

Katharina Voß

Modelling $b\bar{b}\ell^+\ell^-\nu_\ell\bar{\nu}_\ell$ with $bb4\ell$ in ATLAS

Using *bb*4*ℓ* resonance histories

allrad radiation scheme

U What is the $bb4\ell$ simulation?

 \rightarrow process implemented in the POWHEG-BOX-RES, which describes WWbb in dileptonic decay^1 which can be interfaced with a parton shower

Includes double-, single- and non-resonant diagrams:

+ corresponding NLO corrections

 $^1 different flavour, local code modification in athena to allow same flavours <math display="inline">\rightarrow$ ATLAS also requested to merge change in official [bb4ℓ-dl/-sl beta git-repo]

Katharina Voß (Universität Siegen)

Using $bb4\ell$ resonance histories

allrad radiation scheme

Open Questions

U Resonance history projectors

Output from bb4 ℓ ME calculation: initial state + $b\bar{b}\ell^+\nu_\ell\ell^-\bar{\nu}_\ell$ final state

- \rightarrow no information about intermediate resonances
- \rightarrow technical issues in POWHEG generation
- + recoil distorts invariant mass of resonances in PS

Planned study: Alternative resonance projectors

Explicitly, different $t\bar{t}$ projector: $|\mathcal{M}_{t\bar{t}}^{\mathrm{LO}}|^2 \rightarrow |\mathcal{M}_{WWbb}^{\mathrm{LO}}|^2 - |\mathcal{M}_{tW\bar{b}}^{\mathrm{LO}}|^2 - |\mathcal{M}_{\bar{t}Wb}^{\mathrm{LO}}|^2$

Katharina Voß (Universität Siegen)

bb4ℓ MC in ATLAS

24th June 2025

Using bb4ℓ resonance histories

allrad radiation scheme

Open Questions

- Improvements in $bb\ell\ell\nu\nu$ modelling with $bb4\ell$
- Usage of resonance histories in $bb4\ell$ events
- The allrad multiple radiation scheme

allrad radiation scheme

Open Questions

■ Modelling improvements through *bb*4ℓ

Improvements through $bb4\ell$ compared to $t\bar{t} + tW$

• correct treatment of $t\bar{t}/tW$ interference at NLO

- off-shell effects accurate at NLO
- top decay description at NLO

U Modelling improvements through $bb4\ell$

Improvements through $bb4\ell$ compared to $t\overline{t} + tW$

• correct treatment of $t\bar{t}/tW$ interference at NLO

Katharina Voß (Universität Siegen)

bb4ℓ MC in ATLAS

4 / 17 4 / 17

allrad radiation scheme

U Modelling improvements through $bb4\ell$

Improvements through $bb4\ell$ compared to $t\bar{t} + tW$

- correct treatment of $t\bar{t}/tW$ interference at NLO $\rightarrow tW$ DR/DS uncertainty removed
- off-shell effects accurate at NLO
- top decay description at NLO

4/17

■ Modelling improvements through *bb*4ℓ

Improvements through $bb4\ell$ compared to $t\bar{t} + tW$

- correct treatment of $t\bar{t}/tW$ interference at NLO \rightarrow DR/DS uncertainty removed
- off-shell effects accurate at NLO

• top decay description at NLO

U Modelling improvements through $bb4\ell$

Improvements through $bb4\ell$ compared to $t\bar{t} + tW$

- correct treatment of $t\bar{t}/tW$ interference at NLO \rightarrow DR/DS uncertainty removed
- off-shell effects accurate at NLO

U Modelling improvements through $bb4\ell$

Improvements through $bb4\ell$ compared to $t\bar{t} + tW$

- correct treatment of $t\bar{t}/tW$ interference at NLO \rightarrow DR/DS uncertainty removed
- off-shell effects accurate at NLO \rightarrow line shape uncertainty removed
- top decay description at NLO

U Modelling improvements through *bb*4*l*

Improvements through $bb4\ell$ compared to $t\overline{t} + tW$

- correct treatment of $t\bar{t}/tW$ interference at NLO \rightarrow DR/DS uncertainty removed
- off-shell effects accurate at NLO \rightarrow line shape uncertainty removed
- top decay description at NLO

instead of LO top decay

allrad radiation scheme

U Modelling improvements through $bb4\ell$

Improvements through $bb4\ell$ compared to $t\bar{t} + tW$

- correct treatment of $t\bar{t}/tW$ interference at NLO \rightarrow DR/DS uncertainty removed
- off-shell effects accurate at NLO \rightarrow line shape uncertainty removed
- top decay description at NLO
 - \rightarrow discussed in [*bb*4 ℓ -dl/sl paper]

