NLO (+PS) predictions with a multi-purpose event generator $${\rm Beyond\ Flavor\ Physics}$$

Pia Bredt

University of Siegen

June 23, 2025

Collaborative Research Center TRR 257

Particle Physics Phenomenology after the Higgs Discovery

Outline

- Top quark pair production at the LHC - NLO+PS predictions with WHIZARD
- Higgs phenomenology at the LHC – VBF+HH production at NLO QCD in HEFT
- Future collider simulations with WHIZARD - NLO corrections in the SM and beyond

Top quark pair production at the LHC

Relevance of top quark production in physics

- Precise measurements and predictions of $t\bar{t}$ production rates yield
 - ▶ precise SM tests
- new physics potential: Top as the heaviest particle in the SM
 - strongest coupling to the Higgs sector
 - ▶ relation to vacuum stability
 - ▶ understand EWSB, how does mass arise?
- Top quark decays before hadronizing
 - direct observation of its properties (spin, mass, ...)
 - direct determination of $|V_{tb}|$ (without assuming unitarity)

[ATLAS Collaboration (Cern)]

Top quark pair production at the LHC

LHC precision wishlist for top-quark associated processes [Les Houches 2023]:

process	known	desired
	$\rm NNLO_{QCD} + \rm NLO_{EW}$ (w/o decays)	
$pp \rightarrow t\bar{t}$	$\rm NLO_{QCD} + \rm NLO_{EW}$ (off-shell)	$N^{3}LO_{QCD}$
	$NNLO_{QCD}$ (w/ decays)	
$m \rightarrow t\bar{t} + i$	NLO_{QCD} (off-shell effects)	NNLO
$pp \rightarrow u + j$	$\rm NLO_{EW}$ (w/o decays)	$NNLO_{QCD} + NLO_{EW}$ (w decays)
$pp \to t\bar{t} + 2j$	NLO_{QCD} (w/o decays)	$\rm NLO_{QCD} + \rm NLO_{EW}$ (w decays)
$pp \to t\bar{t} + V'$	$\rm NLO_{QCD} + \rm NLO_{EW}$ (w decays)	$\rm NNLO_{QCD} + \rm NLO_{EW}$ (w decays)
$pp \to t\bar{t} + \gamma$	NLO_{QCD} (off-shell)	
$pp \to t\bar{t} + Z$	$\rm NLO_{QCD} + \rm NLO_{EW}$ (off-shell)	
$pp \to t\bar{t} + W$	$\rm NLO_{QCD} + \rm NLO_{EW}$ (off-shell)	
$nn \rightarrow t/\bar{t}$	$NNLO_{QCD}^{*}(w \text{ decays})$	NNLO VIO
$pp \rightarrow v/v$	$\rm NLO_{EW}$ (w/o decays)	$NNLO_{QCD} + NLO_{EW}$ (w decays)
$pp \rightarrow tZj$	$\rm NLO_{QCD} + \rm NLO_{EW}$ (off shell)	$NNLO_{QCD} + NLO_{EW}$ (w/o decays)
$nn \rightarrow t\bar{t}t\bar{t}$	NLO _{QCD} (w decay)	$\rm NLO_{QCD} + \rm NLO_{EW}$ (off-shell)
$pp \rightarrow uu$	$\rm NLO_{\rm EW}~(w/o~decays)$	NNLO _{QCD}

Many contributions from our CRC, e.g. recent ones for $t\bar{t}\gamma$ [Stremmer, Worek: 2403.03796, 2411.02196]

Table 5: Precision wish list: top quark final states. NNLO_{QCD} * means a calculation using the structure function approximation. $V' = W, Z, \gamma$.

Exclusive top quark pair production at the LHC

However, for fully exclusive offshell $t\bar{t} + (W/Z/\gamma/H)$ production N(N)LO matched and showered results are rare ...

 \rightarrow event generation needed for a 1:1 comparison with data! (Malgorzata's talk) Technical challenges:

- 6 and more final states; $e^-\nu_e\mu^+\nu_\mu b\bar{b} + X$
- complicated phase space (small top width)
- many ingredients: hard MEs, subtraction, matching, parton shower, hadronization, ...

Simulating physics at the LHC

Essential tool for physics simulation at the LHC \rightarrow Monte-Carlo event generators

hard collision, parton shower, hadronization&decay, secondary hard scattering event, soft photon radiation [1411.4085]

 \rightarrow higher order predictions require matching to parton showers!

WHIZARD

What is WHIZARD?

Multi-purpose event generator for cross sections and differential distributions of **arbitrary processes** at HEP experiments (LHC, Belle II, ILC/CLIC/FCC/CEPC, MuCol, ...)

recent version: v3.1.5 team: Wolfgang Kilian, Thorsten Ohl, Jürgen Reuter PB, Marius Höfer, Maximilian Löschner, Nils Kreher, Krzysztof Mękała, Tobias Striegl webpage: https://whizard.hepforge.org/ support: https://launchpad.net/whizard email contact: whizard@desy.de

- physics models: SM, internal (hard-coded) BSM and UFO models
- phase-space integrator: VAMP (VEGAS AMPlified), VAMP2 incl. MPI parallelization
- matrix elements: tree-level ME generator O'Mega, interface to OLPs OpenLoops, RECOLA and GoSam

WHIZARD a tool for NLO simulations at the LHC?

- very generic ansatz; any process can be simulated 'out-of-the-box'
- very well validated **automated** NLO QCD/EW framework (checks for about 50 processes at fNLO)
 - + automated Powheg matching (validation for $pp \rightarrow e^+e^-$ and $e^+e^- \rightarrow t\bar{t}j$)

Specifically for the top-threshold: (Jürgen's talk)

- already available code for simulation of $e^+e^- \rightarrow W^+bW^-\bar{b}$ production at NLO QCD with NLL top threshold-resummation in NRQCD [Bach *et. al.*: 1712.02220]
 - \blacktriangleright can be extended to pp processes

WHIZARD compared to Powheg-Box bb41 wrt. $pp \to e^- \nu_e \mu^+ \nu_\mu b \bar{b}$ at NLO QCD matched and showered

- both:
 - full matrix element (incl. non-resonant diagrams beyond $t\bar{t}$ and Wt),
 - resonance-aware FKS subtraction (accurate and efficient NLO phase space sampling despite small widths of resonances)
 - Powheg matching method, Pythia8 for parton showering, OpenLoops for 1-loop amplitudes
- bb41: process specific improvements (multiple radiation scheme, ...)
- Whizard: focus on automated framework, simulation of offshell $t\bar{t} + (Z/W/\gamma/H)$ production possible with same code \rightarrow more exp. input needed!

