

BEYOND FLAVOUR PHYSICS

SHADOW TOMOGRAPHY FOR COLLIDER EXPERIMENTS

Hai-Chau Nguyen

Group of Theoretical Quantum Optics, University of Siegen

June 2025

HCN, G. Tetlalmatzi-Xolocotzi, C. Diez Pardos, O. Gühne, M. Kleinman, in preparation

Theoretical Quantum Optics, University of Siegen

Article

Observation of quantum entanglement with top quarks at the ATLAS detector

https://doi.org/10.1038/s41586-024-07824-z

The ATLAS Collaboration*[™]

Received: 14 November 2023

Accepted: 12 July 2024

Published online: 18 September 2024

Entanglement is a key feature of quantum mechanics¹⁻³, with applications in fields such as metrology, cryptography, quantum information and quantum computation⁴⁻⁸. It has been observed in a wide variety of systems and length scales,

VOLUME 88, NUMBER 23

PHYSICAL REVIEW LETTERS

Quantum Entropy and Special Relativity

Asher Peres, Petra F. Scudo, and Daniel R. Terno Department of Physics, Technion–Israel Institute of Technology, 32000 Haifa, Israel (Received 7 March 2002; published 22 May 2002)

We consider a single free spin- $\frac{1}{2}$ particle. The reduced density matrix for its spin is not covariant under Lorentz transformations. The spin entropy is not a relativistic scalar and has no invariant meaning.

DOI: 10.1103/PhysRevLett.88.230402

PACS numbers: 03.65.Ta, 03.30.+p

... entanglement is eventually dependent on the reference frame

see also Peres and Terno, RMP 2004

Article

Observation of quantum entanglement with top quarks at the ATLAS detector

https://doi.org/10.1038/s41586-024-07824-z The ATLAS Collaboration*

ments as matter-antimatter pairs. A pair of top-antitop quarks $(t\bar{t})$ is a two-qubit system in which the spin quantum state is described by the spin density matrix ρ :

$$\rho = \frac{1}{4} \left[I_4 + \sum_i (B_i^* \sigma^i \otimes I_2 + B_i^- I_2 \otimes \sigma^i) + \sum_{i,j} C_{ij} \sigma^i \otimes \sigma^j \right].$$

[...]

a way that the normalized differential cross-section (σ) of the process may be written as $^{\rm 27}$

$$\frac{1}{\sigma}\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_{+}\mathrm{d}\Omega_{-}} = \frac{1+\mathbf{B}^{+}\cdot\hat{\mathbf{q}}_{+}-\mathbf{B}^{-}\cdot\hat{\mathbf{q}}_{-}-\hat{\mathbf{q}}_{+}\cdot C\cdot\hat{\mathbf{q}}_{-}}{(4\pi)^{2}}$$

where $\hat{\mathbf{q}}_{+}$ is the antilepton direction in the rest frame of its parent top quark and $\hat{\mathbf{q}}_{-}$ is the lepton direction in the rest frame of its parent antitop quark; and Ω_{+} is the solid angle associated with the antilepton and Ω_{-} is the solid angle associated with the lepton. The vectors \mathbf{B}^{+} deter-

... some attention

Transformation of the spin density operator?

 $\rho \rightarrow ???$

Not entanglement, rather the reduced density operator

Under the Lorentz transformation

$$|\mathbf{p}\rangle \otimes |s\rangle \rightarrow |\Lambda p\rangle \otimes D_{\sigma}[W(\Lambda, \mathbf{p})] |s\rangle$$

with the Wigner's rotation

$$W(\Lambda, \mathbf{p}) = L^{-1}(\Lambda p)\Lambda L(p)$$

where L(p) boosts a rest particle to four-momentum p

F. Scheck, Quantum Field Theory (Springer)

For each pair of momenta (p_1, p_2) one has a density operator

 ρ^{p_1,p_2}

which transform under Λ to

 $(D_{\sigma}[W(\Lambda, p_1)] \otimes D_{\sigma}[W(\Lambda, p_2)])\rho^{p_1, p_2}(D_{\sigma}^{\dagger}[W(\Lambda, p_1)] \otimes D_{\sigma}^{\dagger}[W(\Lambda, p_2)])$

In QI, local unitary, entanglement is conserved

Reduced density operator in a new frame

The reduced spin density operator

$$\int \mathrm{d}p_1 \mathrm{d}p_2 \rho^{p_1, p_2}$$

transforms under Λ as

•

$$\int \mathrm{d}p_1 \mathrm{d}p_2(D_{\sigma}[W(\Lambda, p_1)] \otimes D_{\sigma}[W(\Lambda, p_2)]) \rho^{p_1, p_2}(D_{\sigma}^{\dagger}[W(\Lambda, p_1)] \otimes D_{\sigma}^{\dagger}[W(\Lambda, p_2)])$$

