Funded by

Collaborative Research Center TRR 257

SPONSORED BY THE

Federal Ministry of Education and Research

$\begin{array}{l} \mbox{PROBLEMS \& CHALLENGES IN MODELLING} \\ \mbox{PP} \rightarrow TT + X @ LHC \end{array}$

MALGORZATA WOREK

OUTLINE OF THE TALK

- 1. Introduction
- 2. Part I Fixed-order predictions: NLO QCD
- 3. Part II Fixed-order predictions: Complete NLO
- 4. Part III Parton-shower based predictions: NLO + PS

INTRODUCTION

KEY PHYSICS GOALS

The core physics topics at the LHC (colour-coded by directly-probed energy scales)

Graphic borrowed from Gavin Salam - Amplitudes 2020

- Understand better Standard Model
- Establish structure of Higgs sector
- Search for signs of new physics BSM

DIRECT SEARCHES

- Many proposals for New Physics
- No model of NP really stands out
- No obvious candidates to look for

INDIRECT SEARCHES

- New Physics as small corrections to SM reactions
- PRECISION SM MEASUREMENTS
 - High Luminosity LHC
- HIGH PRECISION THEORETICAL PREDICTIONS
 - Top Quark & Higgs boson

KEY PHYSICS GOALS

- A synergy between theory & experiment is key to foster discoveries at the HL-LHC
- Shed more light on Higgs-boson sector
- On theory side, path to precision runs through several directions:
 - Perturbative accuracy of amplitude calculations
 - Numerical stability of integration & subtraction of IR divergencies
 - Robust assessment of theoretical uncertainties
- Modelling of realistic final states in fiducial phase-space regions
 - Multi-particle final states, resonant structures, ...
- PRECISION & ACCURACY → Identify which effects are important & should be taken into account

Pictorial representation of a $pp \rightarrow ttH$ event as produced by an event generator

TOP-QUARK PAIR PRODUCTION +X@LHC

State of the art: NLO

- Only selected results for *pp* → *tt* + *X* will be discussed in following slides
- HELAC-NLO group delivered results for all these processes & more

MAIN FOCUS:

• Modelling of realistic final states in fiducial phase-space regions

$$pp \to b \bar{b} e^+ \mu^- \nu_e \bar{\nu}_\mu$$
 at $\mathcal{O}(\alpha_s^2 \alpha^4)$

$$pp \to b\bar{b}e^+\mu^-\nu_e\bar{\nu}_\mu$$
 at $\mathcal{O}(\alpha_s^2\alpha^4)$

Doubleresonant diagram

$$pp \to b\bar{b}e^+\mu^-\nu_e\bar{\nu}_\mu$$
 at $\mathcal{O}(\alpha_s^2\alpha^4)$

Singleresonant diagram

• Modelling of unstable particles

$$pp \to b\bar{b}e^+\mu^-\nu_e\bar{\nu}_\mu$$
 at $\mathcal{O}(\alpha_s^2\alpha^4)$

Nonresonant diagram

$$pp \to b\bar{b}e^+\mu^-\nu_e\bar{\nu}_\mu$$
 at $\mathcal{O}(\alpha_s^2\alpha^4)$

- NLO QCD correction separately to production & decays
- Nonfactorizable NLO corrections are missing
- No cross-talk between production & decays
- NLO spin correlations

$$pp \rightarrow b\bar{b}e^+\mu^-\nu_e\bar{\nu}_\mu$$
 at $\mathcal{O}(\alpha_s^2\alpha^4)$

- Full off-shell = DR + SR + NR + interferences + Breit-Wigner propagators
- NWA = DR contributions & unstable t & W restricted to on-shell states

- NLO QCD corrections to stable $pp \rightarrow tt+X$ matched to parton-showers
 - Decays via parton shower without any spin correlations
 - LO decays with approximate spin correlations
 - Double resonant contributions only
 - Breit-Wigner propagators for *t* & W
 - Single & non-resonant contributions still missing as well as their interference effects
 - Scale settings & theoretical uncertainties based on production stage only

$$pp \to b \bar{b} e^+ \mu^- \nu_e \bar{\nu}_\mu \quad \text{at } \mathcal{O}(\alpha_s^2 \alpha^4)$$