Current status:

Recent checks of differential distributions of $pp \rightarrow e^- \nu_e \mu^+ \nu_\mu b\bar{b}$ at NLO QCD matched and showered with WHIZARD compared to Powheg-Box bb41 (with thanks to Katharina Voß)

ATLAS _2017 _ I1495243 Measurement of jet activity produced in top-quark events with an electron, a muon and two b-tagged jets in the final state in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

ATLAS_2018_I1705857 Measurements of inclusive and differential fiducial cross-sections of $t\bar{t}$ production with additional heavy-flavour jets in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Associated top quark pair production at the LHC with complete NLO SM corrections

Cross-validation for $pp \to t\bar{t}(+W^{\pm}/Z/H)$ and $pp \to l^+l^-b\bar{b}$ with complete NLO SM corrections with MATRIX orig. ref. [Kallweit et. al.: 1412.5157] using OpenLoops

 \rightarrow Example for cross-check for all leading and sub-leading contributions in $t\bar{t}H$ production

		$\sigma^{ m tot}$	$\sigma^{\rm tot}$ [fb]		$rel. \ deviation$
$pp \to t\bar{t}H$	$\alpha_s^m \alpha^n$	MUNICH+OpenLoops	WHIZARD+OpenLoops		
LO_{21}	$\alpha_s^2 \alpha$	$3.44865(1) \cdot 10^2$	$3.4487(1) \cdot 10^2$	0.76	0.003%
LO_{12}	$\alpha_s \alpha^2$	$1.40208(2) \cdot 10^0$	$1.4022(1)\cdot 10^{0}$	1.44	0.011%
LO_{03}	α^3	$2.42709(1) \cdot 10^{0}$	$2.4274(2)\cdot 10^{0}$	2.07	0.011%
NLO ₃₁	$\alpha_s^3 \alpha$	$9.9656(4) \cdot 10^1$	$9.968(4) \cdot 10^1$	0.62	0.023%
NLO_{22}	$\alpha_s^2 \alpha^2$	$6.209(1)\cdot 10^{0}$	$6.208(2) \cdot 10^0$	0.20	0.009%
NLO_{13}	$\alpha_s \alpha^3$	$1.7238(2)\cdot 10^{0}$	$1.7232(5) \cdot 10^0$	1.24	0.040%
NLO_{04}	α^4	$1.5053(3) \cdot 10^{-1}$	$1.5060(7) \cdot 10^{-1}$	1.00	0.048%

In WHIZARD

- full NLO SM corrections for heavy quark pair production validated
- future project: extend POWHEG matching to NLO EW \rightarrow goal: include NLO EW corr. in parton showered results

Higgs phenomenology at the LHC

[Braun, PB, Heinrich, Höfer, 2502.09132]

Many questions left open about the Higgs sector ... how to constrain it using LHC measurements?

- multi-Higgs couplings very suppressed
- \bullet Higgs boson pairs e. g. in gg fusion or VBF processes
- VBF clean wrt. QCD background, however $\sigma_{VBF} \sim 1.7$ fb $\sim 5\%$ of σ_{ggF}

- g_{HHH} and g_{HHVV} , exp. constraints rather loose \rightarrow BSM effects
- sensitive to $g_{HHVV} g_{HVV}^2 \rightarrow \text{linked to unitarity, SMEFT vs. HEFT}$ [Kilian *et. al.*:1808.05534, 2101.12537]

Higgs phenomenology at the LHC

In HEFT \rightarrow non-linear realisation of the Higgs sector; NP in anomalous Higgs couplings?

For VBF-HH in HEFT at LO $(d_{\chi} = 2)$ we have ...

$$\mathcal{L}_{\text{eff}} \supset \left(2c_V \frac{h}{v} + c_{2V} \frac{h^2}{v^2}\right) \left(m_W^2 W_\mu^+ W^{-\mu} + \frac{1}{2}m_Z^2 Z_\mu Z^\mu\right) + c_\lambda \frac{m_h^2}{2v} h^3.$$

Higher precision: At NLO QCD ...

Double Higgs Production in Vector Boson Fusion at NLO QCD in HEFT

• no VBF-approximation (only t-channel) but **all channels** included (t-, u- and s-channel)

di-Higgs pseudorapidity separation distribution at NLO:

different scenarios $(c_{\lambda}, c_V, c_{2V})$ in SM: (1, 1, 1)

shape changes significantly!

Higgs phenomenology at the LHC

In the course of this pheno study ...

- extension of the WHIZARD+GoSam interface to work fully flexible with any UFO model at LO and NLO
- $\rightarrow\,$ potential to be used for more precision pheno studies applying EFTs (independent of process or collider)

Future collider simulations with WHIZARD

Next future collider most likely an e^+e^- machine (European Strategy Update), e. g. ILC/CLIC/FCC/CEPC . . .

also the multi-TeV muon collider concept got a lot of attention recently

- \rightarrow EW and Higgs parameters could be measured to a high accuracy (compared to LHC)
 - higher order EW corrections essential for theoretical predictions
 - ▶ WHIZARD framework provides automated NLO EW corrections; for ISR at lepton colliders use massive initial states (IR subtraction only in soft limit)
 - ► WHIZARD+Recola2 interface for BSM loops (validated)

Multi-boson processes at a muon collider at NLO EW

[PB, W. Kilian, J. Reuter, P. Stienemeier; JHEP 12 (2022)]

WHIZARD+RECOLA,	G_{μ}	scheme,	m_{μ} :	= 0	.1056	GeV
-----------------	-----------	---------	-------------	-----	-------	-----