Not a group transformation, entanglement is also not conserved

see also Peres and Terno, RMP 2004

... this trouble only begins when one **traces out** available momenta

Instead of tracing out the momenta, consider (unnormalised) ensemble

 $\{\rho^{p_1,p_2}\}$

of spin density operators as ${\bf a}$ whole

- momenta available anyway
- entanglement is conserved under Lorentz transform

All momenta-dependent observables X^{p_1,p_2} can be estimated as

$$\langle X \rangle = \int \mathrm{d}p_1 \mathrm{d}p_2 \operatorname{tr}[\rho^{p_1, p_2} X^{p_1, p_2}]$$

HCN, G. Tetlalmatzi-Xolocotzi, C. Diez Pardos, O. Gühne, M. Kleinman, in preparation

Entanglement witness \boldsymbol{W} are defined to be

 $\mathrm{tr}[\rho W] \geq 0$

for all unentangled states ρ

One can choose different witnesses at different momentum W^{p_1,p_2} , if

$$\int \mathrm{d}p_1 \mathrm{d}p_2 \operatorname{tr}[\rho^{p_1, p_2} W^{p_1, p_2}] < 0$$

there is some entanglement in the **ensemble**

Effective density operator

Fixed particular W_0 and choose

$$W^{p_1,p_2} = (U_1^{p_1} \otimes U_2^{p_2})^{\dagger} W_0(U_1^{p_1} \otimes U_2^{p_2})$$

then

$$\langle W \rangle = \operatorname{tr}(\rho_{\text{eff}} W_0)$$

where

$$\rho_{\text{eff}} = \int \mathrm{d}p_1 \mathrm{d}p_2 (U_1^{p_1} \otimes U_2^{p_2}) \rho^{p_1, p_2} (U_1^{p_1} \otimes U_2^{p_2})^{\dagger}$$

These include

- \blacksquare the standard reduced density operator (QI community)
- ☞ center of mass reduced density operator (ATLAS, Nature 2024)
- 🖝 'fictitious' density operators (Afik et al, Quantum 2022)

each can tell about entanglement of the ensemble, but not all

Characterising the whole ensemble?

 $\ell^+_{\ell^+}$ Too many density operators?

 $\{\rho^{p_1,p_2}\}$

Data collection contains **single** events

 $(p_1^{(k)}, p_2^{(k)}, \hat{\mathbf{n}}_1^{(k)}, \hat{\mathbf{n}}_2^{(k)})$

Tomography not possible!

Shadow tommography of spin-momentum ensemble

Predicting many properties of a quantum system from very few measurements

Hsin-Yuan Huang 1,2 ×, Richard Kueng^{1,2,3} and John Preskill^{1,2,4}

Shadow tomography converts a single shot measurement of spin to a single shot estimate of density operator called classical shadow

$$\hat{\rho}_{\hat{n}_1,\hat{n}_2}^{p_1,p_2} = \hat{\rho}_{\hat{n}_1}^{p_1} \otimes \hat{\rho}_{\hat{n}_2}^{p_2}$$

Noisy, not positive, but converge rightly when estimating observables

A closer look at the measurement of spin

Decay of a polarised particle at rest

 $P(\hat{\mathbf{n}}) = \operatorname{tr}(\rho F_{\hat{\mathbf{n}}})$

Covariant under rotation R

$$F_{R\hat{n}} = D_{\sigma}[R]F_{\hat{n}}D_{\sigma}^{\dagger}[R]$$

A closer look at the measurement of spin

Decay of a polarised particle at rest

 $P(\hat{\mathbf{n}}) = \mathrm{tr}(\rho F_{\hat{\mathbf{n}}})$

Covariant under rotation R

 $F_{R\hat{n}} = D_{\sigma}[R]F_{\hat{n}}D_{\sigma}^{\dagger}[R]$

This implies

$$F_{\hat{\mathbf{n}}} = \sum_{m=-\sigma}^{+\sigma} \alpha_m \left| \hat{\mathbf{n}}, m \right\rangle \left\langle \hat{\mathbf{n}}, m \right|$$