- Dominant contributions resumed
 - Collinear parton splitting or soft gluon emission
- Connection to non-perturbative aspects
 - Hadronic final states

PART I – FIXED-ORDER PREDICTIONS: NLO QCD

How Good is NWA

 $pp \rightarrow e^+ \nu_e \mu^- \overline{\nu}_\mu e^+ \nu_e b \overline{b}$

Modelling Approach	$\sigma^{ m LO}$ [ab]	$\sigma^{ m NLO}$ [ab]
full off-shell $(\mu_0 = m_t + m_W/2)$	$106.9^{+27.7}_{-20.5} (26\%)$ 115.1 $^{+30.5} (26\%)$	$123.2^{+6.3}_{-8.7}{}^{(5\%)}_{(7\%)}$ 124 4 $^{+4.3}_{-8.7}{}^{(3\%)}$
NWA ($\mu_0 = m_t + m_W/2$)	$\frac{110.1 - 22.5 (20\%)}{106.4 + 27.5 (26\%)}$	$123.0^{+6.3}_{-7.7}(5\%)$ $123.0^{+6.3}_{-8.7}(7\%)$
$NWA \ (\mu_0 = H_T/3)$	$\frac{-20.3(19\%)}{115.1} + \frac{30.4(26\%)}{-22.4(19\%)}$	$\frac{-8.7(7\%)}{124.2_{-7.7(6\%)}^{+4.1(3\%)}}$
$\mathrm{NWA}_{\mathrm{LOdecay}} \; (\mu_0 = m_t + m_W/2)$		$127.0^{+14.2(11\%)}_{-13.3(10\%)}$
$\mathrm{NWA}_{\mathrm{LOdecay}}~(\mu_0=H_T/3)$		$130.7^{+13.6(10\%)}_{-13.2(10\%)}$

INTEGRATED LEVEL

- Full off-shell effects **0.2%**
- NLO QCD corrections to decays <u>3%-5%</u>

DIFFERENTIAL LEVEL

- Off-shell effects up to 60% 70%
- Substantial differences between NWA & NWALODECAY

How Good is NWA

Bevilacqua, Hartanto, Kraus, Weber, Worek, JHEP 03 (2020) 154

$$pp \rightarrow e^+ \nu_e \mu^- \overline{\nu}_\mu b \overline{b} \gamma$$

DIMENSIONFUL OBSERVABLES

- Substantial differences between
 NWA & NWA_{LODECAY} when γ only in production stage
- NLO + PS not suitable to describe
 pp → *ttγ* process
- Off-shell effects up to 50% 60%
- Specific phase space regions
 - Kinematical edges
 - High p_T regions

VARIOUS PHASE-SPACE REGIONS

 $pp \rightarrow e^+ \nu_e \mu^- \overline{\nu}_\mu b \overline{b} \gamma$

Bevilacqua, Hartanto, Kraus, Weber, Worek, JHEP 03 (2020) 154

DIMENSIONFUL OBSERVABLES

- Sensitive to non-factorizable top quark corrections
- Effects up to 50% 60%
- Specific phase space regions
 - Kinematical edges

• High p_T regions

COMPETING EFFECTS

 $pp \to \ell^+ \nu_\ell \ell^- \overline{\nu}_\ell b \overline{b}(\gamma)$

Bylund, Maltoni, Tsinikos, Vryonidou, Zhang, JHEP 05 (2016) 052

- Full off-shell effects relevant in high p_T tails & for kinematical edges
- Other relevant effects in the same phase-space regions → EW Sudakov logarithms → SMEFT contributions

PHOTON IN PRODUCTION & DECAYS

 $pp \rightarrow e^+ \nu_e \mu^- \overline{\nu}_\mu b \overline{b} \gamma$

- Integrated level for $p_{T,b} > 40 \text{ GeV } \& p_{T,\gamma} > 25 \text{ GeV}$:
 - *Prod. Contribution* at the level of **57%**
 - *Decay contribution* at the level of **43**%