U Modelling improvements through $bb4\ell$

Improvements through $bb4\ell$ compared to $t\overline{t} + tW$

- correct treatment of $t\bar{t}/tW$ interference at NLO \rightarrow DR/DS uncertainty removed
- off-shell effects accurate at NLO \rightarrow line shape uncertainty removed
- top decay description at NLO

To use $bb4\ell$ as a nominal MC sample, we need to generate and check the associated modelling uncertainties

U Overview of $bb4\ell$ modelling uncertainties

Uncertainties in

- Powheg hard process
 - μ_R, μ_F scale variation
 - PDF uncertainties
 - h_{damp}
 - $bb4\ell$: α_S in Powheg Sudakov
 - *bb*4*l*: inverse width correction

Powheg-Pythia8 matching

- $p_{\rm T}^{\rm hard}$ variation
- bb4ℓ: scale resonance veto
- Pythia8 parton shower
 - A14 Var1 tune variations (underlying event variation)
 - Colour reconnection
 - Pythia8 splitting kernel variations $(\mu_R \text{ and } c_{NS})$
 - Recoil uncertainty
 - Alternative parton shower: Herwig7

Using $bb4\ell$ resonance histories

allrad radiation scheme

Open Questions

U Resonance histories: partonic top-quark

Different resonance histories in previous $bb4\ell$ and new $bb4\ell$ -dl

 \rightarrow what can we do with new $t\bar{t}$, tW and $\bar{t}W$ resonance histories?

Katharina Voß (Universität Siegen)

bb4ℓ MC in ATLAS

24th June 2025 9 / 1

Using *bb*4ℓ resonance histories

allrad radiation scheme

Open Questions

U Resonance histories: ME scale variations

Can we vary the ME scale independently in $t\bar{t}$ and tW projected resonance histories in $bb4\ell$?

- $t\bar{t}$ resonance histories: $\mu_0 = [(m_t^2 + p_{T,t}^2)(m_t^2 + p_{T,\bar{t}})^2]^{1/4}$
- $tW^-\bar{b}$ resonance histories: $\mu_0 = [(m_t^2 + p_{T,t}^2)(m_{\bar{b}}^2 + p_{T,\bar{b}})^2]^{1/4}$

Katharina Voß (Universität Siegen)

bb4ℓ MC in ATLAS

24th June 2025

10 / 17

U Resonance histories: Higher-order $t\bar{t}$ reweighting

Can we reweight partonic $t\bar{t}$ distributions to higher order on-shell $t\bar{t}$ predictions?

[ATL-PHYS-PUB-2023-029]

 \rightarrow reweighting partonic top-quark distributions to NNLO QCD + NLO EW $t\bar{t}$ predictions [hep-ph/1705.04105] (top p_T , $m_{t\bar{t}}$) + ($t\bar{t}$ p_T with MATRIX software)

Katharina Voß (Universität Siegen)

bb4ℓ MC in ATLAS

24th June 2025 11

Using *bb*4ℓ resonance histories

allrad radiation scheme

Open Questions

U Multiple radiation scheme

Usual POWHEG radiation scheme \rightarrow keep only hardest emission (usually from production)

Multiple radiation scheme (allrad) \rightarrow merge emissions into single event with multiple emissions

Illustration taken from [J.M. Lindert, QCD@LHC]

 \rightarrow differences in NLO+PS matching in $t\bar{t}$ and $bb4\ell$

+ need to check that everything works technically with new LHE format (e.g. Pythia8 recoil-to-top)

Katharina Voß (Universität Siegen)

Using *bb*4ℓ resonance histories

allrad radiation scheme

U Dedicated $bb4\ell$ parton shower matching

 $t\overline{t} \rightarrow$ emission only from the production process

 $bb4\ell
ightarrow$ merge emissions into single event with multiple emissions

 \rightarrow parton shower generates emissions with $k_T < k_T^{\alpha}$, k_T^{α} , $\alpha \in \{ISR, \bar{b}, b\}$

- Emissions from production process: main31 (the same for $t\bar{t}$ and $bb4\ell$)
- Emissions from decay process: [dedicated bb4ℓ UserHook (Py8)] or [shared library (H7)]

 \rightarrow some differences in the modelling systematics between $t\bar{t}$ and $bb4\ell$ could be due to different generation method

Katharina Voß (Universität Siegen)

