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Motivation - Monte Carlo Event Generators (MCEGQG)

Standard Model

There is a huge gap between a one-line formula of a fundamental theory, like

the Lagrangian of the SM, and the experimental reality that it implies

Theory
Standard Model Lagrangian

o

R P
- ‘-F,B)L +he
‘ * & %jh?ﬁkc

+*Ref-v@

Experiment
LHC event

Data makes you smarter

It doesn't matter how
beautiful your theory is,
it doesn't matter how
smart you are. If it
doesn't agree with
experiment, it's wrong.

Richard P. Feynman

CPPS seminars, Siegen 2025 Andrzej Siddmok



Motivation - Monte Carlo Event Generators (MCEGQG)
Standard Model

There is a huge gap between a one-line formula of a fundamental theory, like

the Lagrangian of the SM, and the experimental reality that it implies

Theory Experiment
Standard Model Lagrangian LHC event

-

e MC event generators are designed to bridge the that gap
e “Virtual collider” = Direct comparison with data

U

Almost all HEP measurements and discoveries in the modern era have relied on MCEG, most
notably the discovery of the Higgs boson.

_ Published papers by ATLAS, CMS, LHCb: 2252
(Herwig and Sherpa)@U3J, Pythia Citing at least 1 of 3 existing MCEG: 1888 (84%)
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Motivation - Monte Carlo Event Generators (MCEGQG)

QCD correctly describes strong interactions in each energy range but its complex mathematical
structure makes it very difficult to obtain precise predictions (Millennium Prize Problem $1,000,000)

High energy Low energy
e perturbative QCD e non-perturbative QCD
e in theory we know what to do e we don't know what to do
e in practice very difficult e phenomenological models

(with many free parameters)

Stefan Gieseke ™
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Why hadronization?

QCD correctly describes strong interactions in each energy range but its complex mathematical
structure makes it very difficult to obtain precise predictions (Millennium Prize Problem $1,000,000)

High energy Low energy
e perturbative QCD e non-perturbative QCD
e in theory we know what to do e we don't know what to do
e in practice very difficult e phenomenological models

(with many free parameters)

Stefan Gieseke'\Y

Hadronization;
one of the least understood elements of MCEG
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Motivation - Hadronization

Hadronization:
-> Increased control of perturbative corrections = more often LHC measurements are

limited by non-perturbative components, such as hadronization.

W mass measurement using a new method [Freytsis at al. JHEP 1902 (2019) 003]
Extraction of the strong coupling in [M. Johnson, D. Maitre, Phys.Rev. D97 (2018) no.5]

Top mass [S. Argyropoulos, T. Sjostrand, JHEP 1411 (2014) 043]
L3 .,
Pier Monl’s talk
FCC Physics Workshop 2023

» However, hadronisation remains the main bottleneck
> e.g. thrust in Higgs decays (MC variation in plot) E“
B Z
e Increase in energy insufficient for “ %
suppression (Q ~ my) 3 5
’ =
 Runs at lower energies are essential for r |
a robust tuning of NP models in MCs . e+e—,250 GeVand 5 ab™"! ‘
_ o B = 10_3; l  Thrust 1 3
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Motivation - Hadronization

Hadronization:

e 3

limited by non-perturbative components, such as hadronization.
W mass measurement using a new method [Freytsis at al. JHEP 1902 (2019) 003]
Extraction of the strong coupling in [M. Johnson, D. Maitre, Phys.Rev. D97 (2018) no.5]

Top mass [S. Argyropoulos, T. Sjostrand, JHEP 1411 (2014) 043]

Increased control of perturbative corrections = more often LHC measurements are

Pier Moni’'s talk
FCC Physics Workshop 2023

» However, hadronisation remains the main bottleneck
> e.g. thrust in Higgs decays (MC variation in plot)

e Increase in energy insufficient for
suppression (Q ~ my) '
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St ri N g M Od el | N N UtSh el | [Andersson, Gustafson, Ingelman, Sjostrand, Phys.Rept.97(1983)31]

Originally invented without perturbative physics of parton showers in mind.