$\mu^+\mu^- \rightarrow X, \sqrt{s} = 3 \text{ TeV}$	$\sigma_{\sf LO}^{\sf incl}$ [fb]	$\delta_{\sf EW}$ [%]	δ_{ISR} [%]
W^+W^-	$4.6591(2) \cdot 10^2$	+4.0(2)	+13.82(4)
ZZ	$2.5988(1)\cdot 10^{1}$	+2.19(6)	+15.71(4)
HZ	$1.3719(1) \cdot 10^{0}$	-1.51(4)	+30.24(3)
W^+W^-Z	$3.330(2) \cdot 10^{1}$	-22.9(2)	+2.90(9)
W^+W^-H	$1.1253(5) \cdot 10^{0}$	-20.5(2)	+7.10(8)
ZZZ	$3.598(2) \cdot 10^{-1}$	-25.5(3)	+5.24(8)
HZZ	$8.199(4) \cdot 10^{-2}$	-19.6(3)	+8.39(8)
HHZ	$3.277(1) \cdot 10^{-2}$	-25.2(1)	+7.58(7)
$W^{+}W^{-}W^{+}W^{-}$	$1.484(1) \cdot 10^{0}$	-33.1(4)	-1.3(1)
W^+W^-ZZ	$1.209(1) \cdot 10^{0}$	-42.2(6)	-1.8(1)
W^+W^-HZ	$8.754(8) \cdot 10^{-2}$	-30.9(5)	-0.1(1)
W^+W^-HH	$1.058(1) \cdot 10^{-2}$	-38.1(4)	+1.7(1)
ZZZZ	$3.114(2) \cdot 10^{-3}$	-42.2(2)	+0.8(1)
HZZZ	$2.693(2) \cdot 10^{-3}$	-34.4(2)	+1.4(1)
HHZZ	$9.828(7) \cdot 10^{-4}$	-36.5(2)	+2.2(1)
HHHZ	$1.568(1) \cdot 10^{-4}$	-25.7(2)	+5.7(1)

with $\delta_{\rm EW} = \sigma_{\rm NLO}^{\rm incl} / \sigma_{\rm LO}^{\rm incl} - 1$ (NLO EW corr.) and $\delta_{\rm ISR} = \sigma_{\rm LO,LL-ISR}^{\rm incl} / \sigma_{\rm LO}^{\rm incl} - 1$ (LL QED ISR corr.)

Summary

- Comparisons of WHIZARD with bb41 and data for $pp \to e^- \nu_e \mu^+ \nu_\mu b \bar{b}$ at $\sqrt{s} = 13$ TeV
 - ▶ WHIZARDs results show agreement within uncertainties for a large set of observables; still more technical understanding and improvement needed
 - due to automation \rightarrow stress-test WHIZARD with offshell $t\bar{t} + (W/Z/\gamma/H)$ studies
- Possibilities to study processes at NLO applying EFTs with the new developments in the WHIZARD-Gosam framework
- Future lepton collider studies require higher order QED and EW corrections in theory predictions \rightarrow WHIZARD technically suited for such calculations

1 FKS subtraction scheme

2 Fixed-order masive approximation for lepton collisions at NLO EW

3 Complex-mass scheme at NLO

(4) NLL EW $\mu^+\mu^- \to HZ$ Sudakov factor

5 WHIZARD features

Backup: NLO framework in WHIZARD

(contributors: PB, B. C.-Nejad, W. Kilian, J. Reuter, V. Rothe, P. Stienemeier, C. Weiss)

 $\sigma_{\rm NLO} = \underbrace{\int d\Phi_n \mathcal{B}}_{\rm Born} + \underbrace{\int d\Phi_{n+1} \mathcal{R}}_{\rm div. \ real} + \underbrace{\int d\Phi_n \mathcal{V}}_{\rm div. \ virtual} = \text{finite}$

Need observables **exclusive** in kinematic properties!

$$\sigma_{\rm NLO} = \int d\Phi_n \mathcal{B} + \int \underbrace{d\Phi_{n+1} \left[\mathcal{R} - d\sigma_S \right]}_{\text{finite by construction}} + \underbrace{\int d\Phi_n \mathcal{V} + \int d\Phi_n d\sigma_{S,\text{int}}}_{\text{IR poles cancelled analyt.}}$$

 $^{\prime}j^{\prime}$ radiated with several different emitters

 \Rightarrow Subtract singularities related to IR splittings systematically!

Frixione-Kunszt-Signer (FKS) subtraction

Divide phase space into disjoint regions with **at most one** soft and/or collinear singularity.

 \Rightarrow kinematical weight factors related to pairs (i, j)

Beyond Flavour Physics

Backup: NLO framework in WHIZARD

(contributors: PB, B. C.-Nejad, W. Kilian, J. Reuter, V. Rothe, P. Stienemeier, C. Weiss) FKS subtraction per α_r region

$$\mathcal{R} = \sum_{\alpha_r} \mathcal{R}_{\alpha_r} = \sum_{\alpha_r} \mathcal{S}_{\alpha_r} \mathcal{R} \quad \text{for } \mathcal{I}_{\alpha_r} = (i, j) \in P_{\text{FKS}}(f_r)$$

works in conjunction with POWHEG matching scheme

$$d\sigma_{\rm NLO} = \bar{\mathcal{B}}(\Phi_n) \left(\Delta(p_{T,\min}) + \Delta(k_T(\Phi_{n+1})) \frac{\mathcal{R}(\Phi_{n+1})}{\mathcal{B}(\Phi_n)} d\Phi_{\rm rad} \right) d\Phi_n$$

using a *modified* Sudakov form factor

$$\Delta(\Phi_n, p_T) = \exp\left[-\int \frac{\mathcal{R}(\Phi_{n+1})}{\mathcal{B}(\Phi_n)} \theta\left(k_T(\Phi_{n+1}) - p_T\right) d\Phi_{\text{rad}}\right]$$

$$\Delta^{f_{\mathcal{B}}}(\Phi_n, p_T) = \prod_{\alpha_r \in \{\alpha_r | f_{\mathcal{B}}\}} \Delta^{f_{\mathcal{B}}}_{\alpha_r}(\Phi_n, p_T)$$