- Integrated level for $p_{T,b} > 25 \text{ GeV } \& p_{T,\gamma} > 25 \text{ GeV}$:
 - *Mixed contribution* at the level of **44%**
 - *Prod. contribution* at the level of **40**%
 - *Decay contribution* is about half the size **16**%

Different phase-space regions with various effects

• $pp \rightarrow tt\gamma(\gamma)$ process cannot be described correctly by standard NLO+PS predictions

Bevilacqua, Hartanto, Kraus, Weber, Worek, JHEP 03 (2020) 154 Stremmer, Worek, JHEP 08 (2023) 179 5

PART II – FIXED-ORDER PREDICTIONS: COMPLETE NLO

COMPLETE NLO CORRECTIONS

 $pp \rightarrow e^+ \nu_e \mu^- \overline{\nu}_\mu b \overline{b} \gamma$

- EW Sudakov logarithms in NLO₂ leads to reduction in tails of up to 10% compared to NLO_{QCD} result
- Accidental cancellations between NLO₂ & NLO₃ → Should be considered together
- NLO_{prd} approximation models complete NLO result very well

$$\mathrm{NLO}_{\mathrm{prd}} = \mathrm{LO}_1 + \mathrm{LO}_2 + \mathrm{LO}_3 + \mathrm{NLO}_1 + \mathrm{NLO}_{2,\mathrm{prd}} + \mathrm{NLO}_{3,\mathrm{prd}} + \mathrm{NLO}_{4,\mathrm{prd}}$$

PART III – PARTON-SHOWER BASED PREDICTIONS: NLO + PS

PARTON-SHOWER BASED PREDICTIONS

Transverse momentum of opposite-sign lepton

Bevilacqua, Bi, Cordero, Hartanto, Kraus, Nasufi, Reina, Worek Phys. Rev. D 105 (2022) 1, 014018

VARIOUS THEORETICAL PREDICTIONS

- Full $pp \rightarrow tt+X$ versus $pp \rightarrow tt+X + pp \rightarrow tWb+X \rightarrow Coherent$ sum versus incoherent sum \rightarrow Comparison of various approaches important:
 - Full off-shell = DR + SR + NR + interferences + Breit-Wigner propagators
 - NWA = DR restricts unstable $t \otimes W$ to on-shell states
 - Parton-shower based predictions = *pp* → *tt*+*X* production @ NLO + decays within parton shower or decays @ LO + approximate spin correlations

✓ Spin correlations important to probe new physics scenarios

- Understand various theoretical approaches important as they can impact:
 - IR-safe (integrated) cross sections: Normalisation
 - IR-safe (differential) cross section distributions: Shape of distributions
 - SM parameter extraction: $m_t \& \Gamma_t$
 - SM observables: Top Charge Asymmetry
 - BSM exclusion limits: $pp \rightarrow tt + Dark Matter$ with backgrounds $pp \rightarrow tt \& pp \rightarrow ttZ (Z \rightarrow vv)$
 - New Physics Modelling: $pp \rightarrow ttH$ with anomalous couplings $\rightarrow pp \rightarrow ttH$ in SMEFT
 - Systematic uncertainties: Subtraction of $pp \rightarrow tWb$ from $pp \rightarrow tt$
 - Matching to parton showers: Resonant aware matching when NLO decays are included