We start with 2-jet eventsin
e+ e- > hadrons.

Self coupling of gluons Linear static potential:
“attractive field line”
F(r)~const=k=x1GeV/fm <= V(r)=xkr

QED FIELD LINES Picture supported by lattice QCD

W V(r) simplified colour
representation:
quenched QCD

QCD FIELD LINES

/
A%

full QCD

L F E rr ; r
q ¢ y 9 4
F r 3 r

q. .4q

1+1 - dim. object: string

Lund string model: like rubber band that is pulled apart and breaks into pieces

T\ - -
N .

N O
- e

N\

L] .

; D
o .
y time
e quark Y
 antiquark y
o pair creation space Plots from T. Sjostrand
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Cluster model in nutshell [Webber NPB238(1984)492]

What if we have PS (more perturbative input before hadronization).

The philosophy of the model: use information from perturbative QCD as an input for hadronization.
QCD pre-confinement discovered by Amati & Veneziano [Phys.Lett.B 83 (1979) 87-92]:

e QCD provide pre-confinement of colour
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Cluster model in nutshell [Webber NPB238(1984)492]

What if we have PS (more perturbative input before hadronization).

The philosophy of the model: use information from perturbative QCD as an input for hadronization.
QCD pre-confinement discovered by Amati & Veneziano [Phys.Lett.B 83 (1979) 87-92]:

e QCD provide pre-confinement of colour

e Colour-singlet pair end up close in phase space and
form highly excited hadronic states, the clusters
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Cluster model in nutshell [Webber NPB238(1984)492]

What if we have PS (more perturbative input before hadronization).

The philosophy of the model: use information from perturbative QCD as an input for hadronization.
QCD pre-confinement discovered by Amati & Veneziano [Phys.Lett.B 83 (1979) 87-92]:

[S. Gieseke, A. Ribon, MH Seymouir,

P Stephens, B Webber JHEP 0402 (2004) 005] e QCD provide pre-confinement of colour
o0 A . Q=35GeV
0.8 I Q=91.2GeV ] e Colour-singlet pair end up close in phase space and
0.7 |- Q=189GeV -~ form highly excited hadronic states, the clusters
0.6 - O 1000 GeV
0.5 - ‘ - e Pre-confinement states that the spectra of clusters
04 | | | are independent of the hard process and energy of
03 L | the collision
0.2 | -
0.1 | -

0 |

1 10
M/GeV
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Cluster model in nutshell [Webber NPB238(1984)492]

What if we have PS (more perturbative input before hadronization).

The philosophy of the model: use information from perturbative QCD as an input for hadronization.
QCD pre-confinement discovered by Amati & Veneziano [Phys.Lett.B 83 (1979) 87-92]:

e QCD provide pre-confinement of colour

e Colour-singlet pair end up close in phase space and
form highly excited hadronic states, the clusters

e Pre-confinement states that the spectra of clusters
are independent of the hard process and energy of
the collision

e Peaked at low mass (1-10 GeV) typically decay into 2
hadrons
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Cluster model in nutshell [Webber NPB238(1984)492]

What if we have PS (more perturbative input before hadronization).

The philosophy of the model: use information from perturbative QCD as an input for hadronization.
QCD pre-confinement discovered by Amati & Veneziano [Phys.Lett.B 83 (1979) 87-92]:

[S. Gieseke, A. Ribon, MH Seymouir,

P Stephens, B Webber JHEP 0402 (2004) 005] e QCD provide pre-confinement of colour
0.9 T | o X T T  § T L T T T
Q = 35GeV . , _
0.8 I Q=912GeV ] e Colour-singlet pair end up close in phase space and
0.7 |- Q=183GeV - form highly excited hadronic states, the clusters
0.6 - Q 1000 GeV
0.5 - - e Pre-confinement states that the spectra of clusters
04 L | are independent of the hard process and energy of
0.3 L | the collision
0.2 | - . :
01 L | e Peaked at low mass (1-10 GeV) typically decay into 2
'0 o hadrons
1 10
M/GeV

e Small fraction of clusters too heavy for isotropic two-body decay,
heavy cluster decay first into lighter cluster C » CC, or radiate a
hadron C » HC, it is rather string-like.

