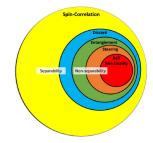
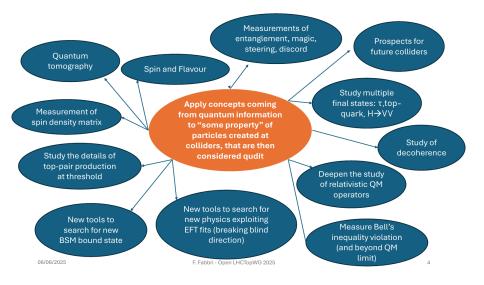


Quantum entanglement and other observables with $t\bar{t}$


Carmen Diez Pardos (U. Siegen) Beyond Flavour Physics 24 June 2025


Introduction

- $\bullet\,$ Top quark is a useful tool for SM and BSM $\to\,$ high statistics with top quark pair production
 - Spin correlation measurements can test SM prediction and a possible tool to see BSM effects
 - $\bullet\,$ Can also test some of the core properties of quantum mechanics $\to\,$ unique tests of actual quantum behaviour of quarks at LHC

- Available/Planed measurements of:
 - spin correlations
 - quantum discord
 - entanglement
 - Bell non-locality (maybe impossible...)

More general picture: What is going on?

Spin correlations in $t\bar{t}$

Top and antitop produced in pairs \rightarrow their spins S_i and S_i correlated = two qubit system

$$\rho = \frac{1}{4} \left(1 \otimes 1 + \sum_{i=1}^{3} B_i \sigma_i \otimes 1 + \sum_{j=1}^{3} \bar{B}_j 1 \otimes \sigma_j + \sum_{i=1}^{3} \sum_{j=1}^{3} C_{ij} \sigma_i \otimes \sigma_j \right)$$

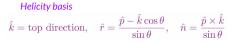
• 15 parameters in total that describe the quantum state of the top pair

$$\langle S_i \rangle = B_i, \quad \langle \bar{S}_j \rangle = \bar{B}_j, \quad \langle S_i \bar{S}_j \rangle = C_{ij}$$

Quantum Tomography \rightarrow measurement of 15 parameters:

→ 6 polarisations → 9 correlations $B = \begin{pmatrix} B_i \\ \dots \\ \dots \end{pmatrix} \qquad C = \begin{pmatrix} C_{ij} & \dots & \dots \\ \dots & \dots & \dots \\ \dots & \dots & \dots \end{pmatrix}$

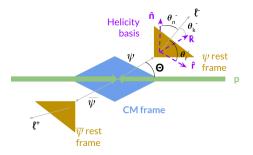
Measuring spin correlations


• Spin information is preserved through the top quark decay

$$\frac{1}{m_t} < \frac{1}{\Gamma_t} < \frac{1}{\Gamma_t} < \frac{1}{\Lambda_{\rm QCD}} < \frac{m_t}{\frac{\Lambda^2}{\Lambda^2}}$$
production10⁻²⁷ s lifetime10⁻²⁵ s hadronization10⁻²⁴ s spin-flip10⁻²¹ s

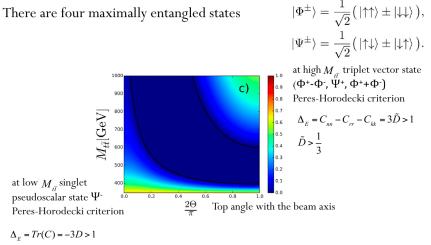
- The spin of the particles measured at colliders can not be measured directly
 - It is extracted thanks to the direction of the final state particles
 - Relation created by the weak decay
 - The strength of the relation is dictated by the spin analysing power
- The spin analysing power depends on the flavour of the particle
- The elements of the spin density matrix are extracted averaging on angular distributions and accounting for the spin analysing power

Measuring spin correlations


- The bases to measure the angular distributions are
 - $\bullet\,$ Helicity bases $\rightarrow\,$ defined in the parent particle frame

