array}{c} \psi_u \\ \psi_d \end{array} \right)_L \; , \; \; \Psi_L \to \exp \left(i g \frac{1}{2} \vec{\omega} \cdot \vec{\tau} \right) \Psi_L$$

lacktriangle right-handed fermions have $I_w=0$, invariant under isospin trafo

$$\psi_{e,R} \to \exp(0)\psi_{e,R} = \psi_{e,R}$$

interaction via minimal coupling (fermion mass term forbidden)

$$\mathcal{L}_{\mathsf{int}} \subset \frac{g}{2} \bar{\Psi}_L^l \gamma^\mu \vec{W}_\mu \cdot \vec{\tau} \Psi_L^l = \frac{g}{4} \bar{\Psi}^l \gamma^\mu (1 - \gamma_5) \vec{W}_\mu \cdot \vec{\tau} \Psi^l$$

with

$$\vec{W}_{\mu} \cdot \vec{\tau} = \left(\begin{array}{cc} W_3^{\mu} & W_1^{\mu} - i W_2^{\mu} \\ W_1^{\mu} + i W_2^{\mu} & -W_3^{\mu} \end{array} \right)$$
 defining $W^{\mu,\pm} = \frac{1}{\sqrt{2}} (W_1^{\mu} \mp i W_2^{\mu})$

The Glashow, Weinberg, Salam theory (1961-1968)

- unifying electro-magnetic and weak interactions
- \blacksquare electroweak symmetry given by $SU(2)_L \otimes U(1)_Y$, weak hypercharge Y

weak isospin singlets of three fermion generations

$$\psi_R \in \{e_R, \mu_R, \tau_R, u_R, c_R, t_R, d_R, s_R, b_R\}$$

The Glashow, Weinberg, Salam theory (1961-1968)

The Electroweak Standard Model Lagrangian

kinetic terms for the gauge fields

$$\mathcal{L}_{\text{EW}}^{\text{gauge}} = \mathcal{L}_{SU(2)_L}^{\text{gauge}} + \mathcal{L}_{U(1)_Y}^{\text{gauge}} = -\frac{1}{4}G_i^{\mu\nu}G_{i,\mu\nu} - \frac{1}{4}B^{\mu\nu}B_{\mu\nu}$$

kinetic terms for leptons and quarks & minimal coupling to gauge fields

$$\mathcal{L}_{\mathsf{EW}}^{\mathsf{matter}} = \sum_{\Psi_L} \bar{\Psi}_L i \rlap{/}D \!\!\!/ \Psi_L + \sum_{\psi_R} \bar{\psi}_R i \rlap{/}D \!\!\!/ \psi_R$$

with the covariant derivatives for left-/right-chiral fermions

$$\begin{array}{lcl} D_{\mu}\psi_{R} & = & \left(\partial_{\mu}+i\frac{g_{1}}{2}Y_{w}B_{\mu}\right)\psi_{R} \\ D_{\mu}\Psi_{L} & = & \left(\mathbbm{1}_{2\times2}\left(\partial_{\mu}+i\frac{g_{1}}{2}Y_{w}B_{\mu}\right)+i\frac{g_{2}}{2}\vec{W}_{\mu}\cdot\vec{\tau}\right)\Psi_{L} \end{array}$$

■ GWS Lagrangian exhibits exact $SU(2)_L \otimes U(1)_Y$ symmetry however, fermion & boson mass terms would break gauge invariance

Interlude: the fate of symmetries I

the various ways of symmetry breaking

- symmetry of classical theory might have an anomaly at quantum level \rightarrow global axial U(1) symmetry broken, $\pi^0 \rightarrow \gamma \gamma$ decay
- symmetry might be *hidden*: Lagrangian invariant, but ground state not
 → symmetry not manifest in the spectrum of physical states
 → e.g. via vacuum expectation value of scalar field(s): Higgs-mechanism

[Borsanyi et al. Science 347 (2015) 1452]

Interlude: the fate of symmetries II

hidden symmetry

lacksquare let Q be symmetry charge from Noether theorem, global vacuum state trafo

$$|0\rangle \rightarrow e^{i\alpha Q}|0\rangle \ , \text{invariance} \ , \ \text{i.e.} \ e^{i\alpha Q}|0\rangle = |0\rangle \ \forall \ \alpha, \ \ \text{implies} \ \ Q|0\rangle = 0$$

- → vacuum is unique, symmetry manifest
- \blacksquare assume new state $|\alpha\rangle$ is reached, i.e. $Q|0\rangle\neq 0$, however, $\dot{Q}=i[H,Q]=0$

$$H|\alpha\rangle = He^{i\alpha Q}|0\rangle = e^{i\alpha Q}H|0\rangle = e^{i\alpha Q}E_0|0\rangle = E_0|\alpha\rangle \; \forall \; \alpha$$

- \leadsto continuous symmetry results in family of degenerate ground states
- what's the meaning of states obtained from continuous symmetry trafo?
 - excitations about ground state get quantized, interpreted as particles
 - minimal excitation given by particle's mass