e ~15% of primary clusters get split but ~ 50% of hadrons come
from them!
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String vs Cluster model

program PYTHIA Herwig
model string cluster
energy—momentum picture powerful simple
predictive unpredictive
parameters few many
flavour composition messy simple
unpredictive in-between
parameters many few

Taken from T. Sjostrand
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Motivation - Hadronization

Hadronization:

-> Increased control of perturbative corrections = more often LHC measurements are

limited by non-perturbative components, such as hadronization.
- W mass measurement using a new method [Freytsis at al. JHEP 1902 (2019) 003]

Extraction of the strong coupling in [M. Johnson, D. Maitre, Phys.Rev. D97 (2018) no.5]
Top mass [S. Argyropoulos, T. Sjostrand, JHEP 1411 (2014) 043]

/STRING Hadronization \ CLUSTER Hadronization \

B 3
Y

/ ey

-
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Motivation - Hadronization

Hadronisation effects with Angular Ordered Parton Shower

Michaela Divisova®!, Miroslav Myska"!, Pratixan Sarmah®?,

Andrzej Siédmok?-?

Charged multiplicity, at Ecps = 91.2 GeV
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Hadronization models

Hadronization:
~ Early1980’s Early 2020's
(limited progress) (lot of progress in ML)
/ STRING Hadronization ] \ / CLUSTER Hadronization ] \
\ - = =

) | 4

N4
ML

Idea of using Machine Learning (ML) for hadronization.
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Motivation for Machine learning hadronization

Idea of using Machine Learning (ML) for hadronization.

e Existing hadronization models are highly parameterized functions.

e Hadronization is a fitting problem

ML

- Can ML hadronization be more flexible to fit the data?

- Can ML hadronization extract more information from the data?
[can accommodate unbinned and high-dimensional inputs]

NINPDF

NNPDF used successfully ML to nonperturbative Parton Density Functions (PDF).

Hadronization is closely related to fragmentation functions (FF) which were considered the

counterpart of PDFs. gg luminosity

Vs =14 TeV
1.25+

71 MSHT20 (68% c.l.)
1.20 X CT18' (68% c.l.)
1.15 - 1 NNPDF3.1' (68% c.l.)
S '
T 1.10 1
g
o 1.05
2 1.001
©
o
0.95
0.90 Higgs physics
0.85 ’ T 1
10! ! 107 l(:)3
m my (GeV) New physics

CPPS seminars, Siegen 2025 Andrzej Siddmok



Recent progress: Machine learning hadronization

First steps for ML hadronization:

HADML - [A. Ghosh, Xi. Ju, B. Nachman AS, Phys.Rev.D 106 (2022) 9]

MLhad - [P. llten, T. Menzo, A. Youssef and J. Zupan, SciPost Phys. 14, 027 (2023)]

MLhad

HADML

Deep generative
model:

Variational Autoencoder

Generative Adversarial
Networks

Trained on:

String model

Cluster model

Recent progress:

“Reweighting Monte Carlo
Predictions and Automated
Fragmentation Variations in
Pythia 8"

[Bierlich, llten, Menzo, Mrenna,
Szewc, Wilkinson, Youssef,
Zupan, 2308.13459]

“Fitting a Deep
Generative
Hadronization Model”

[J. Chan, X. Ju, A. Kania, B.
Nachman, V. Sangli and
AS, JHEP 09 (2023) 084]

\

—

MLhadML (2411.02194)

CPPS seminars, Siegen 2025

Andrzej Siodmok




What is a deep generative model?

A generator is nothing other than a function
that maps random numbers to structure.