• Beam basis \rightarrow defined in the laboratory frame

Beamline basis

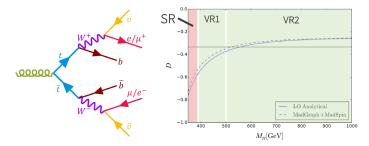

 $(\hat{x},\hat{y},\hat{z}) \text{ with } \hat{x} = (1,0,0), \quad \hat{y} = (0,1,0), \quad \hat{z} = (0,0,1)$

• Relation between angular distribution of the top quark pair decay products and top spin axis as

$$\frac{1}{\Gamma_T} \frac{d\Gamma}{d\cos\chi_i} = \frac{1 + \alpha_i \cos\chi_i}{2} \qquad \qquad \alpha_i = \begin{cases} +1.0 \quad \ell^+ \text{ or } \bar{d}\text{-quark} \\ -0.31 \quad \bar{\nu} \text{ or } u\text{-quark} \\ -0.41 \quad b\text{-quark} \end{cases} \quad \text{ at LO}$$

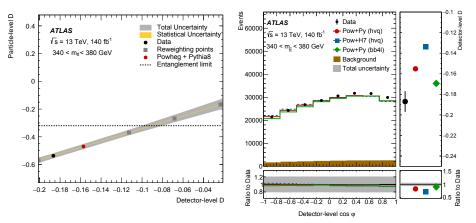
Spin correlation and entanglement

 $D < -\frac{1}{3}$


Plot from Afik, De Nova EPJP136(2021)9,907 hep-ph:2003.02280

Quantum entanglement in dileptonic $t\bar{t}$ [Nature 633 (2024) 542]

- $e\mu$ final state: very clean (90% purity)
- Boost the leptons in their parent top quark's rest frame
- Sufficient condition for entanglement from spin correlation matrix, using diagonal elements: $\Delta = C_{33} + |C_{11} + C_{22}| > 1$
- Measure entanglement proxy $D = -\Delta/3 = -Tr[C]/3$ extracted from angle between charged leptons


$$rac{1}{\sigma}rac{d\sigma}{d\cos\phi} = rac{1}{2}(1 - D\cos\phi)$$

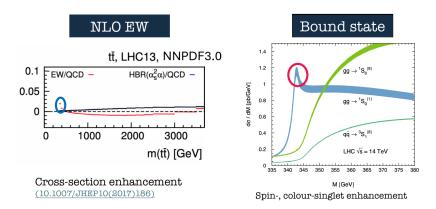
• Define $m_{t\bar{t}}$ entanglement signal region and validation regions

Analysis procedure

- *Calibration curve* method: use the nominal MC to map the detector-level D value (average of distribution) to the fiducial particle-level D.
 - Build the curve by sampling different D values.
- Systematics are propagated with their own curves, quadratic envelope.

A closer look to the uncertainties

"Backgrounds": mostly $Z \rightarrow \tau \tau$, which leads to a flat $\cos(\phi)$ distribution (spin information from taus is lost)


Calibrating to fiducial particle-level reduces the parton shower uncertainty (Pythia vs Herwig) \rightarrow full details in the paper.

Signal modelling: by far the largest contribution

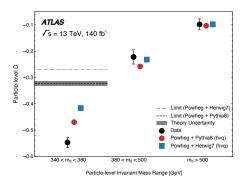
arXiv:2311.07288

Source of uncertainty	$\Delta D_{\text{expected}}(D = -0.470)$	ΔD [%]	
Signal modeling	0.015	3.2	
Electrons	0.002	0.4	
Muons	0.001	0.1	
Jets	0.004	0.8	
b-tagging	0.002	0.4	
Pile-up	< 0.001	< 0.1	
$E_{\rm T}^{\rm miss}$	0.002	0.4	
Backgrounds	0.009	1.8	
Total statistical uncertainty	0.002	0.4	
Total systematic uncertainty	0.018	3.9	
Total uncertainty	0.018	3.9	
Systematic uncertainty source Relative size (for SM D val			
Top-quark decay	1.6%		
Parton distribution function	1.2%		
Recoil scheme	1.1%		
Final-state radiation	1.1%		
Scale uncertainties	1.1%		
	1.1%		
NNLO reweighting	1.1%	D	
NNLO reweighting pThard setting	1.1%		
		D	
pThard setting	0.8%	D	
pThard setting Top-quark mass	0.8% 0.7% 0.2%	D D	