Backup: NLO framework in WHIZARD: NLO EW

process	MUNICH _(CS) $\sigma_{\rm NLO}^{\rm tot}$ [fb]	WHIZARD $\sigma_{ m NLO}^{ m tot}$ [fb]	δ [%]	dev [%]	σ^{sig}
$pp \rightarrow$	+OpenLoops	+OpenLoops			
ZZ	$1.05729(1) \cdot 10^4$	$1.05729(11) \cdot 10^4$	-4.20	0.0001	0.01
W^+Z	$1.71505(2) \cdot 10^4$	$1.71507(2) \cdot 10^4$	-0.15	0.001	0.88
W^-Z	$1.08576(1) \cdot 10^4$	$1.08574(1) \cdot 10^4$	+0.07	0.001	0.90
W^+W^-	$7.93106(7) \cdot 10^4$	$7.93087(21) \cdot 10^4$	+4.55	0.002	0.89
ZH	$6.18523(6) \cdot 10^2$	$6.18533(6) \cdot 10^2$	-5.29	0.002	1.17
W^+H	$7.18070(7) \cdot 10^2$	$7.18072(9) \cdot 10^2$	-2.31	0.0003	0.18
W^-H	$4.59289(4) \cdot 10^2$	$4.59299(5) \cdot 10^2$	-2.15	0.002	1.62
ZZZ	$9.7429(2) \cdot 10^{0}$	$9.7417(11) \cdot 10^{0}$	-9.47	0.012	1.01
W^+W^-Z	$1.08288(2) \cdot 10^2$	$1.08293(10) \cdot 10^2$	+7.67	0.004	0.45
W^+ZZ	$2.0188(4) \cdot 10^1$	$2.0188(23) \cdot 10^1$	+1.58	0.0001	0.01
$W^{-}ZZ$	$1.09844(2) \cdot 10^{1}$	$1.09838(12) \cdot 10^{1}$	+3.09	0.006	0.51
$W^{+}W^{-}W^{+}$	$8.7979(2) \cdot 10^{1}$	$8.7991(15) \cdot 10^1$	+6.18	0.014	0.79
$W^{+}W^{-}W^{-}$	$4.9447(1) \cdot 10^{1}$	$4.9441(2) \cdot 10^{1}$	+7.13	0.013	2.52
ZZH	$1.91607(2) \cdot 10^{0}$	$1.91614(18)\cdot 10^{0}$	-8.78	0.004	0.39
W^+ZH	$2.48068(2) \cdot 10^{0}$	$2.48095(28)\cdot 10^{0}$	+1.64	0.011	0.96
$W^{-}ZH$	$1.34001(1) \cdot 10^{0}$	$1.34016(15) \cdot 10^{0}$	+2.51	0.011	1.02
W^+W^-H	$9.7012(2) \cdot 10^0$	$9.700(2) \cdot 10^0$	+9.83	0.014	0.75
ZHH	$2.39350(2) \cdot 10^{-1}$	$2.39337(32) \cdot 10^{-1}$	-11.06	0.005	0.41
W^+HH	$2.44794(2) \cdot 10^{-1}$	$2.44776(24) \cdot 10^{-1}$	-12.04	0.007	0.74
W^-HH	$1.33525(1) \cdot 10^{-1}$	$1.33471(19) \cdot 10^{-1}$	-11.53	0.041	2.80

Cross-validation of WHIZARD and MUNICH/MATRIX orig. ref. [Kallweit et. al., 1412.5157]

LHC setup (Run II),

), $\delta \equiv (\sigma_{\rm NLO}^{\rm tot} - \sigma_{\rm LO}^{\rm tot}) / \sigma_{\rm LO}^{\rm tot}, \qquad {\rm dev} \equiv |\sigma_{\rm WHIZARD}^{\rm tot} - \sigma_{\rm MUNICH}^{\rm tot}| / \sigma_{\rm WHIZARD}^{\rm tot}$

Beyond Flavour Physics

Backup: NLO framework in WHIZARD: NLO EW

Pure electroweak pp processes with off-shell vector bosons

process	α^m	MG5_aMC@NL0[1804.10017]	WHIZARD+OpenL	oops	$\sigma_{ m NLO}^{ m sig}$
$pp \rightarrow$		$\sigma_{ m NLO}^{ m tot}~[m pb]$	$\sigma_{ m NLO}^{ m tot}~[{ m pb}]$	δ [%]	
$e^+\nu_e$	α^2	$5.2005(8) \cdot 10^3$	$5.1994(4) \cdot 10^3$	-0.73	1.24
e^+e^-	α^2	$7.498(1) \cdot 10^2$	$7.498(1)\cdot 10^2$	-0.50	0.004
$e^+ \nu_e \mu^- \bar{\nu}_\mu$	α^4	$5.2794(9) \cdot 10^{-1}$	$5.2816(9) \cdot 10^{-1}$	+3.69	1.69
$e^+e^-\mu^+\mu^-$	α^4	$1.2083(3) \cdot 10^{-2}$	$1.2078(3) \cdot 10^{-2}$	-5.25	1.26
$He^+\nu_e$	α^3	$6.4740(17) \cdot 10^{-2}$	$6.4763(6) \cdot 10^{-2}$	-4.04	1.24
He^+e^-	α^3	$1.3699(2) \cdot 10^{-2}$	$1.3699(1) \cdot 10^{-2}$	-5.86	0.32
Hjj	α^3	$2.7058(4) \cdot 10^{0}$	$2.7056(6)\cdot 10^{0}$	-4.23	0.27
tj	α^2	$1.0540(1) \cdot 10^2$	$1.0538(1)\cdot 10^2$	-0.72	0.74

LHC setup (Run II): $\sqrt{s} = 13$ TeV $\mu_R = \mu_F = \frac{1}{2} \sum_i \sqrt{p_{T,i}^2 + m_i^2}$ EW scheme: G_{μ} CMS PDF set: LUXqed_plus_PDF4LHC15_nnlo_100 cuts from ref. [1804.10017]

Backup: NLO framework in WHIZARD: NLO EW and mixed

Cross-validation with MUNICH/MATRIX using OpenLoops for $pp \to t\bar{t}$ and $pp \to t\bar{t} + W^{\pm}/Z/H$ with complete NLO SM corrections, e. g.