= = = j_*m

Deep generative models: the map is a deep neural network.
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Our tool of choice: GANs

[Goodfellow et al. “Generative adversarial nets”. arxiv:1406.2661]

Generative Adversarial Networks (GANS):
A two-network game where one maps noise to structure
and one classifies images as fake or real.

0

1

2

B 3

4

= 25

8 6

g

8

9

10

. 11
nO|Se 01 2 3 4ngeII6lD7 8 9 1011

{real,fake}

simulator or data

0123456 7 8 91011
n Cell IN

Energy (MeV)

When D is maximally
confused, G will be
a good generator

¢ Cell ID
o
= O W O NOWL»L & WIN - O
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Adversarial Networks

Arthur Lee Samuel (1959) wrote a program that learnt to play checkers well enough to beat him.

707
" " o
EEE
oY 7. 7
EE e
o m m
B EoE_ B
7 7 wow

He popularized the term "machine learning" in 1959.

The program chose its move based on a minimax strategy, meaning it made the move assuming
that the opponent was trying to optimize the value of the same function from its point of view.
He also had it play thousands of games against itself as another way of learning.
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Adversarial Networks

< ™
ﬁ DeepMind @ @DeepMind - Dec 6, 2018 L 4
u The full peer-reviewed @sciencemagazine evaluation of #AlphaZero

is here - a single algorithm that creatively masters chess, shogi and

Go through self-play deepmind.com/blog/alphazero...

Demis Hassabis
CBE FRS FRENng FRSA

By playing games against itself, AlphaGo Zero surpassed the strength of AlphaGo Lee in three days by winning 100 games to 0.
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https://en.wikipedia.org/wiki/AlphaGo_Lee

Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour

e Colour-singlet pair end up close in phase space and
form highly excited hadronic states, the clusters
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour

o . Q=35GeV
0.8 I Q=91.2GeV ] e Colour-singlet pair end up close in phase space and
0.7 |- Q=189GeV -~ form highly excited hadronic states, the clusters
0.6 - Q 1000 GeV 7
0.5 - - e Pre-confinement states that the spectra of clusters
04 L | are independent of the hard process and energy of
03 L i the collision
0.2 | -
0.1 | -

0 ; Ly . .|

1 10
M/GeV

" [S. Gieseke, A. Ribon, MH Seymour,
P Stephens, B Webber JHEP 0402 (2004) 005]
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour

e Colour-singlet pair end up close in phase space and
form highly excited hadronic states, the clusters

e Pre-confinement states that the spectra of clusters
are independent of the hard process and energy of
the collision

e Peaked at low mass (1-10 GeV) typically decay into 2
hadrons
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

QCD provide pre-confinement of colour

Colour-singlet pair end up close in phase space and
form highly excited hadronic states, the clusters

Pre-confinement states that the spectra of clusters
are independent of the hard process and energy of
the collision

Peaked at low mass (1-10 GeV) typically decay into 2
hadrons

ML hadronization
1st step: generate kinematics of a cluster decay:

CPPS seminars, Siegen 2025
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Road map for today

HadML* v1 Generator

PRD 106 (2022) 096020
HadML
—» Hadrons

el

Parton =% Cluster I Discriminator
I Cluster I fiaitons
Frag
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Towards a Deep Learning Model for Hadronization

ML hadronization

1st step: generate kinematics of a cluster decay to 2 hadrons
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Towards a Deep Learning Model for Hadronization

ML hadronization

1st step: generate kinematics of a cluster decay to 2 hadrons

How?

HadML* v1

We have a conditional
GAN, with cluster
4-vector input and two

. Parton =% Cluster
hadron 4-vector outputs. '

. PRD 106 (2022) 096020

> <

Generative Adversarial Net

Generator

Frag

-» Hadrons

Discriminator .

Cluster P Hadrons

.................................................
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Towards a Deep Learning Model for Hadronization

ML hadronization

1st step: generate kinematics of a cluster decay to 2 hadrons

How?

Generative Adversarial Net
HadML* v1 Generator
. PRD 106 (2022) 096020

We have a conditional
GAN, with cluster
4-vector input and two

hadron 4-vector outputs.