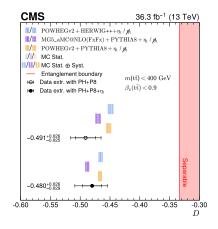
Sources of $t\bar{t}$ mismodelling

• CMS measurements considered them

- EW corrections with Hathor
- Added pseudo-scalar colour singlet predicted by non-relativistic QCD \rightarrow affects $m_{t\bar{t}}$ and spin correlations at threshold


Since then improved model available! (Fuks' talk)

C. Diez Pardos


Observation of top quark entanglement

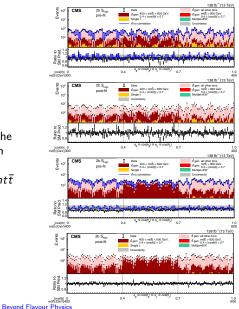
[Nature 633 (2024) 542, Rep. Prog. Phys. 87 (2024) 117801]

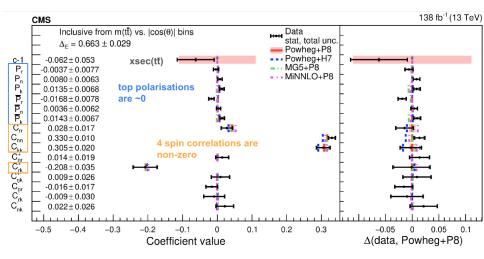
• D < -1/3 established at 5σ level

non-relativistic QCD effects close to threshold not included in MC generators \rightarrow would only affect predictions, not calibration

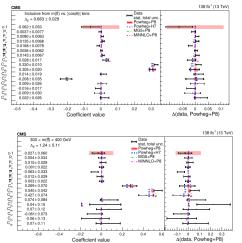
 $\sim 1.5\sigma$ tension with the expectation if toponium is not included

Taking it a step further [Phys. Rev. D 110 (2024) 112016]

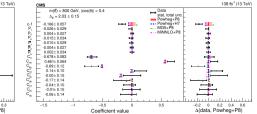

- Measuring the correlation matrix in single-lepton $t\bar{t}$ events
- All coefficients of polarization vectors and correlation matrix from fit to the angles of the down-type quark and the charged lepton in the W boson decays.
- Challenging identification of down-type quark in W decay
- Using NN to reconstruct the $t\bar{t}$ system
- Δ from the full matrix, or from two proxies: D and $\tilde{D} = 3(C_{33} - C_{11} - C_{22})$ for high masses


Observable	Coefficient
$\cos \theta_k^1$	B_k^1
$\cos \theta_r^1$	B_r^1
$\cos \theta_n^1$	B_n^1
$\cos \theta_k^2$	B_k^2
$\cos \theta_r^2$	B_r^2
$\cos \theta_n^2$	B_n^2
$\cos \theta_k^1 \cos \theta_k^2$	C_{kk}
$\cos \theta_r^1 \cos \theta_r^2$	C_{rr}
$\cos\theta_n^1\cos\theta_n^2$	C_{nn}
$\cos \theta_k^1 \cos \theta_r^2 + \cos \theta_r^1 \cos \theta_k^2$	$C_{rk} + C_{kr}$
$\cos \theta_r^1 \cos \theta_k^2 - \cos \theta_k^1 \cos \theta_r^2$	$C_{rk} - C_{kr}$
$\cos \theta_r^1 \cos \theta_n^2 + \cos \theta_n^1 \cos \theta_r^2$	$C_{nr} + C_{rn}$
$\cos\theta_n^1\cos\theta_r^2 - \cos\theta_r^1\cos\theta_n^2$	$C_{nr} - C_{rn}$
$\cos \theta_k^1 \cos \theta_n^2 + \cos \theta_n^1 \cos \theta_k^2$	$C_{nk} + C_{kn}$
$\cos\theta_n^1\cos\theta_k^2 - \cos\theta_k^1\cos\theta_n^2$	$C_{nk} - C_{kn}$
000.10	