SUMMARY

- PROPER MODELLING OF TOP-QUARK PRODUCTION & DECAY ESSENTIAL
 - Already now in presence of inclusive cuts
- **NLO QCD** corrections to $pp \rightarrow t\bar{t} \& t\bar{t} + X$
 - Full-off-shell predictions:
 - $\checkmark X = H, \gamma, W^{\pm}, Z(\rightarrow \nu_{\ell} \overline{\nu}_{\ell}), Z(\rightarrow \ell \ell), j, b\overline{b}, W^{\pm} j$
 - NWA Results: $X = jj, \gamma\gamma, tt$
- IMPORTANT
 - Corrections to production & decays important
 - Complete off-shell effects important
 - \checkmark kinematical edges & high p_T
 - Same phase-space regions are also sensitive to
 - ✓ Subleading higher-order corrections
 - ✓ New Physics effects
 - Photon emissions must be properly included at all stages
 - Matching to parton showers \rightarrow To be used in addition to accurate matrix-element predictions, not instead of them
- EVEN MORE IMPORTANT FOR
 - Exclusive cuts & HL-LHC
 - New Physics searches & Exclusion limits
 - SM parameter extraction
 - SM observables

BACKUP

APPLICATION I: BSM EXCLUSION LIMITS

 Y_S/Y_{PS}

9 000

- BSM \rightarrow Kinematical edges & high p_T regions
- $t\bar{t} + DM \rightarrow \text{Top quark backgrounds: } t\bar{t} \& t\bar{t}Z$
- Observable $\rightarrow M_{T2,W} \& M_{T2,t} \& p_T^{miss}$

$pp \to t\overline{t} + Y_{S/PS} \to W^+W^-b\overline{b} + Y_{S/PS} \to e^+\nu_e\mu^-\overline{\nu}_\mu b\overline{b} + \chi\chi$ $g \longrightarrow \psi_{\nu_e}^{b} \qquad g \longrightarrow$

Process	Order	Scale	$\sigma_{ m uncut}$ [fb]	$\sigma_{\rm cut} \; [{\rm fb}]$	$\sigma_{ m cut}/\sigma_{ m uncut}$	Events for $L = 300 \text{ fb}^{-1}$
	LO	$H_T/4$	1061	0	0.0%	0
$t\bar{t}$ NWA	LO	$E_T/4$	984	0	0.0%	0
	LO	m_t	854	0	0.0%	0
	NLO	$H_T/4$	1097	0	0.0%	0
	NLO, LO dec	$H_T/4$	1271	0	0.0%	0
	LO	$H_T/3$	0.1223	0.0130	11%	47
	LO	$E_T/3$	0.1052	0.0116	11%	42
$t\bar{t}Z$ NWA	LO	$m_t + m_Z/2$	0.1094	0.0134	12%	48
	NLO	$H_T/3$	0.1226	0.0130	11%	47
	NLO, LO dec	$H_T/3$	0.1364	0.0140	10%	50
	LO	$H_T/4$	1067	0.0144	0.0013%	17
	LO	$E_T/4$	989	0.0131	0.0013%	16
tt On-shell	LO	m_t	861	0.0150	0.0017%	18
	NLO	$H_T/4$	1101	0.0156	0.0014%	19
$t\bar{t}Z$ Off-shell	LO	$H_T/3$	0.1262	0.0135	11%	49
	LO	$E_T/3$	0.1042	0.0115	11%	41
	LO	$m_t + m_Z/2$	0.1135	0.0140	12%	50
	NLO	$H_T/3$	0.1269	0.0134	11%	48

- After cuts 25% of events come from $t\bar{t}$
- NLO smaller uncertainties w.r.t LO, NLO + LO decays