Goldstone's theorem (1961): for a continuous symmetry of the Lagrangian, that is not a symmetry of the vacuum, there must exist one or more massless bosons. called Goldstone bosons

The Higgs mechanism

add minimal scalar sector to the GWS theory to arrange for mass terms \leadsto complex SU(2) doublet of weak hypercharge $Y_w=+1$

$$\Phi = \left(\begin{array}{c} \varphi_1 \\ \varphi_2 \end{array}\right)$$

lacksquare kinetic terms, potential and couplings to the $SU(2)_L\otimes U(1)_Y$ gauge fields

$$\mathcal{L}_{\mathsf{HG}} = (D^{\mu}\Phi)^{\dagger} (D_{\mu}\Phi) - V(\Phi)$$

$$\begin{split} D^{\mu}\Phi &= \left(\mathbbm{1}_{2\times 2}\left(\partial_{\mu}+i\frac{g_{1}}{2}Y_{w}B_{\mu}\right)+i\frac{g_{2}}{2}\vec{W}_{\mu}\cdot\vec{\tau}\right)\Phi \\ V(\Phi) &= -\mu^{2}\Phi^{\dagger}\Phi+\lambda\left(\Phi^{\dagger}\Phi\right)^{2} \text{ with } \mu^{2},\lambda\in\mathbb{R}>0 \end{split}$$

The Higgs mechanism

add minimal scalar sector to the GWS theory to arrange for mass terms \leadsto complex SU(2) doublet of weak hypercharge $Y_w=+1$

$$\Phi = \left(\begin{array}{c} \varphi_1 \\ \varphi_2 \end{array}\right)$$

lacktriangle kinetic terms, potential and couplings to the $SU(2)_L\otimes U(1)_Y$ gauge fields

$$\mathcal{L}_{\mathsf{HG}} = \left(D^{\mu}\Phi\right)^{\dagger} \left(D_{\mu}\Phi\right) - V(\Phi)$$

$$D^{\mu}\Phi = \left(\mathbb{1}_{2\times2}\left(\partial_{\mu} + i\frac{g_{1}}{2}Y_{w}B_{\mu}\right) + i\frac{g_{2}}{2}\vec{W}_{\mu}\cdot\vec{\tau}\right)\Phi$$

$$V(\Phi) = -\mu^{2}\Phi^{\dagger}\Phi + \lambda\left(\Phi^{\dagger}\Phi\right)^{2} \text{ with } \mu^{2}, \lambda \in \mathbb{R} > 0$$

Yukawa interactions with fermion fields (here for 1st generation)

$$\mathcal{L}_{\mathsf{HF}} = -f_u \bar{\Psi}_L^u \widetilde{\Phi} u_R - f_d \bar{\Psi}_L^d \Phi d_R - f_e \bar{\Psi}_L^e \Phi e_R + h.c.$$

with $\widetilde{\Phi}=i au_2\Phi^*$ (charge conjugate to Φ), $f_{u,d,e}$ arbitrary coupling constants

The Higgs mechanism: fermion masses

consider electron contribution for definiteness

$$f_e \bar{\Psi}_L^e \Phi e_R + h.c. = f_e \bar{\nu}_{e,L} \varphi_1 e_R - f_e \bar{e}_L \varphi_2 e_R + h.c.$$

$$\leadsto$$
 provides electron mass for $\langle\Phi\rangle_0=\left(\begin{array}{c}0\\v/\sqrt{2}\end{array}\right)~$ with $~f_ev/\sqrt{2}\equiv m_e$

- $\rightsquigarrow \varphi_2$ neutral (Q=0), φ_1 carries positive charge (Q=+1)
- lacksquare $\langle \Phi \rangle_0$ vacuum expectation value of Higgs field Φ
 - → non-trivial minimum of potential picked (SSB)

$$\frac{dV}{d\Phi^{\dagger}} = \Phi(-\mu^2 + 2\lambda\Phi^{\dagger}\Phi) \stackrel{!}{=} 0 \quad \rightsquigarrow \quad \langle \Phi^{\dagger}\Phi \rangle_0 = \frac{1}{2}\sqrt{\frac{\mu^2}{\lambda}} \equiv \frac{v^2}{2}$$

■ $SU(2)_L \otimes U(1)_Y$ symmetry hidden by non-trivial vacuum state $\langle \Phi \rangle_0$ $\rightsquigarrow \tau_1, \, \tau_2$ and $\tau_3 - \frac{1}{2} Y_w$ generators broken, i.e. $e^{i\alpha\tau_1} \langle \Phi \rangle_0 \neq \langle \Phi \rangle_0$ etc \rightsquigarrow only linear combination $Q = \tau_3 + \frac{1}{2} Y_w$ preserves vacuum state (cf. p7)

$$SU(2)_L\otimes U(1)_Y \stackrel{\mathsf{SSB}}{\longrightarrow} U(1)_Q + 3$$
 Goldstone bosons

