Anatomy of Yukawa Matrices and SMEFT couplings with AutoEFT

> "Beyond Flavour Physics" Siegen, June 2025

Thorsten Feldmann [with R. Harlander, M. Schaaf, T. Tong; in preparation]

flavour symmetry: $U(3)_Q \times U(3)_U \times U(3)_D \times U(3)_L \times U(3)_E$

for 3 copies ("generations") of 5 types of fermion multiplets (Q, U, D, L, E)

flavour symmetry: $U(3)_Q \times U(3)_U \times U(3)_D \times U(3)_L \times U(3)_E$

for 3 copies ("generations") of 5 types of fermion multiplets (Q, U, D, L, E)

• flavour-symmetry breaking encoded in SM Yukawa sector:

$$\mathcal{L}_{\rm yuk} = -\frac{Y_U^{ab}}{U} \bar{Q}^a \tilde{H} U^b - \frac{Y_D^{ab}}{D} \bar{Q}^a H D^b - \frac{Y_E^{ab}}{E} \bar{L}^a H E^b + \text{h.c.}$$

 \rightarrow 54 real parameters in 3 complex 3×3 Yukawa matrices

flavour symmetry: $U(3)_Q \times U(3)_U \times U(3)_D \times U(3)_L \times U(3)_E$

for 3 copies ("generations") of 5 types of fermion multiplets (Q, U, D, L, E)

• flavour-symmetry breaking encoded in SM Yukawa sector:

 $\mathcal{L}_{\rm yuk} = - \frac{Y_U^{ab}}{U} \bar{Q}^a \tilde{H} U^b - \frac{Y_D^{ab}}{D} \bar{Q}^a H D^b - \frac{Y_E^{ab}}{L} \bar{L}^a H E^b + \text{h.c.}$

 \rightarrow 54 real parameters in 3 complex 3×3 Yukawa matrices

• Yukawa sector preserves "accidental symmetries"

 $U(1)_B \times U(1)_e \times U(1)_\mu \times U(1)_\tau$

flavour symmetry: $U(3)_Q \times U(3)_U \times U(3)_D \times U(3)_L \times U(3)_E$

for 3 copies ("generations") of 5 types of fermion multiplets (Q, U, D, L, E)

• flavour-symmetry breaking encoded in SM Yukawa sector:

 $\mathcal{L}_{\rm yuk} = -\frac{Y_U^{ab}}{U} \bar{Q}^a \tilde{H} U^b - \frac{Y_D^{ab}}{D} \bar{Q}^a H D^b - \frac{Y_E^{ab}}{E} \bar{L}^a H E^b + \text{h.c.}$

 \rightarrow 54 real parameters in 3 complex 3×3 Yukawa matrices

• Yukawa sector preserves "accidental symmetries"

 $U(1)_B \times U(1)_e \times U(1)_\mu \times U(1)_\tau$

 \Rightarrow 54 - (5 · 9 - 4) = 13 observable flavour parameters:

6 quark masses, 3 lepton masses, 3 CKM angles, 1 CP phase

Standard Model:

- $54 \rightarrow 13$ flavour parameters from Yukawas
- "natural" value for top-Yukawa:

 $y_t \sim \mathcal{O}(1)$, while $y_{f
eq t} \ll 1$

• small CKM angles (from (U_L, D_L) rotations)

 $\theta_{12} \ll \theta_{23} \ll \theta_{13} \sim \theta_{12} \theta_{23}$

• other rotations (U,D,E,L) not observable

Standard Model:

- $54 \rightarrow 13$ flavour parameters from Yukawas
- "natural" value for top-Yukawa:

 $y_t \sim \mathcal{O}(1)$, while $y_{f \neq t} \ll 1$

• small CKM angles (from (U_L, D_L) rotations)

 $\theta_{12} \ll \theta_{23} \ll \theta_{13} \sim \theta_{12} \theta_{23}$

• other rotations (U,D,E,L) not observable

Beyond the SM

- Any generic extension of the SM adds (many!) new flavour-specific couplings
- No a-priori information about "natural" size of dimensionless couplings
- So far, no direct hint for NP mass scale
- flavour mixing from right-handed quarks and charged leptons, too