Hermann, Worek, Eur. Phys. J. C 81 (2021) 11, 1029

APPLICATION I: BSM EXCLUSION LIMITS

Comparison of signal strength exclusion limits

Hermann, Worek, Eur. Phys. J. C 81 (2021) 11, 1029

APPLICATION II: YUKAWA COUPLING

$lpha_{ m CP}$		Off-shell	NWA	Off-shell effects
	$\sigma_{ m LO}~[{ m fb}]$	$2.0313(2)^{+0.6275(31\%)}_{-0.4471(22\%)}$	$2.0388(2)^{+0.6290(31\%)}_{-0.4483(22\%)}$	-0.37%
0 (SM)	$\sigma_{ m NLO}~[{ m fb}]$	$2.466(2)^{+0.027(1.1\%)}_{-0.112(4.5\%)}$	$2.475(1)^{+0.027(1.1\%)}_{-0.113(4.6\%)}$	-0.36%
CP-even	$\sigma_{ m NLO_{LOdec}}$ [fb]	—	$2.592(1)^{+0.161(6.2\%)}_{-0.242(9.3\%)}$	
	$\mathcal{K} = \sigma_{ m NLO}/\sigma_{ m LO}$	1.21	1.21 (LOdec: 1.27)	
	$\sigma_{ m LO}~[{ m fb}]$	$1.1930(2)^{+0.3742(31\%)}_{-0.2656(22\%)}$	$1.1851(1)^{+0.3707(31\%)}_{-0.2633(22\%)}$	0.66%
$\pi/4$	$\sigma_{ m NLO}~[{ m fb}]$	$1.465(2)^{+0.016(1.1\%)}_{-0.071(4.8\%)}$	$1.452(1)^{+0.015(1.0\%)}_{-0.069(4.8\%)}$	0.89%
CP-mixed	$\sigma_{ m NLO_{LOdec}} ~[{ m fb}]$	_	$1.517(1)^{+0.097(6.4\%)}_{-0.144(9.5\%)}$	
	$\mathcal{K}=\sigma_{ m NLO}/\sigma_{ m LO}$	1.23	1.23 (LOdec: 1.28)	
	$\sigma_{ m LO}~[{ m fb}]$	$0.38277(6)^{+0.13123(34\%)}_{-0.09121(24\%)}$	$0.33148(3)^{+0.11240(34\%)}_{-0.07835(24\%)}$	13.4%
$\pi/2$	$\sigma_{ m NLO}$ [fb]	$0.5018(3)^{+0.0083(1.2\%)}_{-0.0337(6.7\%)}$	$0.4301(2)^{+0.0035(0.8\%)}_{-0.0264(6.1\%)}$	14.3%
CP-odd	$\sigma_{ m NLO_{LOdec}} ~[{ m fb}]$	—	$0.4433(2)^{+0.0323(7.3\%)}_{-0.0470(11\%)}$	
	$\mathcal{K} = \sigma_{ m NLO}/\sigma_{ m LO}$	1.31	1.30 (LOdec: 1.34)	

- Off-shell effects @ integrated fiducial level:
 - Small for *CP-even* and *CP-mixed* Higgs boson
 - Large effects for *CP-odd* Higgs boson

Higgs characterisation framework

$$\mathcal{L}_{t\bar{t}H} = -\bar{\psi}_t \frac{Y_t}{\sqrt{2}} \left(\kappa_{Ht\bar{t}} \cos(\alpha_{\rm CP}) + i\kappa_{At\bar{t}} \sin(\alpha_{\rm CP})\gamma_5 \right) \psi_t H,$$

$$CP\text{-even} \qquad CP\text{-odd}$$

$$\mathcal{L}_{HVV} = \kappa_{HVV} \left(\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right) H,$$

Coupling choices: $\kappa_{At\bar{t}} = 2/3 \& \kappa_{Ht\bar{t}} = 1 \& \kappa_{HVV} = 1$ Ensure consistency with current experimental bounds (ggF, VBF)

> Artoisenet et al., JHEP 11 (2013) 043 Maltoni et al., Eur. Phys. J. C 74 (2014) 1, 2710 Demartin et al., Eur. Phys. J. C 74 (2014) 9, 3065 Demartin et al., Eur. Phys. J. C 75 (2015) 6, 267

APPLICATION II: YUKAWA COUPLING

$pp \rightarrow e^+ \nu_e \mu^- \overline{\nu}_\mu b \overline{b} H$

- CP-even
- CP-mixed
- CP-odd

Hermann, Worek, Eur. Phys. J. C 81 (2021) 11, 1029

- Off-shell effects @ differential fiducial level:
 - Large effects on size and shape for CP-odd Higgs boson
 - Only small effects for CP-even and CP-mixed
 - *Reason: SR contributions ~ tWHb production*