		$\sigma^{ m tot}$	$\sigma^{ m sig} \;/\; dev$	
$pp \to t\bar{t}W^+$	$\alpha_s^n \alpha^m$	$\texttt{MUNICH}_{(CS)}$	WHIZARD	$\texttt{MUNICH}_{(CS)}\text{-}\texttt{WHIZARD}$
LO ₂₁	$\alpha_s^2 \alpha$	$2.411403(1) \cdot 10^2$	$2.4114(1) \cdot 10^2$	0.72~/~0.003%
LO_{12}	$\alpha_s \alpha^2$	0.000	0.000	$0.00 \ / \ 0.000\%$
LO_{03}	α^3	$2.31909(1)\cdot 10^{0}$	$2.3193(1)\cdot 10^{0}$	1.76~/~0.009%
δNLO_{31}	$\alpha_s^3 \alpha$	$1.18993(2) \cdot 10^2$	$1.1905(5) \cdot 10^2$	1.06~/~0.048%
δNLO_{22}	$\alpha_s^2 \alpha^2$	$-1.09511(9) \cdot 10^{1}$	$-1.0947(3) \cdot 10^{1}$	1.13~/~0.035%
δNLO_{13}	$\alpha_s \alpha^3$	$2.93251(3)\cdot 10^{1}$	$2.9334(8)\cdot 10^{1}$	1.14~/~0.030%
$\delta \mathrm{NLO}_{04}$	$lpha^4$	$5.759(3) \cdot 10^{-2}$	$5.756(4) \cdot 10^{-2}$	0.58~/~0.049%

Non-negligible and even enhanced EW effects for α_s subleading contributions at NLO!

 $(pp \rightarrow b\bar{b}X \text{ in validation progress})$

Backup: NLO framework in WHIZARD: NLO EW and mixed

Comparison with MG5_aMC@NLO for $pp \to e^+\nu_e j$ and $pp \to e^+e^- j$ at NLO EW

process	$\alpha_s^n \alpha^m$	MG5_al	MC@NLO	WHIZ	ARD+OpenLoop	S	$\sigma^{ m sig}$
$pp \to Xj$	Ŭ	$\sigma_{ m LO}^{ m tot}~[m pb]$	$\sigma_{ m NLO}^{ m tot}~[{ m pb}]$	$\sigma_{ m LO}^{ m tot}~[{ m pb}]$	$\sigma_{ m NLO}^{ m tot}$ [pb]	$\delta~[\%]$	$\rm LO/NLO$
$e^+\nu_e j$	$\alpha_s \alpha^2$	914.81(6)	904.75(8)	914.74(7)	904.59(7)	-1.11	0.8/1.5
e^+e^-j	$\alpha_s \alpha^2$	150.59(1)	149.09(2)	150.59(1)	149.08(2)	-1.00	0.05/0.4

LHC-setup (Run II), cuts with photon recombination and jet clustering

II) Application of NLO EW corrections to multi-boson processes at a future muon collider

FKS parametrisation:

For $2 \to n$ processes: integrands parametrised by Φ_n for $\mathcal{B}, \mathcal{V}, d\sigma_{S,\text{int}}$ and $\Phi_{n+1} = (\Phi_n, \Phi_{\text{rad}})$ for $\mathcal{R}, d\sigma_S$

FKS variables:
$$\Phi_{\rm rad} \to \{\xi, y, \phi\}$$

$$d\Phi_{n+1} = d\Phi_{\rm rad} d\Phi_n = \underbrace{\mathcal{J}(\xi, y, \phi)}_{\rm Jacobian} d\xi dy d\phi d\Phi_n$$

with $\xi \equiv 2E_{\rm rad}/\sqrt{s}$, $y \equiv \cos\theta_{ij}$ and ϕ : angle difference in transversal plane

collinear limit: $y \to 1$ soft limit: $\xi \to 0$

IR cancellation:

• Define:

$$\mathcal{R}_{(i,j)} = \mathcal{S}_{(i,j)}\mathcal{R}$$

with $S_{(i,j)}$ depending on the kinematics of (i, j), $\sum_{i,j} S_{(i,j)} = 1$ and $\lim_{y\to 1} S_{(i,j)} = 1$, $\lim_{\xi\to 0} S_{(i,j)} = S_{(i,j)}^{\text{soft}}$ Subtraction:

$$\begin{split} \tilde{\mathcal{R}}(\xi,y) &\equiv (1-y)\xi^2 \mathcal{R}(\xi,y) \\ \frac{\hat{\tilde{\mathcal{R}}}_{(i,j)}(\xi,y)}{\xi^2(1-y)} &= \frac{1}{\xi^2(1-y)} \left(\tilde{\mathcal{R}}_{(i,j)}(\xi,y) - \underbrace{\tilde{\mathcal{R}}_{(i,j)}(0,y)}_{\text{soft}} - \underbrace{\tilde{\mathcal{R}}_{(i,j)}(\xi,1)}_{\text{collinear}} + \underbrace{\tilde{\mathcal{R}}_{(i,j)}(0,1)}_{\text{soft-collinear}} \right) \end{split}$$

Subtraction "events" get Born phase-space configuration
 ⇒ Mind IR-safe observables for event generation!

$$\lim_{p_i \parallel p_j} O_{n+1}(p_1, \dots, p_i, \dots, p_j, \dots, p_{n+1}) = O_n(p_1, \dots, p_{ij}, \dots, p_n)$$
$$\lim_{p_i \to 0} O_{n+1}(p_1, \dots, p_j, \dots, p_{n+1}) = O_n(p_1, \dots, p_{j-1}, p_{j+1}, \dots, p_n)$$

Pia Bredt (University of Siegen)

Beyond Flavour Physics

Subtraction terms: For split, partons $\overline{\mathcal{I}}_i \to \mathcal{I}_i \mathcal{I}_j$ and $k_i^2 = 0$ for emitting parton \mathcal{I}_i after splitting

 \bullet collinear limit: unreg. polarised splitting functions \times spin-correlated ${\rm ME}^2$

$$\lim_{y \to 1} \tilde{\mathcal{R}}_{(i,j)}(\xi, y) \simeq \tilde{\mathcal{R}}_{(i,j)}(\xi, 1) = \lim_{y \to 1} \frac{8\pi\alpha_s(1-y)\xi^2}{\bar{k}_i^2} \hat{P}_{\bar{\mathcal{I}}_i \to \mathcal{I}_i \mathcal{I}_j, \text{QCD}}^{\mu\nu}(z, k_\perp) \mathcal{B}_{\mu\nu}^{(i)}$$