HCN et al, arXiv:2003.12553

Classical shadows and their symmetry

Abtract definition of classical shadows

$$\int \mathrm{d}\Omega(\hat{\mathbf{n}}) \operatorname{tr}(\rho F_{\hat{\mathbf{n}}}) \hat{\rho}_{\hat{\mathbf{n}}} = \rho$$

for all ρ . Notice

- flexible in choices
- general not positive
- averaging converges to ρ

The classical shadow can inherit the same symmetry as measurement

$$\hat{\rho}_{\hat{\mathbf{n}}} = \sum_{m=-\sigma}^{+\sigma} \beta_m \left| \hat{\mathbf{n}}, m \right\rangle \left\langle \hat{\mathbf{n}}, m \right|$$

where β_m can be explicitly computed from α_m

HCN et al, PRL 2022

• Tomography of all effective density operators

$$\rho_{\text{eff}} \approx \frac{1}{M} \sum_{k} (U_1^{p_1^{(k)}} \otimes U_2^{p_2^{(k)}}) \hat{\rho}_{\hat{\mathbf{n}}_1^{(k)}, \hat{\mathbf{n}}_2^{(k)}}^{p_1^{(k)}, p_2^{(k)}} (U_1^{p_1^{(k)}} \otimes U_2^{p_2^{(k)}})^{\dagger}$$

• Tomography of all effective density operators

$$\rho_{\text{eff}} \approx \frac{1}{M} \sum_{k} (U_1^{p_1^{(k)}} \otimes U_2^{p_2^{(k)}}) \hat{\rho}_{\hat{\mathbf{n}}_1^{(k)}, \hat{\mathbf{n}}_2^{(k)}}^{p_1^{(k)}, p_2^{(k)}} (U_1^{p_1^{(k)}} \otimes U_2^{p_2^{(k)}})^{\dagger}$$

• Estimate of momentum-dependent spin observable X^{p_1,p_2}

$$\langle X \rangle \approx \frac{1}{M} \sum_{k} \operatorname{tr}(\hat{\rho}_{\hat{\mathbf{n}}_{1}^{(k)}, \hat{\mathbf{n}}_{2}^{(k)}}^{p_{1}^{(k)}, p_{2}^{(k)}} X^{p_{1}^{(k)}, p_{2}^{(k)}})$$

• Tomography of all effective density operators

$$\rho_{\text{eff}} \approx \frac{1}{M} \sum_{k} (U_1^{p_1^{(k)}} \otimes U_2^{p_2^{(k)}}) \hat{\rho}_{\hat{\mathbf{n}}_1^{(k)}, \hat{\mathbf{n}}_2^{(k)}}^{p_1^{(k)}, p_2^{(k)}} (U_1^{p_1^{(k)}} \otimes U_2^{p_2^{(k)}})^{\dagger}$$

• Estimate of momentum-dependent spin observable X^{p_1,p_2}

$$\langle X \rangle \approx \frac{1}{M} \sum_{k} \operatorname{tr}(\hat{\rho}_{\hat{\mathbf{n}}_{1}^{(k)}, \hat{\mathbf{n}}_{2}^{(k)}}^{p_{1}^{(k)}, p_{2}^{(k)}} X^{p_{1}^{(k)}, p_{2}^{(k)}})$$

• Test entanglement in the whole ensemble

• Tomography of all effective density operators

$$\rho_{\text{eff}} \approx \frac{1}{M} \sum_{k} (U_1^{p_1^{(k)}} \otimes U_2^{p_2^{(k)}}) \hat{\rho}_{\hat{n}_1^{(k)}, \hat{n}_2^{(k)}}^{p_1^{(k)}, p_2^{(k)}} (U_1^{p_1^{(k)}} \otimes U_2^{p_2^{(k)}})^{\dagger}$$

• Estimate of momentum-dependent spin observable X^{p_1,p_2}

$$\langle X \rangle \approx \frac{1}{M} \sum_{k} \operatorname{tr}(\hat{\rho}_{\hat{\mathbf{n}}_{1}^{(k)}, \hat{\mathbf{n}}_{2}^{(k)}}^{p_{1}^{(k)}, p_{2}^{(k)}} X^{p_{1}^{(k)}, p_{2}^{(k)}})$$

- Test entanglement in the whole ensemble
- If events come from different channels $I \in \{1, 2\}$, one can classify classical shadows $\hat{\rho}_{\hat{n}_1, \hat{n}_2}^{p_1, p_2}$ to the most probable channel

- Tracing out available momenta brings conceptual difficulty
- ${\it \ensuremath{\, \ensuremath$

- $\scriptstyle \blacksquare$ Tracing out available momenta brings conceptual difficulty
- ${\it \ensuremath{\, \rm em}}$ Constraints/properties of ρ^{p_1,p_2} can be analysed as a whole

The abstract relationship of QI and HEP

- it is not only about entanglement, it is about **density operators**
- it is not only about observables, but methods of processing

HCN, G. Tetlalmatzi-Xolocotzi, C. Diez Pardos, O. Gühne, M. Kleinman, in preparation

Thank you for your attention!