Using *bb*4*ℓ* resonance histories

p. fraction of b hadron in leading b let

allrad radiation scheme

Bar chart of B-let width

U Influence of dedicated $bb4\ell$ -PS matching

Relative fraction 10^{-3} 10^{-2} – PP8 664 PP8 664/ PH7 6646 PH7 664ℓ PP8 bb4ℓ (no UserHook) PP8 bb4ℓ (no bb4ℓ UserHook) PH7 Mill (no. an PH7 664ℓ (no .so)/PP8 664ℓ PH7 664ℓ (no .so)/PP8 664ℓ ģ PH7 664/PP8 664 PH7 660/PP8 660 PP8 664ℓ (no UserHook)/PP8 664ℓ PP8 484ℓ (no 484ℓ UserHook)/PP8 484ℓ 0,2 PH7 664ℓ (no .so)/PH7 664ℓ PH7 664ℓ (no .so)/PH7 664ℓ PP8 654ℓ (no UserHook)/PP8 554ℓ PP8 664/ (no 664/ UserHook)/PP8 664/ 2 04 05 $p_{\perp}^{b}/p_{\perp}^{bjet}$ jet width

 \rightarrow consistent behaviour when applying or not applying dedicated bb4 ℓ matching in Py8 and H7 \rightarrow no dedicted bb4 ℓ matching: more PS radiation off of b-quark, less hard B-hadrons and broader b-jets

Katharina Voß (Universität Siegen)

 54ℓ resonance histories

allrad radiation scheme

U *bb*4 ℓ systematics: FSR μ_R and α_S in Powheg Sudakov

 \rightarrow reasonable agreement of all μ_R splitting kernel variations except for $Q \rightarrow Qg$ splitting kernel ($Q \in \{b, t\}$) Possible explanation: first emission from top-quark decay already done by POWHEG (NLO top decay description in $bb4\ell$)

allrad radiation scheme

U *bb*4 ℓ systematics: FSR μ_R and α_S in Powheg Sudakov

ightarrow same influence of all μ_R splitting kernel variations except for Q
ightarrow Qg splitting kernel $(Q \in \{b,t\})$

Possible explanation: first emission from top-quark decay already done by POWHEG (NLO top decay description in $bb4\ell$)

 \rightarrow vary α_S in Powheg Sudakov (by using PDF set with different $\alpha_S(M_Z)$ value) [hep-ph/1801.03944]

Katharina Voß (Universität Siegen)

allrad radiation scheme

Alternative resonance history projectors

Check influence of alternative $t\bar{t}$ resonance history projector, when available $|\mathcal{M}_{t\bar{t}}^{\rm LO}|^2 \rightarrow |\mathcal{M}_{WWbb}^{\rm LO}|^2 - |\mathcal{M}_{tW\bar{b}}^{\rm LO}|^2 - |\mathcal{M}_{\bar{t}Wb}^{\rm LO}|^2$

Normalisation of $bb4\ell$ cross section

How to normalise $bb4\ell$ MC sample?

- normalise the cross-section of all bb4ℓ events, which where projected onto a tt̄ resonance history to the [NNLO QCD+NNLL on-shell tt̄ cross section] and bb4ℓ events projected onto a tW resonance history to [NLO+NNLL cross section tW cross section]
- scale to $t\overline{t} + tW$ sum of higher order cross-sections
- total cross section needs to be scaled to data in the fit by analyses (not possible for all)

NNLO reweighting of $bb4\ell$ events with $t\bar{t}$ resonance history

Should we reweight $bb4\ell$ events projected onto $t\bar{t}$ resonance history to on-shell $t\bar{t}$ higher-order predictions?

 \rightarrow more in Diptaparnas talk

Katharina Voß (Universität Siegen)

Different $bb4\ell$ version and matching settings

 \rightarrow reasonable agreement in reco-distr. (also reported by CMS)

What is different between new and old $bb4\ell$ sample?

- bb4ℓ version
 - corrected matching factor between 4FNS ME and 5FNS PDF
 - inverse width corrections can be used in new bb4ℓ (effect small)
 - resonance histories: old $bb4\ell$: $t\bar{t}$ and $Z \rightarrow WW$, new $bb4\ell$: $t\bar{t}$, $tW^-\bar{b}$, $\bar{t}W^+b$
- matching settings: old ATLAS bb4ℓ sample: p_T^{maxMatch} = 0/1, p_T^{def} = 1 new ATLAS bb4ℓ sample: p_T^{maxMatch} = 2, p_T^{def} = 2

 recoil settings: old ATLAS bb4ℓ sample: recoil-to-colour new ATLAS bb4ℓ sample: recoil-to-top

Katharina Voß (Universität Siegen)

U Cross sections

NLO+PS cross sections (dilepton):

- *bb*4ℓ: 87.1 pb
- $bb4\ell$ (inv. width corr.): 81.9 pb
- *tī* hvq: 76.9 pb
- tW DR: 7.6 pb
- tW DS: 7.5 pb
- *tt*+*tW* DR: 84.5 pb

Higher-order cross-sections (inclusive $t\bar{t}$, $t\bar{t}$ dilepton branching ratio 10.5%):