APPLICATION II: YUKAWA COUPLING

Hermann, Worek, Eur. Phys. J. C 81 (2021) 11, 1029

• Production of pseudoscalar in association with top quarks is suppressed compared to scalar for masses below ~ 200 GeV if the two couplings $\kappa_{Ht\bar{t}} = \kappa_{At\bar{t}} = 1$

Haisch, Pani, Polesello, JHEP 02 (2017) 131

• This difference can be understood when looking at $t \rightarrow t + H/A$ fragmentation functions

$$f_{t \to t+H}(x) = \frac{\kappa_{Ht\bar{t}}^2}{(4\pi)^2} \left[\frac{4(1-x)}{x} + x \ln\left(\frac{s}{m_t^2}\right) \right]$$
$$f_{t \to t+A}(x) = \frac{\kappa_{At\bar{t}}^2}{(4\pi)^2} \left[x \ln\left(\frac{s}{m_t^2}\right) \right],$$

Dawson, Reina, Phys. Rev. D 57 (1998) 5851

- *x* momentum fraction that Higgs boson carries
- Scalar fragmentation function has additional 1/x
- Enhanced production of soft scalar compared to pseudoscalars

• Cross section for $pp \rightarrow b\overline{b}e^+\mu^-\nu_e\overline{\nu}_\mu\chi\overline{\chi}$ with scalar & pseudoscalar mediators depending on the mass m_Y

APPLICATION III: TOP CHARGE ASYMMETRY

 μ_0

Searching for more precise observables

$$A_{c}^{t} = \frac{\sigma_{\text{bin}}^{+} - \sigma_{\text{bin}}^{-}}{\sigma_{\text{bin}}^{+} + \sigma_{\text{bin}}^{-}}, \qquad \sigma_{\text{bin}}^{\pm} = \int \theta(\pm \Delta |y|) \,\theta_{\text{bin}} \, d\sigma$$
$$\Delta |y| = |y_{t}| - |y_{\overline{t}}|$$

Bevilacqua, Bi, Hartanto, Kraus, Nasufi, Worek, Eur. Phys. J. C 81 (2021) 7, 675

- Asymmetry larger than for $pp \rightarrow t\bar{t}$
- Top quark momenta must be reconstructed
- Scale setting not important → Fixed & dynamical scale choice gives similar results
- Top-quark modelling important

	$t\bar{t}W^+$	Off-shell	Full NWA	$\mathrm{NWA}_{\mathrm{LOdecay}}$
	$\mu_0 = H_T/3$			
	$A_{c,y}^t \; [\%]$	$2.36(8)^{+1.19(50\%)}_{-0.77(33\%)}$	$1.93(5)^{+1.23(64\%)}_{-0.72(37\%)}$	$1.11(3)^{+0.55(49\%)}_{-0.53(48\%)}$
	$A_{c,exp,y}^t$ [%]	$2.66(10)^{+0.38(14\%)}_{-0.34(13\%)}$	$2.20(5)^{+0.45(20\%)}_{-0.31(14\%)}$	$2.08(5)^{+0.24(11\%)}_{-0.40(19\%)}$
	$t \bar{t} W^+$	Off-shell	Full NWA	$\mathrm{NWA}_{\mathrm{LOdecay}}$
=	$m_t + m_W/2$			
	$A_{c,y}^t \; [\%]$	$2.09(8)^{+1.06(51\%)}_{-0.70(33\%)}$	$1.68(4)^{+1.00(60\%)}_{-0.67(40\%)}$	$0.86(3)^{+0.66(77\%)}_{-0.43(50\%)}$
	$A_{c,exp,y}^t$ [%]	$2.62(10)^{+0.39(15\%)}_{-0.34(13\%)}$	$2.19(4)^{+0.38(17\%)}_{-0.34(16\%)}$	$1.94(5)^{+0.46(24\%)}_{-0.32(16\%)}$