-» Hadrons

> <

. Parton = Cluster

Discriminator .

Cluster P Hadrons
Frag

..................................................

Training data:

ris

ete™ (()11151()115 at

m(E, p2, py, p-) | Simplification:
considering only
Cluster (E, pz, py, pz) pions and generating
two angles in the
TE, pz, py, p=) | cluster rest frame.
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Architecture: conditional GAN

Generator and the Discriminator are composed of two-layer perceptron
(each a fully connected, hidden size 256, a batch normalization layer, LeakyRelLU activation function)

W,,b,

Input layer -+ Output layer

Generator

Hidden layer 1 Hidden layer 2

Input

Cluster (E, pz, py, p-) and 10 noise features sampled from a Gaussian distribution

Output (in the cluster frame)

¢ ) pglar angle we reconstruct the four vectors of
¢ - azimuthalangle the two outgoing hadrons
Discriminator
Input

d) and @ labeled as signal (generated by Herwig) or background (generated by Generator)

Output

Score that is higher for events from Herwig and lower for events from the Generator
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Data normalization:
cluster’s four vector and angular variables are scaled to be between -1 and 1
(tanh activation function as the last layer of the Generator)

Discriminator and the Generator are trained separately and alternately by two
independent Adam optimizers with a learning rate of 1074, for 1000 epochs

—— Discriminator Loss /2 [0.6

Generator Loss
0.9 A

F0.5

0.8 1

T
S
IS

0.7 4

This is a typical
learning curve for
GCAN training

o
N

\

Losses
o
w
Best Wasserstein Dis

0.6 1

r
o
-

r x r . . — 0.0
0 200 400 600 800 1000
Epochs

e The best model for events with partons of Pert = O, is found at the epoch
849 with a total Wasserstein distance of 0.0228.
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Integration into Herwig

GPU CPU
zPEdﬁﬂi il . - We extract
: clusters + hadrons |
NN
¥ ) rnge d
. Trainin Event generation
@ python 9 9

Re-insert the model
back into H7

ONNX
RUNTIME

This then allows us to run a full event generator and produce plots

CPPS seminars, Siegen 2025 Andrzej Siddmok 35



Performance: Pions

Low-level Validation

o
(similar to training data) m
eTe~ collisions at
V5 = 91.2 GeV
q-I-O

1/0, do,/dy

0.8

0.6

0.4

Pseudorapidity distribution of 7 and ° multiplicity, Pert=o

—1 T T T I T T T T I T T I T [ T T T T [ T T T T

~t— 1y
—— H7+HADML

II!|III|III|IIIIIII

lllllllllll]llllll
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qr° kinematic variables

SN gt 0
Transverse momentum distribution 7r°, Pert=o0
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50
Py [GeV]

Andrzej Siodmok



Performance: Energy of the collisions

Low-level Validation

0 0
(beyond training data different energy) m am
e"e” collisions at VS a9 kinematic variables
Vs =192 GeV
ar© qTO

Pseudorapidity distribution of 77~ and n° multiplicity, Pert=o0 Transverse momentum distribution 71°, Pert=o
= 08 el T T T I T T T T | T T T T I T T T T I T T T =1 b E T T T T T T T T I T T T T I T T T T ] T T T T3
= c . 1 & E E
B o8 Hy7, 192 GeV - I - —+— Hy, 192 GeV :
. E —+— H7+HADML,192GeVy 5§ _ -1 | —+— Hy+HADML, 192 GeV |
5 06— — 3 = -
e C =] 2 = =
= 0.5 — = e T .
> F = 102 5
04 £ = : -
03 _f 1072 =
0.2 — — C 7
= B 10 4 g —
0.1 — — 5 3
o) E 1 | L | l Il 1 l | 3 N ! ]|
0 1 2 3 4 5 (0] 50
Ui Pr [GeV]
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Performance: All Hadrons

Low-level Validation

(beyond training data different hadrons) hi hi
eTe” collisions at VS h kinematic variables
Vs = 91.2 GeV
h2 h2

As a crude “full” model, we simply take the PIDs
from Herwig and the kinematics from the GAN.