For $\bar{\mathcal{I}}_i = g$, $\mathcal{B}_{\mu\nu}^{(i)} = N_B \sum_{\{m\}, s_i, s'_i} \mathcal{M}_n(\{m\}, s_i) \mathcal{M}_n^{\dagger}(\{m\}, s'_i) (\epsilon_{s_i})^*_{\mu} (\epsilon_{s'_i})_{\nu}$

with $\{m\}$ colour, spins of Born conf. and s_i the spin of emitting gluon

 \bullet soft limit: eikonal \times color- or charge-correlated Born $\rm ME^2$

$$\lim_{\xi \to 0} \tilde{\mathcal{R}}_{(i,j)}(\xi, y) \simeq \tilde{\mathcal{R}}_{(i,j)}(0, y) = 4\pi \alpha_s (1-y) \sum_{k,l=1}^n \frac{\bar{k}_k \cdot \bar{k}_l}{(\bar{k}_k \cdot \hat{k}_j)(\bar{k}_l \cdot \hat{k}_j)} \mathcal{B}_{kl}$$

$$|\mathcal{B}_{kl} = -|\mathcal{M}_{kl}^n|^2 = \langle \mathcal{M}^n | \mathbf{T}_k \cdot \mathbf{T}_l | \mathcal{M}^n
angle$$

with $\mathcal{I}_j = g$ the radiated parton and \mathbf{T}_k the colour charge operator

 $\text{QCD} \to \text{QED:} \{ \underline{g}, \underline{\alpha}_{s}, \hat{P}^{\mu\nu}_{\bar{\mathcal{I}}_{i} \to \mathcal{I}_{i}\mathcal{I}_{j}, \mathbf{QCD}}, \mathbf{T}_{k} \} \longrightarrow \{ \gamma, \alpha, \hat{P}^{\mu\nu}_{\bar{\mathcal{I}}_{i} \to \mathcal{I}_{i}\mathcal{I}_{j}, \mathbf{QED}}, \mathbf{Q}_{k} \}$

Regularisation by integrated subtraction terms:

From dimensional regularisation with $d = 4 - 2\varepsilon$ and expansions in ε

$$\begin{split} \xi^{-1-2\varepsilon} &= -\frac{1}{2\varepsilon}\delta(\xi) + \left(\frac{1}{\xi}\right)_{+} - 2\varepsilon \left(\frac{\log \xi}{\xi}\right)_{+} = -\frac{1}{2\varepsilon}\delta(\xi) + \mathcal{P}_{+}(\xi) \text{ and} \\ (1-y)^{-1-\varepsilon} &= -\frac{2^{-\varepsilon}}{\varepsilon}\delta(1-y) + \left(\frac{1}{1-y}\right)_{+} - \varepsilon \left(\frac{\log(1-y)}{1-y}\right)_{+} \text{ we get} \\ &\int d\Phi_{\mathrm{rad}}\mathcal{R} = \int d\Phi_{\mathrm{rad}}(\xi, y) \frac{\tilde{\mathcal{R}}(\xi, y)}{\xi^{2}(1-y)} \\ &= \frac{s^{1-\varepsilon}}{(4\pi)^{3-2\varepsilon}} \int d\Omega^{(2-2\varepsilon)} \int_{-1}^{1} dy (1-y)^{-1-\varepsilon} \int_{0}^{\xi_{\mathrm{max}}} d\xi \xi^{-1-2\varepsilon} \tilde{\mathcal{R}}(\xi, y) \\ &= \underbrace{\frac{I_{\mathrm{soft-coll}}^{(2)}}{\varepsilon} + \frac{I_{\mathrm{soft}}^{(1)}}{\varepsilon} + H_{\mathrm{soft}}^{(0)} + \underbrace{\frac{I_{\mathrm{coll}}^{(1)}}{\varepsilon} + I_{\mathrm{coll}}^{(0)}}_{(3)} + \int \underbrace{\frac{d\Phi_{\mathrm{rad}}\hat{\mathcal{R}}}{(3)} + \mathcal{O}(\varepsilon)}_{(3)} \end{split}$$

with plus-distributions $\int_{-1}^{1} dy \left(\frac{g(y)}{1-y}\right)_{+} f(y) = \int_{-1}^{1} dy g(y) \frac{f(y) - f(1)}{1-y}$

(1) soft (and soft-collinear) limit: $\sim -\frac{1}{2\varepsilon}\int dy(1-y)^{-1-\varepsilon}\int d\xi\delta(\xi)\tilde{\mathcal{R}}(\xi,y)$

(2) collinear limit: $\sim -\frac{2^{-\varepsilon}}{\varepsilon} \int d\xi \mathcal{P}_+(\xi) \int dy \delta(1-y) \tilde{\mathcal{R}}(\xi,y)$

3 subtracted Real:
$$d\phi dy d\xi \frac{\mathcal{J}(\xi, y, \phi)}{\xi} \left(\frac{1}{\xi}\right)_+ \left(\frac{1}{1-y}\right)_+ \tilde{\mathcal{R}}(\xi, y)$$

Back-Up: Lepton collisions at NLO EW

Fixed-order massive approximation for NLO cross sections:

- $\bullet~{\rm IS}$ leptons considered as massive \Rightarrow no collinear counterterms needed
- lepton mass dependencies kept explicit in matrix elements
- NLO phase-space construction with on-shell projection: radiated momentum according to FKS parametrisation; IS momenta fixed; boost of Born FS into recoiling system