• A_c^t charge asymmetry @ NLO for $pp \to t\bar{t}W^+$

NLO QCD CORRECTIONS & SCALE SETTING

Stremmer, Worek, JHEP 02 (2022) 196

$$pp \rightarrow e^+ \nu_e \mu^- \overline{\nu}_\mu b \overline{b} H$$

• FIXED SCALE CHOICE

- Perturbative instabilities in ~ TeV regions
- LO & NLO uncertainties band do not overlap
- Scale uncertainties @ NLO larger than @ LO
- For some scale choices NLO results negative

DYNAMICAL SCALE CHOICE

- Stabilizes tails
- NLO uncertainties bands within LO ones

$$H_T = p_{T,b_1} + p_{T,b_2} + p_{T,e^+} + p_{T,\mu^-} + p_{T,miss} + p_{T,H}$$
$$\mu_{dyn} = (m_{T,t} m_{T,\bar{t}} m_{T,H})^{\frac{1}{3}} \qquad m_T = \sqrt{m^2 + p_T^2}.$$
$$\mu_{fix} = m_t + \frac{m_H}{2} = 236 \text{ GeV}$$

PDF UNCERTAINTIES

Bevilacqua, Hartanto, Kraus, Nasufi, Worek, JHEP 08 (2022) 060

INTEGRATED LEVEL

$$pp \rightarrow e^+ \nu_e \mu^- \overline{\nu}_\mu b \overline{b} \tau^+ \tau^-$$

DIFFERENTIAL LEVEL

- PDF uncertainties for CT18 & MMHT14 similar
- Factor of 2 larger than PDF uncertainties for NNPDF3.1
- *PDF uncertainties smaller than scale variation* \rightarrow *But are not constant over the phase space and can reach* 10% *for large* p_T

COMPARISONS WITH LHC DATA

HELAC-NLO

• NLO QCD full off-shell predictions for $t\bar{t}b\bar{b} \rightarrow D$ -LEPTON CHANNEL

Bevilacqua, Bi, Hartanto, Kraus, Lupattelli, Worek, JHEP 08 (2021) 008 & Phys.Rev.D 107 (2023) 1, 014028

ATLAS Collaboration, JHEP 01 (2025) 068

HELAC-NLO

Ossola, Papadopoulos, Pittau, Nucl. Phys. B 763 (2007) 147 Ossola, Papadopoulos, Pittau, JHEP 03 (2008) 042

• BOTH FULL OFF-SHELL & NWA \rightarrow OUTPUT

- Predictions stored as partially unweighted "events" → *ROOT-Ntuples Files & Les Houches Files*
- Each "event" provided with supplementary matrix element & PDF information
- Results for different scale settings & PDF choices by can be obtained by reweighting
- Different observables and/or binning can be provided + more exclusive cuts \rightarrow With caveat

VARIOUS PHASE - SPACE REGIONS

■ 3 different resonance histories ⇔ Resolved jet at NLO gives 9 in total

(i) $t = W^+(\to e^+\nu_e) b$ and $\bar{t} = W^-(\to \mu^-\bar{\nu}_\mu) \bar{b}$, (ii) $t = W^+(\to e^+\nu_e) b\gamma$ and $\bar{t} = W^-(\to \mu^-\bar{\nu}_\mu) \bar{b}$, (iii) $t = W^+(\to e^+\nu_e) b$ and $\bar{t} = W^-(\to \mu^-\bar{\nu}_\mu) \bar{b}\gamma$

- Compute for each history *Q* and pick one that minimises *Q*
- DOUBLE-RESONANT (DR)

 $|M(t) - m_t| < n \, \Gamma_t \,, \qquad \text{and} \qquad$

• Two single-resonant regions (SR)

 $|M(t)-m_t| < n \, \Gamma_t \,, \qquad ext{ and } \qquad |M(\, ar t\,)-m_t| > n \, \Gamma_t \,,$

 $|M(\bar{t}) - m_t| < n \Gamma_t$

 $|M(t) - m_t| > n \Gamma_t$, and $|M(\bar{t}) - m_t| < n \Gamma_t$

NON-RESONANT REGION (NR)