Standard Model:

- $54 \rightarrow 13$ flavour parameters from Yukawas
- "natural" value for top-Yukawa:

 $y_t \sim \mathcal{O}(1)$, while $y_{f \neq t} \ll 1$

• small CKM angles (from (U_L, D_L) rotations)

 $\theta_{12} \ll \theta_{23} \ll \theta_{13} \sim \theta_{12} \theta_{23}$

• other rotations (U,D,E,L) not observable

Beyond the SM

- Any generic extension of the SM adds (many!) new flavour-specific couplings
- No a-priori information about "natural" size of dimensionless couplings
- So far, no direct hint for NP mass scale
- flavour mixing from right-handed quarks and charged leptons, too

Example: SMEFT

Assuming unbroken baryon- and lepton-#:

- 2499 new parameters @ dim-6 most of them related to flavour-specific
 - 2- and 4-fermion operators

[Buchmüller/Wyler '86, Grzadkowski et al. 2010]

Assumptions about the NP flavour sector

perfect flavour symmetry $U(3)^5$ @high scale

- + flavour-blind observables constrain NP scale
- new flavour effects from RG, only
- working assumption not RG-invariant

perfect flavour symmetry $U(3)^5$ @high scale

generic $\mathcal{O}(1)$ couplings no symmetry constraints

- + no specific flavour assumptions
- flavour constraints imply huge NP scales
- dim-4 Yukawas are fine-tuned (natural?)

perfect flavour symmetry $U(3)^5$ @high scale

Minimal Flavour Violation

expand in Y_U , Y_D , Y_E from SM

- + RG covariant
- + SM-like suppression of rare flavour decays
- $\pm\,$ correlates high-energy and flavour observ. still too restrictive?
- reversed logic? (IR \mapsto UV)

[D'Ambrosio et al. 2002, Buras 2003]

generic $\mathcal{O}(1)$ couplings no symmetry constraints

perfect flavour symmetry

 $U(3)^5$ @high scale

Minimal Flavour Violation

expand in Y_U , Y_D , Y_E from SM

Froggatt-Nielsen Scenario

a single $U(1)\ {\rm broken} @{\rm UV}$

- + RG covariant
- + self-consistent flavour power counting
- (too?) large NP flavour effects

[Froggatt/Nielsen '79]

generic $\mathcal{O}(1)$ couplings

no symmetry constraints

perfect flavour symmetry $U(3)^5$ @high scale

Minimal Flavour Violation expand in Y_{U} , Y_{D} , Y_{E} from SM

\$?

Froggatt-Nielsen Scenario

a single $U(1)\ {\rm broken} @{\rm UV}$

generic $\mathcal{O}(1)$ couplings no symmetry constraints

Froggatt-Nielsen Approach:

[Froggatt/Nielsen 1979]

- fermion generations have different charges under $U(1)_{
 m FN}$
- spontaneously broken by VEV of a charged scalar field ("spurion")
- ightarrow power-counting parameter

$$\lambda = \frac{\langle \phi \rangle}{\Lambda_{\rm UV}} \equiv \theta_{\rm Cabibbo} \simeq 0.2$$

• hierarchical Yukawa entries from # of necessary spurion insertions

 $y_{ij} \sim \lambda^{|\Delta q_{ij}|}$

dictated by charge *differences*

 \rightarrow FN charges also fix the scaling of SMEFT operators

see e.g. [Bordone/Cata/TF 2019]

(breaks $U(3)^5$)

- quark flavour symmetry of the SM gauge sector: $G_0 = U(3)^3/U(1)_B$
- lepton flavour symmetry of the SM gauge sector: $H_0 = U(3)^2/U(1)^3_{L_i}$
- But: top-Yukawa coupling is $O(1) \rightarrow explicit$ symmetry breaking

- quark flavour symmetry of the SM gauge sector: $G_0 = U(3)^3/U(1)_B$
- lepton flavour symmetry of the SM gauge sector: $H_0 = U(3)^2/U(1)^3_{L_i}$
- But: top-Yukawa coupling is $O(1) \rightarrow explicit$ symmetry breaking