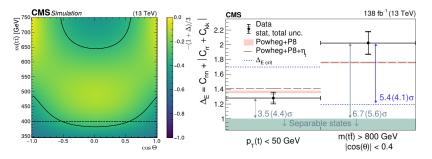
Measuring the full set of coefficients


 Pre- and post-fit distributions comparing the data (points) to the POWHEG + PYTHIA simulation (stacked histograms) for the full matrix measurement in bins of mtt
 vs. | cos θ|

Spin density matrix



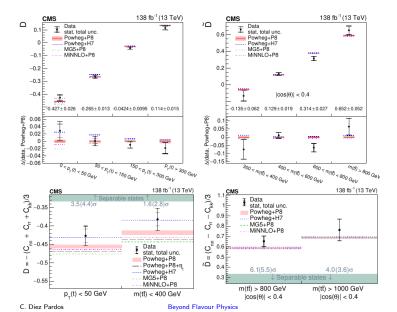
Spin density matrix



- Only C_{rk}^+ is invariant under P and C transformation \rightarrow only non-zero off-diagonal element
- Diagonal elements indicate the transition from a dominant spin-singlet state at low to a triplet-state at high m(tt)
- All coefficients in good agreement with SM values
- Access to full density matrix :

$$\rho = \frac{1}{4} (\mathbb{1}_4 + \sum_i P_i \sigma_i \otimes \mathbb{1}_2 + \sum_j \bar{P}_j \mathbb{1}_2 \otimes \sigma_j + \sum_{ij} C_{ij} \sigma_i \otimes \sigma_j)$$

Quantum entanglement at high $m_{t\bar{t}}$ (from full SDM)



• At the threshold and at high $m(t\bar{t})$ with low $\cos(\theta_t) t\bar{t}$ is expected to be produced in entangled states

• Criterion for entanglement (based on Peres-Horodecki criterion): $\Delta E = C_{nn} + |C_{rr} + C_{kk}| > 1$

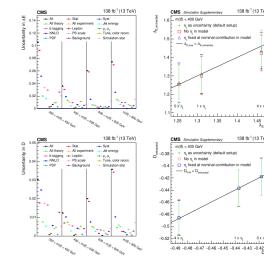
Assuming that the $t\bar{t}$ system is described by QM, this is the first observation of an entangled quantum state at high $m(t\bar{t})$

Quantum entanglement from D (threshold) and \tilde{D} (high mass)

19/30

A closer look to the uncertainties

Uncertainties and tests


measurements are mostly statistically limited

systematic uncertainties in D are larger; more assumption about modeling and detector effects made

• toponium signal injection tests show that the correct values can be obtained. however, the signal is within uncertainties

toponium simulated as a pseudo-scalar particle with mass 343 GeV, $\Gamma = 2m_{t}$, and production cross section of 6.4 pb

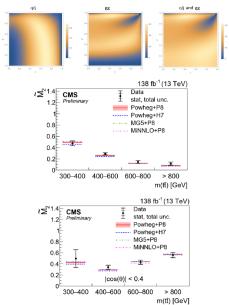
tests with altered injected coefficients successfully performed in many regions of phase space

Beyond Flavour Physics

0 x η

138 fb⁻¹ (13 TeV)

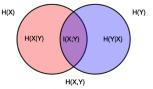
4 x η


138 fb⁻¹ (13 TeV)

1.4 1.45 $\tilde{\Delta}_{E,true}$

Magic

- Property related to the advantage of implementing a quantum state on a quantum computer.
- Measured by CMS starting from the differential measurement of the spin density matrix in the tt

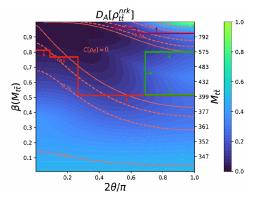

 in the tt
- Take home messages:
 - Magic agrees with the SM
 - Magic is non-linear:
 - Non-zero magic of the mixed states does not imply non-zero magic for the individual quantum states
 - Values of magic, discord etc... also depend on the coordinate systems. This is not a problem, but their interpretation is not as straight forward