Checks with $\texttt{MCSANCee}, \, \mathrm{e.} \, \mathrm{g.}$

$e^+e^- \rightarrow HZ$	MCSANCee[S	adykov,2020]	WHI	ZARD+RECOLA		$\sigma^{ m sig}$
\sqrt{s} [GeV]	$\sigma_{ m LO}^{ m tot}$ [fb]	$\sigma_{ m NLO}^{ m tot}$ [fb]	$\sigma_{ m LO}^{ m tot}$ [fb]	$\sigma_{ m NLO}^{ m tot}$ [fb]	$\delta_{\rm EW}$ [%]	LO/NLO
250	225.59(1)	206.77(1)	225.60(1)	207.0(1)	-8.25	0.4/2.1
500	53.74(1)	62.42(1)	53.74(3)	62.41(2)	+16.14	0.2/0.3
1000	12.05(1)	14.56(1)	12.0549(6)	14.57(1)	+20.84	0.5/0.5
$e^+e^- \to \mu^+\mu^-$	MCSANCee	[2206.09469]	WI	HIZARD+RECOL	.A	$\sigma^{ m sig}$
\sqrt{s} [GeV]	$\sigma_{ m LO}^{ m tot}~[m pb]$	$\sigma_{ m NLO}^{ m tot}~[{ m pb}]$	$\sigma_{ m LO}^{ m tot}~[m pb]$	$\sigma_{\rm NLO}^{\rm tot}$ [pb]	$\delta_{\rm EW}$ [%]	LO/NLO
5	2978.6(1)	3434.2(1)	2978.7(1)	3433.5(3)	+15.27	0.3/2.2
7	1519.6(1)	1773.8(1)	1519.605(4)	1773.1(2)	+16.68	0.05/3.0

 $\alpha(0)$ scheme, $m_e=0.5109...$ MeV

Back-Up: Electron PDFs for lepton collisions At LO-LL:

Parametrisation of beam energy fractions in mapping variables $p_1, p_2 \in [0, 1]$

$$x_1 = p_1^{p_2} x_2 = p_1^{1-p_2}$$

For random numbers $r_1, r_2 \in [0, 1]$

$$p_1 = 1 - (1 - r_1)^{1/\epsilon} = 1 - \bar{r}_1^{1/\epsilon}$$

$$p_2 = \begin{cases} 1 - (2r_2)^{1/\epsilon}/2, & u > 0\\ (2r_2)^{1/\epsilon}/2, & u < 0\\ 1/2, & u = 0 \end{cases}$$

$$u = 2r_2 - 1.$$

 \Rightarrow for small ϵ mapping enhanced at the endpoints $p_1 \rightarrow 1, p_2 \rightarrow 1$ and $p_2 \rightarrow 0$

 \Rightarrow Jacobian factors $(1-r_1)^{1/\epsilon-1}\log p_1$ which **flattens** the integrand in the region $p_1 \to 1$, i. e. $x \to 1$ (where $\lim_{x\to 1} \Gamma_e(x) \to \infty$)

At NLO-NLL:

Rescaling of the PDF arguments for real-emission and collinear subtraction terms (and ISR remnant of collinear subtraction) – beam energy fraction differs before and after radiation

FKS phase-space construction: From Born to real configurations

Ratio of the rescaled over the unrescaled PDFs:

$$\lim_{\substack{x' \to 1 \\ \Gamma(x)}} \frac{\Gamma(x')}{\Gamma(x)} = \lim_{\substack{x \to 1 - \delta x}} \frac{\Gamma(x + \delta x)}{\Gamma(x)} \to \infty \quad \Rightarrow \text{ additional mapping for } \delta x$$

Pia Bredt (University of Siegen)

Back-Up: Electron PDFs for lepton collisions

Remnant of the subtraction of collinear ISR singularities in integrated form (DGLAP remnant): The momentum dependence of the PDFs rescales as

 $\Gamma(x_j,\mu) \longrightarrow \Gamma(x_j/z_j,\mu)$

with $x_j \leq x_j/z_j < 1$ and emitter $j \in \{1, 2\}$ Mapping of the random variable $r_z \in [0, 1]$ defining

 $p_z = 1 - (1 - r_z)^{1/\epsilon}$

Condition $[0,1] \mapsto [x_j,1]$ mapping $p_z \longrightarrow z_j$ we can find the parametrisation

 $z_j = 1 - p_z (1 - \log p_z)(1 - x_j)$

Overall Jacobian per emitter

$$f_{\text{DGLAP},j} = f_{p_z} f_{z_j} = \frac{1}{\epsilon} (1 - r_z)^{1/\epsilon - 1} (1 - x_j) \log p_z$$

Back-Up: Electron PDFs for lepton collisions

For the real component the momentum dependencies of the PDFs rescale as

$$\Gamma(x_1,\mu) \longrightarrow \Gamma(x'_1,\mu) = \Gamma\left(\frac{x_1}{\sqrt{1-\xi}}\sqrt{\frac{2-\xi(1-y)}{2-\xi(1+y)}}\right)$$
$$\Gamma(x_2,\mu) \longrightarrow \Gamma(x'_2,\mu) = \Gamma\left(\frac{x_2}{\sqrt{1-\xi}}\sqrt{\frac{2-\xi(1+y)}{2-\xi(1-y)}}\right)$$

Mapping for $\{x_1, x_2, x_1', x_2'\}$ instead of $\{x_1, x_2, \xi, y\}$! Conditions

$$x_1 \le x_1' < 1 \qquad \qquad x_2 \le x_2' < 1$$

Construct $\hat{p}_j \in [0,1]$ from random numbers $\hat{r}_j \in [0,1]$ as

$$\hat{p}_j = 1 - (1 - \hat{r}_j)^{1/\epsilon}$$

Define rescaled variables with mapping

$$x'_{j} = 1 - \hat{p}_{j}(1 - \log \hat{p}_{j})(1 - x_{j}) \qquad j = 1, 2$$

leads to Jacobians

$$f_{x',j} = \frac{1}{\epsilon} (1 - \hat{r}_j)^{1/\epsilon - 1} (1 - x_j) \log \hat{p}_j$$

Back-Up: Electron PDFs for lepton collisions

Define auxiliary quantities

$$A \equiv \frac{x_1 x_2'}{x_2 x_1'} = \frac{2 - \xi(1 + y)}{2 - \xi(1 - y)} \qquad \qquad B \equiv \frac{x_1 x_2}{x_1' x_2'} = 1 - \xi$$

such that ξ and y can be derived, yielding

.

Considering

$$d\xi dy = \mathcal{J}_1(A, B) \ dAdB = \mathcal{J}_1(A, B) \mathcal{J}_2(x_1', x_2') \ dx_1' dx_1'$$

with

$$\mathcal{J}_1(A,B) = 2\left(\frac{1+B}{1-B}\right)\frac{1}{(1+A)^2} \qquad \qquad \mathcal{J}_2(x_1',x_2') = 2\frac{x_1^2}{x_1'^3 x_2'}$$

we get the final Jacobian factor for ξ and y parametrised in random numbers $\hat{r}_{1/2}$,

$$f_{\text{real},j} = \mathcal{J}_1(A, B) \mathcal{J}_2(x'_1, x'_2) f_{x',1} f_{x',2}$$
.