 \Rightarrow Starting point: *Approximate* flavour symmetry of quarks in the SM

 $G_1 = SU(2)_Q \times U(2)_U \times U(3)_D \times U(1)_{(Q_3, U_3)}$

- quark flavour symmetry of the SM gauge sector: $G_0 = U(3)^3/U(1)_B$
- lepton flavour symmetry of the SM gauge sector: $H_0 = U(3)^2/U(1)^3_{L_i}$
- But: top-Yukawa coupling is O(1) \rightarrow *explicit* symmetry breaking

 \Rightarrow Starting point: Approximate flavour symmetry of quarks in the SM

 $G_1 = SU(2)_Q \times U(2)_U \times U(3)_D \times U(1)_{(Q_3, U_3)}$

• allowed dim-4 operators with $\mathcal{O}(1)$ couplings:

Higgs self-coupling: $(HH^{\dagger})^2$ Top Yukawa: $ar{Q}_3\,\widetilde{H}\,U_3+{
m h.c.}$

Lesson: All operators consistent with $G_1 imes H_0$ may have $\mathcal{O}(1)$ coefficients

AutoEFT package:

 generate set of operators allowed by user-defined symmetries here: SM + flavour symmetries

[Harlander/Schaaf 2023]

dim-6 operators with $G_1 \times H_0$ symmetry:

- 22 operators without quark fields
- 27 two-quark operators
- 33 four-quark operators
- \rightarrow sufficient for (flavour-diagonal) Higgs and top observables
- $\rightarrow~$ non-diagonal flavour transitions: include operators that violate $G_1 \times H_0$

dim-6	generic	H_0	$G_1 \times H_0$	$U(3)^{5}$
no-quark	258	22	22	22
2-quark	1251	261	27	11
4-quark	990	990	33	14
Σ	2499	1273	82	47

• To be specific, we consider the standard Wolfenstein scaling for the CKM angles,

 $\theta_{12} \sim \lambda \,, \quad \theta_{23} \sim \lambda^2 \,, \quad \theta_{13} \sim \lambda^3$

together with

$$y_b \sim \lambda^2 \,, \quad y_c \sim \lambda^3 \,, \quad y_s \sim \lambda^4 \,, \quad y_{u,d} \sim \lambda^6 \,,$$

• adjusting the according FN charges would lead to

• To be specific, we consider the standard Wolfenstein scaling for the CKM angles,

 $\theta_{12} \sim \lambda \,, \quad \theta_{23} \sim \lambda^2 \,, \quad \theta_{13} \sim \lambda^3$

together with

$$y_b \sim \lambda^2 \,, \quad y_c \sim \lambda^3 \,, \quad y_s \sim \lambda^4 \,, \quad y_{u,d} \sim \lambda^6 \,,$$

• adjusting the according FN charges would lead to

Step 1: Realizing $(Y_U)_{32} \sim \lambda$

Our approach:

- introduce spurions as *smallest representations* required to break appropriate subgroups of G₁
- implement spurions in AutoEFT
- break $SU(2)_U$:

charged doublet: $S_1 \sim y_c/ heta_{23} \sim \lambda$

• residual flavour symmetry

dim-6	H_0	$\mathcal{O}(\lambda)$	$\mathcal{O}(1)$
no-quark	22		22
2-quark	261	14	27
4-quark	990	18	33

 $G_1 \to G_2 = SU(2)_Q \times U(3)_D \times U(1)^2$

New operators for $t_R \rightarrow c_R$ transitions at $\mathcal{O}(\lambda)$!