- 833.9 pb [Comput.Phys.Commun. 185 (2014) 2930] [Recommendations]
- 79.3 pb [hep-ph/2102.11300] [Recommendations]

U *bb*4 ℓ systematics: pThard variation

NLO+PS matching uncertainty introduced for ATLAS top-quark MC samples in [ATL-PHYS-PUB-2023-029]

ightarrow changing of the veto-scale of the Pythia8 parton shower via pThard variation

 \rightarrow creating holes and overlaps in the phase space covered by Powheg and by Pythia8

 \rightarrow now technically also working in *bb*4 ℓ (with modified *bb*4 ℓ UserHook)

Katharina Voß (Universität Siegen)

bb4ℓ MC in ATLAS

24th June 2025 21 /

U *bb*4ℓ systematics: Herwig7

 \rightarrow reasonable agreement between size of parton shower uncertainty in $bb4\ell$ (with dedicated matching) and $t\bar{t}$

Invariant mass of the reconstructed top quark

 $m_t \; [{\rm GeV}]$

U Partonic top reweighting

CMS, 13 TeV, $t\bar{t}$ dilepton, particle level

W ME scale variation in *b*-jet fragmentation function

Katharina Voß (Universität Siegen)

U Py8 splitting kernel variations in *b*-jet fragmentation function

Katharina Voß (Universität Siegen)

bb4ℓ MC in ATLAS

24th June 2025

U Number of *b*-jets: splitting kernel variation

U $bb4\ell$ nominal MC sample

$p_{\mathrm{T}}^{\mathrm{def}}$ setting

Powheg+Pythia8 matching:

Py8 unrestricted shower + veto Py8 emissions if $k_T > p_T^{\rm veto}$

Matching settings:

- veto scale p_T^{veto} pThard=0: p_T of Powheg emission w.r.t. its emitter with Powheg p_T definition
- k_T definition for PS emissions pTdef=2: use Pythia8 p_T definition pTdef=1: use Powheg p_T definition

U $bb4\ell$ nominal MC sample

$p_{\mathrm{T}}^{\mathrm{def}}$ setting

Powheg+Pythia8 matching:

Py8 unrestricted shower + veto Py8 emissions if $k_T > p_T^{\rm veto}$

Matching settings:

- veto scale p_T^{veto} pThard=0: p_T of Powheg emission w.r.t. its emitter with Powheg p_T definition
- k_T definition for PS emissions pTdef=2: use Pythia8 p_T definition pTdef=1: use Powheg p_T definition

 \rightarrow even though pTdef=1 is theoretically more sensible, pTdef=2 results in much better data-MC agreement in $N_{\rm jets}$ distribution

+ same setting as applied in ATLAS $t\bar{t}$ hvq and $t\bar{t}$ MiNNLO Powheg+Pythia8 MC sample

U $bb4\ell$ nominal MC sample

Pythia8 recoil-to-top setting

\rightarrow new nominal *bb*4 ℓ -dl sample has Py8 recoil-to-top setting as default!

 \rightarrow good agreement between uncertainty in *bb*4 ℓ and $t\bar{t}$ (only affects 2nd and later gluon emission)

Recoil uncertainty definition: comparison to recoil-to-colour setting

Katharina Voß (Universität Siegen)

bb4ℓ MC in ATLAS

 $z \equiv p_{jet} \cdot p_B / |p_{jet}|^2$

U Number of *b*-jets

 $\begin{array}{l} \left[\mathsf{arXiv:1811.12113} \right] \, t\overline{t} \, \operatorname{dilep}, \, N_b \geq 2, \\ p_T^b > 25 \, \operatorname{GeV}, \, |\eta_b| < 2.5 \end{array}$

ightarrow number of additional *b*-jets not well described by neither $t ar{t}$ hvq nor by $bb4\ell$

Katharina Voß (Universität Siegen)

bb4ℓ MC in ATLAS

24th June 2025

29 / 17

U Number of *b*-jets: Herwig7 shower variations

Applying Herwig7 shower variations to *bb*4*l*:

- angular shower + cluster had. (solid)
- angular shower + string had. (solid)
- dipole shower + cluster had. (dashed)
- dipole shower + string had. (dashed)

 $\begin{array}{l} \left[\text{arXiv:1811.12113} \right] t\overline{t} \text{ dilep, } N_b \geq 2, \\ p_T^b > 25 \, \text{GeV}, \ \left| \eta_b \right| < 2.5 \end{array}$

- large difference when changing the shower ordering in bb4ℓ+H7 predictions (Py8 shower is also a dipole shower)
- $bb4\ell$ +H7 dipole predictions show much better agreement in $N_b \ge 3$