Back-Up: Complex-mass scheme at NLO

Renormalised self-energy:

$$\hat{\Sigma}^i(p^2) = \Sigma^i(p^2) - \delta M_i^2$$

Complex location of the pole $p^2 = \mu_i^2$ of propagator: $\mu_i^2 - M_{0,i}^2 + \Sigma(\mu_i^2) = 0 \implies \hat{\Sigma}^i(\mu_i^2)$ vanishes

 \Rightarrow renormalised masses $M_i^2 = M_{0,i}^2 - \delta M_i^2$ fixed at this pole due to OS condition $\delta M_i^2 = \Sigma(p^2)|_{p^2 = \mu_i^2}$ Complex-mass scheme requires calculating self-energies for complex squared momenta! Solutions:

- analytic continuation of the self-energies in the complex momentum variable to the unphysical Riemann sheet (MadLoop)[Frederix et. al., 1804.10017]
- expansion of self-energies around real arguments such that one-loop accuracy is retained (OpenLoops, Recola) [Denner et. al., 0505042]
 - ▶ 2-point integrals with $p^2 = \mu_i^2 = M_i^2 i\Gamma_i M_i$ can be obtained through first-order expansion in Γ_i/M_i around $p^2 = M_i^2$

Back-Up: NLL EW $\mu^+\mu^- \to HZ$ Sudakov factor

Using the abbreviations for double and single logarithmic factors

$$L(s, M_W^2) = \frac{\alpha}{4\pi} \log^2 \frac{s}{M_W^2} \qquad \qquad l(s, M_W^2) = \frac{\alpha}{4\pi} \log \frac{s}{M_W^2}$$

For $s \gg M_W$, leading logarithmic, angular-independent, terms (from exchange of soft-collinear gauge bosons between pairs of external legs)

$$\Lambda_{l,\lambda}^{\kappa} = A_{\lambda}^{\kappa} L(s, M_W^2) + B_{\lambda}^{\kappa} \log \frac{M_Z^2}{M_W^2} l(s, M_W^2) + C_{\lambda}$$

with $\lambda = T, L$ the transverse and longitudinal polarisation of the Z boson, and $\kappa = L, R$ the muon initial state chirality

$$\begin{aligned} A_T^{\kappa} &= -\frac{1}{2} \left[2C_{\mu^{\kappa}}^{\rm EW} + C_{\Phi}^{\rm EW} + C_{ZZ}^{\rm EW} \right] & A_L^{\kappa} &= - \left[C_{\mu^{\kappa}}^{\rm EW} + C_{\Phi}^{\rm EW} \right] \\ B_T^{\kappa} &= 2 (I_{\mu_{\kappa}}^Z)^2 + (I_H^Z)^2 & B_L^{\kappa} &= 2 \left[(I_{\mu_{\kappa}}^Z)^2 + (I_H^Z)^2 \right] \\ C_T &= \delta_H^{LSC,h} & C_L &= \delta_H^{LSC,h} + \delta_{\chi}^{LSC,h} \end{aligned}$$

Back-Up: NLL EW $\mu^+\mu^- \to HZ$ Sudakov factor

Subleading, angular-dependent, terms due to W^\pm boson exchange between initial- and final-state legs

$$\Lambda_{\theta,\lambda}^{\kappa} = -\delta_{\kappa L} \frac{D_{\lambda}}{I_{\mu_{\kappa}}^{Z}} \, l(s, M_{W}^{2}) \left[\log \frac{|t|}{s} + \log \frac{|u|}{s} \right]$$

Mandelstam variables t and u approximated in the high-energy limit

$$t = (p_{\mu^+} - p_H)^2 \sim -\frac{s}{2}(1 - \cos\theta_H) \qquad u = (p_{\mu^+} - p_Z)^2 \sim -\frac{s}{2}(1 + \cos\theta_H)$$

Back-Up: NLL EW $\mu^+\mu^- \to HZ$ Sudakov factor

Estimation for the unpolarised approximation factor:

• Born amplitudes for transverse polarized Z bosons are suppressed by M_Z^2/s

$$\Lambda^{\kappa}_{\lambda}\mathcal{M}^{\mu^{+}_{\kappa}\mu^{-}_{\kappa}\to HZ_{\lambda}}_{0} \xrightarrow{s\gg M^{2}_{W}} \delta_{\lambda L}\Lambda^{\kappa}_{\lambda}\mathcal{M}^{\mu^{+}_{\kappa}\mu^{-}_{\kappa}\to HZ_{\lambda}}_{0}$$
(1)

• Chirality and helicity of the muon coincide in the ultrarelativistic limit (two helicity configurations (+, -) and (-, +) remaining, equivalent to chiralities $\kappa = L, R$). Spin-averaging yields

$$\Lambda_{\text{est}}^{\text{unpol}} = \frac{\sum_{\kappa} \Lambda_L^{\kappa} |\mathcal{M}_0^{\mu_{\kappa}^+ \mu_{\kappa}^- \to HZ_L}|^2}{|\mathcal{M}_0^{\mu^+ \mu^- \to HZ_L}|^2}$$
(2)

Back-Up: WHIZARD features

WHIZARD provides

- phase space evaluation with VAMP2 [Braß et. al.: 1811.09711]:
 - twofold self-adaptive multi-channel parametrization
 - ▶ OpenMP and MPI for parallelization \Rightarrow speedup of factor $\mathcal{O}(100)$
- matching to parton showers: POWHEG scheme
- \bullet showering and hadronization: <code>PYTHIA6</code> shipped with <code>WHIZARD</code>, interface between <code>WHIZARD</code> and <code>PYTHIA8</code>
- event formats: LHE, HepMC2/3, Stdhep, LCIO, ...
- special support for lepton collider processes:

beamstrahlung	CIRCE1/CIRCE2 [CPC 101 (1997) 269]
bremsstrahlung	LL resummation via ISR and EPA functions
beam polarization	inclusion for a user-defineable setup