[for comparison: MFV would not induce any new operators at $\mathcal{O}(\lambda)$]

Step 2: Realizing $(Y_U)_{23},\,(Y_D)_{32},\,(\overline{Y_D})_{33}\sim\lambda^2$

$$Y_U \sim \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \lambda^2 \\ \cdot & \lambda & 1 \end{pmatrix} \quad Y_D \sim \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix}$$

• break $SU(2)_Q$:

charged doublet: $S_2 \sim y_t heta_{23} \sim \lambda^2$

Step 2: Realizing $(Y_U)_{23},\,(Y_D)_{32},\,(Y_D)_{33}\sim\lambda^2$

$$Y_U \sim \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & & \\ \cdot & \lambda & 1 \end{pmatrix} \quad Y_D \sim \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \\ \cdot & \lambda^2 & \lambda^2 \end{pmatrix}$$

• break $SU(2)_Q$:

charged doublet: $S_2 \sim y_t heta_{23} \sim \lambda^2$

• break $SU(3)_D$:

two charged triplets: $S_{3,4} \sim y_b \sim \lambda^2$

 \rightarrow large $\mathcal{O}(1)$ transitions $b_R \rightarrow s_R$

Step 2: Realizing $(Y_U)_{23},\,(Y_D)_{32},\,(Y_D)_{33}\sim\lambda^2$

$$Y_U \sim \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \lambda^3 & \frac{\lambda^2}{1} \end{pmatrix} \quad Y_D \sim \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \lambda^4 & \lambda^4 \\ \cdot & \lambda^2 & \frac{\lambda^2}{2} \end{pmatrix}$$

• break $SU(2)_Q$:

charged doublet: $S_2 \sim y_t heta_{23} \sim \lambda^2$

• break $SU(3)_D$:

two charged triplets: $S_{3,4} \sim y_b \sim \lambda^2$

 \rightarrow large $\mathcal{O}(1)$ transitions $b_R \rightarrow s_R$

• residual flavour symmetry

 $G_2 \to G_3 = U(1)^3$

also realizes $(Y_U)_{22}$ and $(Y_D)_{22}$ and $(Y_D)_{23}$

dim-6	H_0	$\mathcal{O}(\lambda^2)$	$\mathcal{O}(\lambda)$	$\mathcal{O}(1)$
no-quark	22			22
2-quark	261	41	14	27
4-quark	990	42	18	33

• Further break $G_3 \rightarrow \{\}$ by charged singlets

dim-6	H_0	$\mathcal{O}(\lambda^6)$	$\mathcal{O}(\lambda^5)$	${\cal O}(\lambda^4)$	$\mathcal{O}(\lambda^3)$	$\mathcal{O}(\lambda^2)$	$\mathcal{O}(\lambda)$	$\mathcal{O}(1)$
no-quark	22							22
2-quark	261	18	58	49	54	41	14	27
4-quark	990	116	158	109	66	42	18	33
sum	1273	\leftarrow 825 \leftarrow	$\textbf{691} \leftarrow$	475 ←	317 ←	197 ←	114 \leftarrow	82

• 2-quark operators "saturate" at $\mathcal{O}(\lambda^6)$

• still pprox 40% of the 4-quark operators are suppressed by more than λ^6

Comparing with FN (and MFV)

- preliminary -

...implementation of MFV in AutoEFT non-trivial, due to non-homogeneous power-counting ...w.i.p.

- we have provided an example for a flavour scenario inbetween MFV and FN
 - RG-covariant
 - self-consistent power-counting in λ
 - based on simple spurion representations with homogeneous λ scaling
 - implemented in AutoEFT
- can be used as a benchmark in global SMEFT-based fits
 - order of magnitude for Wilson coefficients is pre-defined
 - meaningful constraints on possible NP scale from collider and flavour data

- further benchmarks to be constructed:
 - ightarrow more MFV-like: also allow for bi-fundamental spurion representations
 - ightarrow more FN-like: break some sub-symmetries by assigning different U(1) charges

– THE END –

 promote quark Yukawa matrices to spurion fields, transforming as bi-fundamentals under the G₀ flavour symmetry,

 $Y_U \to V_Q Y_U V_U^{\dagger}, \qquad Y_D \to V_Q Y_D V_D^{\dagger}$

with $V_Q \in U(3)_Q$, $V_U \in U(3)_U$, $V_D \in U(3)_D$

• use Y_U and Y_D to make NP operators formally invariant under G_0 , e.g.

$$c_{ij} \bar{Q}^i (\ldots) U^j$$

$$\rightarrow \qquad c_{ij} = \left(\# Y_U + \# Y_U Y_U^{\dagger} Y_U + \# Y_D Y_D^{\dagger} Y_U + \ldots \right)_{ij}$$

with prefactors $\# \sim \mathcal{O}(1)$.

