

TrackOpt project status update

V. Kostyukhin Siegen university

TrackOpt Siegen 2025

Open Data Detector + ACTS

Realistic simulation of the detector response to particles (Geant4)

> real trajectories reconstruction from the detector hit collection(ACTS)

PV vs SV

<u>**Primary Vertices(PV)**</u> – all beam-beam interaction points. 1D problem, doesn't require a curved particle trajectory calculation.

<u>Secondary Vertices(SV)</u> – interaction/decay points in 3D detector volume away from the beam line.

Can be detected by finding a crossing point (in fact a point of the closest approach due to resolution errors) of the curved particle trajectories in 3D space.

In general case the curved trajectory may be very complex due to non-uniform magnetic field.

Important particle physics detector parameter - how far from the beamline secondary vertices should be to be detected? Crucial for short-living particle investigation.

PV reconstruction (1D case)

Many "classical" algorithms in the market (ATLAS,CMS,LHCb,etc. have their own) ML - based approaches:

> V. Kostyukhin, M.Keuper, M. Cristinziani *et al* 2023 *JINST* 18 P07013: Track compatibility graph partitioning using Lifted Multi-Cut algorithm

Software used in <u>2023 JINST 18 P07013</u> is revived and extended by an exact 3D vertexing for the SV reconstruction. Compatibility graph is written (ROOT format currently, needs conversion to smth. suitable for ML software. Clustering of this graph via (Lifted) Multi-Cut is implemented. With a simplest weight currently (next slides), but extension is trivial.

Edge score options (1D space)

V. Kostyukhin, M.Keuper, M. Cristinziani et al 2023 JINST 18 P07013: Track compatibility graph partitioning using Lifted Multi-Cut algorithm

Probability distribution ratio $w = log(\frac{p_{true}}{p_{false}})$ of the minimal track-track distance significance S =1.

$$= \sqrt{\frac{(x_i - x_j)^2}{\sigma_i^2 + \sigma_j^2}};$$

- Logistic regression $p = \frac{1}{1+e^{-z}}$ where $z = \beta_0 + \beta_1 \cdot S$. Then $w = \log(\frac{1}{1-z})$ weight has necessary features. 2.
- 3. BDT edge classification (7 variables) score in [-1,1] range

Track-track significance S

BDT classification

μ =250 pileup reconstruction results

Edge weight		VI	VI	Silhouette	Silhouette	Unique	Merged	Fake	$N_{\mathrm{trk}}^{\mathrm{wrong}}$	CPU
			weighted		weighted					
PDF ratio	base	1.782	0.990	0.477	0.526	68.7	53.2	6.4	42%	3.0s
	cnst	1.638	0.887	0.531	0.569	71.0	52.7	5.3	21%	1.7s
Regression	base	1.753	0.961	0.467	0.517	77.1	51.2	11.	38%	3.2s
	cnst	1.672	0.895	0.505	0.547	77.8	51.1	9.9	21%	1.7s
BDT	base	1.691	0.941	0.307	0.040	72.8	52.4	15.	12%	3.0s
	cnst	1.651	0.882	0.330	0.055	74.5	52.0	14.	9%	1.2s

New code uses ODD+ACTS data. Paper results can be reproduced with more realistic data.

V. Kostyukhin

10

15

Track impact parameters wrt the beamline

First attempt to run simultaneously PV(1D track-track significance) and SV(3D track-track significance) failed. Completely crazy SV results due to strong influence of displaced prompt tracks.

Use a limited SV-only setup - tracks >30 from beamline

3D vertex fitting applied with quality cuts

3D SV vertex fitting works well:

- More narrow K0 mass peak
- Material interactions are detected \checkmark

Vertex quality cuts reduce true statistics: 11333->9825

efficient rejection of fake track pairs: 144586->30428

30 35 40 45 50

2.5

Entries

3.5

30428

Use a limited SV-only setup - tracks >30 from beamline

V. Kosty

Use a limited SV-only setup - tracks >30 from beamline - Multi-cut clustering

/. Kostyukhin	8/10		TrackOpt Siegen 2025			
Vertex from cluster Chi2=174.399 R=19.6805 Vertex from cluster Chi2=1.40795 R=7.78051 Vertex from cluster Chi2=7099.77 R=0.75759 Vertex from cluster Chi2=1.37971 R=4.47632 True vertex=9.06084 tracks=98,118,120 True vertex=28.5759 tracks=171,172 True vertex=4.58186 tracks=430,436	 5 tracks=49,86,171,172,207, 1 tracks=59,106, 2 tracks=98,110,111,118,120 2 tracks=430,436 	,497,52	20,697,			
Vertex from cluster Chi2=416.186 R=1.61419 Vertex from cluster Chi2=0.33225 R=4.09057 Vertex from cluster Chi2=1.52774 R=18.7752 Vertex from cluster Chi2=0.00979 R=1.30765 Vertex from cluster Chi2=199.657 R=1.9585 Vertex from cluster Chi2=0.35785 R=0.71531 Vertex from cluster Chi2=0.00689 R=8.61447 Vertex from cluster Chi2=0.00689 R=8.61447 Vertex from cluster Chi2=2.95114 R=5.0224 True vertex. R=29.7053 tracks=146,152 True vertex. R=4.99748 tracks=601,615 True vertex. R=1.21047 tracks=262,298 True vertex. R=3.03938 tracks=235,286	 tracks=235,286,736 tracks=254,679 tracks=260,330 tracks=262,298 tracks=326,482,488 tracks=372,653 tracks=402,404 tracks=593,601,615,622 		debugging needed.			
Vertex from cluster Chi2=0.356875 R=33.691 True vertex R=5.31045 tracks=81,90 Vertex from cluster Chi2=4260.56 R=1.26509 Vertex from cluster Chi2=11929.1 R=0.65933 True vertex R=3.8789 tracks=84,85,90 True vertex R=15.7865 tracks=470,473,483	 2 tracks=602,609 2 tracks=76,320,391,435 3 tracks=90,470,473,483 	1. 2. 3.	Many fake clusters. Expected (density+resolution) Clusters with big χ^2 – pair-wise compatibility doesn't guarantee compactness in 3D space. Problem! Some true vertices are not reconstructed. Puzzling,			
Vertex from cluster Chi2=286.723 R=0.5235 Vertex from cluster Chi2=0.519171 R=4.9520 Vertex from cluster Chi2=0.000203 R=10.132	50 tracks= 81,90 ,575 09 tracks=327,593 22 tracks=528,687 12 tracks=602,600		Observations:			

- Dump compatibility graph with node/edge features vectors (informative track/vertex features to be chosen...)
- > Try simple edge classification BDT/NN for better edge weight construction
- > Use GNN (with attention?) for the graph processing
- > Simulate (ODD+ACTS) different physics sample better suitable for SV development

V. Kostyukhin

../complete-graph.hxx:25:21: warning: 'iterator<std::random_access_iterator_tag, const andres::graph::Adjacency<>>' is deprecated [-Wdeprecated-declarations]

25 | : public std::iterator <

ML SV reconstruction (in jets)

ATL-PHYS-PUB-2022-027 "Graph Neural Network Jet Flavour Tagging with the ATLAS Detector"

Origin papers:

<u>arXiv:2002.08772</u> "Set2Graph: Learning Graphs From Sets" <u>arXiv:2008.02831</u> "Secondary Vertex Finding in Jets with Neural Networks"

GNx software by itself returns just the track compatibility graph edge weights. The GNx algorithm uses a simple "union find" algorithm for the real graph/matrix partitioning.

No real vertexing, no vertex quality check. From note: "A vertex is considered matched if it contains at least 65% of the tracks in the corresponding truth vertex and has a purity of at least 50%. "

SV reconstruction (in jets)

arXiv:2312.12272 "Secondary Vertex Reconstruction with MaskFormers"

 No universality – NN is trained on B/C vertices. No extension to many other SV types, especially for exotic vertices with unknown properties

2. Efficiency/purity is far from ideal.

Universität

Siegen

Backup: Real event in the ATLAS detector