The Higgs mechanism: gauge boson masses

lacksquare vector field masses from minimal coupling terms $\left(\partial_{\mu}\langle\Phi
angle_{0}=0\right)$

$$\mathcal{L}_{\text{HG}}(\langle \Phi \rangle_0) = \left(\frac{vg_2}{2}\right)^2 W_{\mu}^+ W^{-,\mu} + \frac{v^2}{8} \left(W_{3,\mu}, B_{\mu}\right) \left(\begin{array}{cc} g_2^2 & -g_1 g_2 \\ -g_1 g_2 & g_1^2 \end{array}\right) \left(\begin{array}{c} W_3^{\mu} \\ B^{\mu} \end{array}\right)$$

lacksquare 2nd term diagonalizes for basis states rotated by Weinberg angle $heta_W$

lacksquare can read-off masses for the $U(1)_Q$ photon (A_μ) , the Z^0 and W^\pm

$$M_{\gamma} = 0$$
, $M_W = \frac{v}{2}g_2$, $M_Z = \frac{v}{2}\sqrt{g_1^2 + g_2^2}$

lacksquare note, the W^{\pm} -to- Z^0 mass ratio fixed by

$$\frac{M_W}{M_Z} = \cos \theta_W$$

The Higgs mechanism: gauge boson fermion interactions

the interactions of the gauge bosons with fermionic matter become

$$\mathcal{L}_{\rm EW}^{\rm matter} = \sum_f \bar{\psi}_f i \partial \!\!\!/ \psi_f + \frac{g_2}{2\sqrt{2}} (J_\mu^+ W^{-,\mu} + h.c.) + \frac{g_2}{2\cos\theta_W} J_\mu^Z Z^\mu + e J_\mu^{\rm em} A^\mu$$

with the currents given by

$$\begin{array}{lll} J_{\mu}^{+} & = & \displaystyle\sum_{l \in \{e,\mu,\tau\}} \bar{\psi}_{\nu_{l}} \gamma_{\mu} (1-\gamma_{5}) \psi_{l} + (\bar{\psi}_{u},\bar{\psi}_{c},\bar{\psi}_{t}) \gamma_{\mu} (1-\gamma_{5}) V_{\mathsf{CKM}} \left(\begin{array}{c} \psi_{d} \\ \psi_{s} \\ \psi_{b} \end{array} \right) \\ & \text{with} & V_{\mathsf{CKM}} = \left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array} \right) \text{ Cabibbo-Kobayashi-Maskawa matrix} \\ J_{\mu}^{Z} & = & \displaystyle\sum_{f} \bar{\psi}_{f} \gamma_{\mu} (v_{f} - a_{f} \gamma_{5}) \psi_{f} \text{ with } v_{f} = I_{w,3} - 2q_{f} \sin^{2}\theta_{W} \,, \ a_{f} = I_{w,3} \\ J_{\mu}^{\mathsf{em}} & = & \displaystyle\sum_{f} q_{f} \bar{\psi}_{f} \gamma_{\mu} \psi_{f} \end{array}$$

The Higgs mechanism: ... and finally the Higgs boson

- consider excitations of the Higgs field above the ground state
- in unitary gauge, i.e. $\Phi \to \exp(i\alpha_i \tau_i)\Phi$, the Higgs doublet reads

$$\Phi(x) = \left(\begin{array}{c} 0\\ \frac{v+h(x)}{\sqrt{2}} \end{array}\right)$$

- \rightsquigarrow note, Ψ_L and \vec{W}^{μ} transform accordingly
- mass for the Higgs boson from potential $V(\Phi)$

$$M_h = \sqrt{2}\mu = v\sqrt{2\lambda}$$

 \blacksquare \mathcal{L}_{HG} and \mathcal{L}_{FG} induce kinetic and interaction terms for Higgs boson h

$$\mathcal{L}_{WWh} = \frac{g_2}{4}W^{-,\mu}W_{\mu}^{+}(2vh + h^2)$$

$$\mathcal{L}_{ZZh} = \frac{\sqrt{g_1^2 + g_2^2}}{8}Z^{\mu}Z_{\mu}(2vh + h^2)$$

$$\mathcal{L}_{hhh} = \lambda(vh^3 + h^4)$$

$$\mathcal{L}_{f\bar{f}h} = -\frac{m_f}{v}h\bar{\psi}_f\psi_f$$

Summary lecture II

- lacksquare EW Standard Model gauge group $SU(2)_L \otimes U(1)_Y$
 - \leadsto non-trivial ground state for SU(2) scalar field doublet (SSB)
 - → gauge symmetry hidden in the spectrum of the theory
 - \leadsto finite masses for matter fermions and W^{\pm} , Z^0 bosons
- lacksquare strong interaction modelled by $SU(3)_c$ color symmetry
 - \rightsquigarrow parity conserving, massless gauge bosons the gluons