Discord

• Discord captures the non-classicality of correlations by measuring differences in the total mutual information

$$\begin{split} I(X;Y) &= H(X) + H(Y) - H(X,Y) \\ J(X;Y) &= H(X) - H(X|Y) \\ I(X;Y) \stackrel{?}{=} J(X;Y) \quad \text{[classically they are the same]} \end{split}$$

Discord $\rightarrow \mathcal{D}_A = S(\rho_B) - S(\rho) + \min_{\hat{\mathbf{n}}} p_{\hat{\mathbf{n}}} S(\rho_{\hat{\mathbf{n}}}) + p_{-\hat{\mathbf{n}}} S(\rho_{-\hat{\mathbf{n}}})$


- In general: $\mathbf{0} \leq \mathbf{D}_{\mathbf{A}} \leq \mathbf{1}$ and $\mathbf{D}_{\mathbf{A}} \models \mathbf{D}_{\mathbf{B}}$ $S(\rho) = -\text{Tr}\rho \log_2 \rho \qquad \rho_{\hat{\mathbf{n}}} = \frac{1 + \mathbf{B}_{\hat{\mathbf{n}}}^+ \cdot \sigma}{2}, \ \mathbf{B}_{\hat{\mathbf{n}}}^+ = \frac{\mathbf{B}^+ + \mathbf{C} \cdot \hat{\mathbf{n}}}{1 + \hat{\mathbf{n}} \cdot \mathbf{B}^-}, \ p_{\hat{\mathbf{n}}} = \frac{1 + \hat{\mathbf{n}} \cdot \mathbf{B}^-}{2}$
- The problem with Discord is that it is non convex:
 - Mixture of states with zero discord lead to non-zero discord
 - Hard to interpret a measurement of non zero discord

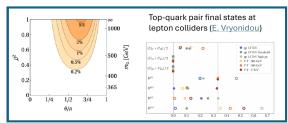
Discord

- Solutions proposed:
 - Only perform discord measurements in regions with non-zero entanglement
 - Perform measurements in regions where all sub-state have non-zero discord
- Shown results for discord measurement in $t\bar{t}$ final states in a separable region of the phase space but with reduced classical correlations

Three signal regions:

- Threshold
- Separable
- Boosted

Courtesy: N. McGinnis


Beyond LHC and $t\bar{t}$

Future colliders

• Several studies released on the perspective for measuring quantum observables at future lepton colliders

Perspective for H→ZZ* at muon colliders (L. Gao) $\sqrt{s} = 10 \text{ TeV}$ Mz. (GeV) I_3 0.000 2.539 ± 0.312 -0.930 ± 0.196 0.466 ± 0.232 10.000 2.569 ± 0.295 -0.946 ± 0.194 0.482 ± 0.217 20.000 2.616 ± 0.321 -0.969 ± 0.218 0.514 ± 0.219 0.527 ± 0.280 30.000 2.644 ± 0.517 -0.943 ± 0.334

06/06/2025

Anomalous τ coupling constraints at lepton colliders (L. Marzola)

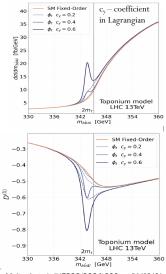
K A	Oa		limits I (L = 17.6 fb $^{-1}$)		limits II (L = 150 ab^{-1})
concurrence	8	0.006	$-0.002 \le F_2(m_Z^2) \le 0.003$	0.001	$-0.001 \le F_2(m_Z^2) \le 0.001$
total cross	Codd	0.009	$-0.001 \le F_3(m_Z^2) \le 0.001$	0.006	$-0.0004 \le F_3(m_Z^2) \le 0.0005$
section	σT	0.05 pb	$-0.009 \le C_1^V \le 0.010$	0.02 pb	$-0.004 \le C_1^V \le 0.004$
	σ_T	0.05 pb	$-0.001 \le C_1^A \le 0.001$	0.02 pb	$-0.0004 \le C_1^A \le 0.0004$
$\mathscr{C}_{odd} = \frac{1}{2} \sum C_{ij} - C_{ji} $		benchm ark (LEP 3)		FCC-ee	
$2 \underset{i < j}{\underline{\sim}}$					44