• in the SM basis, set

 $Y_U \to \langle Y_U \rangle = \operatorname{diag}(y_u, y_c, y_t), \qquad Y_D \to \langle Y_D \rangle = V_{\operatorname{CKM}} \operatorname{diag}(y_d, y_s, y_b)$

Spurion Flavour Symmetry @ d = 6

Standard Model with $G_1 \times H_0$ flavour symmetry O(1)

Generated by AutoEFT 1.1.0-a1

family	types	terms	operators
$F_{\rm L}{}^3 + {\rm h.c.}$	4	4	4
$F_{\rm L}^2 \phi^2 + {\rm h.c.}$	8	8	8
$F_{\rm L}\psi_{\rm L}^2\phi + {\rm h.c.}$	6	6	6
$\psi_{\mathrm{L}}^{2}\psi_{\mathrm{R}}^{2}$	28	49	49
$\psi_{ m L} \phi^2 \psi_{ m R} D$	7	10	10
$\phi^4 D^2$	1	2	2
$\psi_{\rm L}{}^2 \phi^3 + {\rm h.c.}$	2	2	2
ϕ^6	1	1	1
12	57	82	82

$$\begin{split} \hat{H}_{6} &= G_{L}^{3} + W_{L}^{3} + B_{L}W_{L}HH^{\dagger} + B_{L}^{2}HH^{\dagger} + G_{L}^{2}HH^{\dagger} + W_{L}^{2}HH^{\dagger} + B_{L}T_{L}t_{R}^{\dagger}H + G_{L}T_{L}t_{R}^{\dagger}H \\ &+ W_{L}T_{L}t_{R}^{\dagger}H + 2L_{L}Q_{L}L_{L}^{\dagger}Q_{L}^{\dagger} + 2L_{L}T_{L}L_{L}^{\dagger}T_{L}^{\dagger} + L_{L}d_{R}^{\dagger}L_{L}^{\dagger}d_{R} + L_{L}e_{R}^{\dagger}L_{L}^{\dagger}e_{R} + L_{L}t_{R}^{\dagger}L_{L}^{\dagger}t_{R} \\ &+ L_{L}w_{R}^{\dagger}L_{L}^{\dagger}w_{R} + 2L_{L}^{2}L_{L}^{\dagger}^{2} + 4Q_{L}T_{L}Q_{L}^{\dagger}T_{L}^{\dagger} + 2Q_{L}d_{R}^{\dagger}Q_{L}^{\dagger}d_{R} + Q_{L}e_{R}^{\dagger}Q_{L}^{\dagger}e_{R} + 2Q_{L}t_{R}^{\dagger}d_{L}^{\dagger}t_{R} \\ &+ 2Q_{L}w_{R}^{\dagger}Q_{L}^{\dagger}w_{R} + 4Q_{L}^{2}Q_{L}^{\dagger}^{2} + 2T_{L}d_{R}^{\dagger}T_{L}^{\dagger}d_{R} + T_{L}e_{R}^{\dagger}T_{L}^{\dagger}e_{R} + 2T_{L}w_{R}^{\dagger}T_{L}^{\dagger}t_{R} + 2T_{L}w_{R}^{\dagger}T_{R} + 2T_{L}w_{R}^{\dagger}T_{L}^{\dagger}t_{R} + 2T_{L}w_{R}^{\dagger}T_{R} + 2T_{L}w_{R}^{\dagger}T_{R} + 2T_{L}w_{R}^{\dagger}T_{R} + 2T_{L}w_{R}^{\dagger}T_{R} + 2T_{L}w_{R}^{\dagger}T_{R} + 2T_{L}w_{R}^{\dagger}T_{R} + 2T_{L}w_{R}^{\dagger}T_{L}^{\dagger}T_{R} + 2T_{L}w_{R}^{\dagger}T_{R} + 2T_{L}w_{R}$$

+ more details ...