 $|M(t) - m_t| > n \Gamma_t$, and $|M(\bar{t}) - m_t| > n \Gamma_t$

$$pp \rightarrow e^+ \nu_e \mu^- \overline{\nu}_\mu b \overline{b} \gamma$$

Bevilacqua, Hartanto, Kraus, Weber, Worek, JHEP 03 (2020) 154

$$Q = |M(t) - m_t| + |M(\bar{t}) - m_t|$$

BOUNDARY PARAMETER

- Determines size of resonant region for each reconstructed top quark
- *n* = 5, 10, 15
- For n = 15

 $M(t) \in (152.9, 193.5)$ GeV

TWB

Demartin, Maier, Maltoni, Mawatari, Zaro, Eur. Phys. J. C 77 (2017) 1, 34

• *DS* (*diagram subtraction*):

$$|\mathcal{A}_{tWb}|_{\mathrm{DS}}^2 = |\mathcal{A}_{1t} + \mathcal{A}_{2t}|^2 - \mathcal{C}_{2t},$$

- Local subtraction term C_{2t} by definition must cancel exactly the resonant matrix element $|\mathcal{A}_{2t}|^2$ when the kinematics is exactly on top of the resonant pole
- Be gauge invariant
- Decrease quickly away from the resonant region

- Squared matrix element for producing $tW^{-}\overline{b}$ $|\mathcal{A}_{tWb}|^{2} = |\mathcal{A}_{1t} + \mathcal{A}_{2t}|^{2}$ $= |\mathcal{A}_{1t}|^{2} + 2\operatorname{Re}(\mathcal{A}_{1t}\mathcal{A}_{2t}^{*}) + |\mathcal{A}_{2t}|^{2}$,
- *DR1 (without interference):*

$$|\mathcal{A}_{tWb}|_{\mathrm{DR1}}^2 = |\mathcal{A}_{1t}|^2.$$

• DR2 (with interference):

$$|\mathcal{A}_{tWb}|_{\mathrm{DR2}}^2 = |\mathcal{A}_{1t}|^2 + 2\mathrm{Re}(\mathcal{A}_{1t}\mathcal{A}_{2t}^*).$$

- DR schemes based on removing contributions all over the phase space
- They are not gauge invariant

DEFINITION OF LO₁

$$pp \rightarrow e^+ \nu_e \mu^- \overline{\nu}_\mu b \overline{b} \gamma$$

• LO₁: Dominant contributions at $\mathcal{O}(\alpha_s^2 \alpha^{4+n_\gamma})$ where n_γ is number of photons appearing in Born-level process

• Typical QCD production of top-quark pair with photons, which leads to the following partonic subprocesses

$$gg \to \ell^+ \nu_\ell \, \ell^- \bar{\nu}_\ell \, b\bar{b} \, \gamma(\gamma) \,,$$
$$q\bar{q}/\bar{q}q \to \ell^+ \nu_\ell \, \ell^- \bar{\nu}_\ell \, b\bar{b} \, \gamma(\gamma) \,, \qquad b\bar{b}/\bar{b}b \to \ell^+ \nu_\ell \, \ell^- \bar{\nu}_\ell \, b\bar{b} \, \gamma(\gamma) \,,$$

Stremmer, Worek, JHEP 07 (2024) 091

DEFINITION OF LO₂ & LO₃

• LO₂: Contributions at $\mathcal{O}(\alpha_s^1 \alpha^{5+n_\gamma})$

- LO₃: Purely EW induced production of top-quark pair at $O(\alpha^{6+n_{\gamma}})$
 - Suppressed by power coupling & without gluon PDFs

$pp \rightarrow e^+ \nu_e \mu^- \overline{\nu}_\mu b \overline{b} \gamma$

- Interference between gluon mediated diagrams with Z/γ mediated ones vanishes due to colour for qq initial state
- Interference does not vanish for
 bb due to *t*-channel diagrams
 with intermediate W boson
- When CKM matrix is not diagonal these contributions for *qq* initial state can also be nonzero but are CKM-suppressed

$$\mathrm{LO} = \mathrm{LO}_1 + \mathrm{LO}_2 + \mathrm{LO}_3$$