F. Fabbri - Open LHCTopWG 2025

13

Courtesy: F. Fabbri

C. Diez Pardos

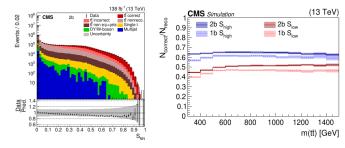

Summary and outlook

- Top quark polarization and spin correlation measurement is interesting in its own right as a test of the SM, but it also provides new opportunities for testing quantum mechanics (QM) at high energies using the decay products of unstable particles as probes
- Angular distributions of the top and antitop quarks used to measure their polarization and spin correlation matrix
- In some regions of phase space top and antitop get entangled, which can be demonstrated using Peres-Horodecki criterion based on their spin correlation matrix
- Large interest from the exp. and theo community to use $t\bar{t}$ for further tests (see Workshop on Quantum observables for Collider Physiscs)
- Discussions on interplay of these measurements and BSM, mostly in the context of EFT
- Effort to exploit other topologies (e.g. Higgs decays) ongoing

BACK UP

Signal modelling

- NLO POWHEG+Pythia8
- Include EW corrections with HATHOR (Comput. Phys. Commun. 182 (2011) 10)
- NNLO (Phys. Rev. Lett. 127 (2021) 062001)
 - Dilepton: p_T reweighting to match the top quark p_T spectrum from a fixed order ME calculation at NNLO
 - Lepton+jets: NN-based reweighting to match NNLO distributions at reco level
- Add "toponium" (pseudo-scalar color singlet predicted by non-relativistic QCD)
 - M(toponium)-344 GeV, $\sigma = \sim 6.5 \text{pb}$
 - Sumino, Fujii, Hagiwara, Murayama & Ng (PRD'93)
 - Jezabek, Kuhn & Teubner (Z.Phys.C'92)
 - B. Fuks et al. (PRD 104 (2021) 034023)
 - affects the invariant mass distribution and the **spin correlations** at the threshold

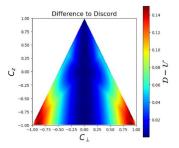


Regina Demina, University of Rochester

F. Maltoni et al. JHEP03(2024)099 06/05/24

$t\bar{t}$ reconstruction (I+jets)

Use dense neural network for identification of the top decay products (7 layers, 220 nodes) – inputs: $[\ell, p_{\rm T}^{\rm miss}, b_\ell, b_h, j_{\rm down}, j_{\rm up}, additional jets];$ momentum and b-tagging information for jets – present all permutations for the jets from tt to NN and train for high score if the 4 jets are at the correct positions half of the time there is a c-jet in the W decay; in average, down-type jets are softer (65% correctly identified)

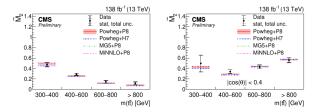


 $S_{\rm low}$: 0.1–0.36, $S_{\rm high}$: > 0.36

New (in the context of HEP) observables

- Discord captures the non-classicality of correlations by measuring differences in the total mutual information
 - Experimentally very challenging due to a minimization over projective measurements
- · Suggestion to instead measure local quantum uncertainty (LQU)
 - · a local measurement on one part can disturb the global state
 - · If the minimum of LQU is non-zero the state should be discordant
 - In case of qubit the formula for LQU is very simple and can be derived by the spin density matrix
 - · LQU seems to provide a lower bound of discord
 - Results based on the CMS spin density matrix measurement already provided

Courtesy: B. Ravina


Magic

- In quantum information science pure eigen-states of unitary operators (mostly tensor products of Pauli matrices) are called stabilizer states. For these magic is zero.
- Non-stabilizer states have enhanced properties for quantum computing [D. Gottesman]

A generalized definition of magic for mixed states [C. White]:

$$\tilde{M}_{2} = -\log_{2}\left(\frac{1 + \sum_{i \in n,k,r} [(P_{i}^{4} + \bar{P}_{i}^{4})] + \sum_{i,j \in n,k,r} C_{ij}^{4}}{1 + \sum_{i \in n,k,r} [(P_{i}^{2} + \bar{P}_{i}^{2})] + \sum_{i,j \in n,k,r} C_{ij}^{4}}\right)$$

This can be calculated from the measured spin correlations:

Courtesy: O. Hendrichs