Pseudorapidity distribution of kaon multiplicity Transverse momentum distribution of kaon
= LI L I B e B B = L L B B B | L N
3 o8 —— g R AL
S +— Hz+HADML S0 H7+HADML
(7)) Q S
c 5 o i S -}
10 " E e
E s
m ] "quf =
10 7 F E
N4 : W :
- i :
10 4 S 41 ¥ -
E UL E
: M ]
w e b b by WIS
o 10 20 30 40 50
7 rr [GeV]
Iransverse momentum distribution of A
= - - L PN Eaar S ) I | I T | T | [ T 17T | v T
Z =4 < I
RS ] Tae? ,Eil. Hy
5 - E ‘.-,7\ +— Hz+HADML
] 5 - k M
-U E 10 7 ; -
£ g{
T 1
| foTF s |y -
© il b
- . | L THTHY
il V0
10 7 E | I BT | | | =
2
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LEP DELPHI Data

With a “full” model, we can compare directly to data!

Performance:; Data!

IIIIIIIIII

—+— Data

H7

[IIII

—+— Hyz+HADML 7

I T

Al
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Road map for today

HadML* v1 Generator

PRD 106 (2022) 096020
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Road map for today

HadML v2: Closure Test

(this paper)
—» Hadrons
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HadML v2: Stress Test
(this paper)
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Protocol for fitting a deep generative hadronization model in a realistic data setting, where we

only have access to a set of hadrons in data.
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The discriminator function is modified, we parameterize is as a Deep Sets model
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Discriminator HadML vl vs v2

HadML vi

The loss function:

L=— > (og(D(r()+log(l—D(G ()

A~HERWIG, z~p(z)

HadML v2

The discriminator function is modified, we parameterize is as a Deep Sets model

1 mn
Delx)=F [ = b (h;,¢ CWE
E () (n; (h wD<p),wF>

® embeds a set of hadrons into a fixed-length latent space and F' acts on the average

invariant under
permutations of
hadrons

L=- Z log (DE (x)) — Z log (1 — Dg ({G (2,M)}))

x~data {G}~HERWIG, z~p(2)

The approach could also be used to fit (without binning) data to a parametric physics model (for
example cluster) as well. However, this would require making the cluster model differentiable.
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- Discriminator Loss

Losses

Generator Loss
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Training HADML v2

Now, the generator is
local (per cluster), but
the discriminator is
global (whole event).

Discriminator is a

permutation-invariant

architecture called
Deep Sets.

Simplification only

Pions
4000 5000 6000
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Performance
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Performance: going beyond inputs and outputs
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A key advantage of this fitting protocol over other methods is that it can
accommodate unbinned and high-dimensional inputs.

The approach could also be used to tune (without binning) data to a parametric physics model (for
example cluster) as well. However, this would require making the cluster model differentiable.
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e For HADML, we have made significant progress, but there
are still multiple steps to build and tune a full-fledged
hadronization model.

What is next?

e Number of technical and methodological step needed:

- Directly accommodate multiple hadron species with their relative probabilities

CPPS seminars, Siegen 2025 Andrzej Siddmok



Directly accommodate multiple hadron species with their relative probabilities
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e For HADML, we have made significant progress, but there
are still multiple steps to build and tune a full-fledged
hadronization model.

e HADML is naturally suited for GPUs

Tl A D ™M AL

What is next?

e Number of technical and methodological step needed:

-

\ 2 2

>

Include heavy clusters (so far done by Herwig)

Hyperparameter optimization, including the investigation of alternative generative models
More flexible model with a capacity to mimic the cluster or string models and beyond.
MLhadML joining idea of MLhad reweighting and HadML fitting deep generative models
[Heller, liten, Menzo, Mrenna, Nachman, AS, Szewc, Youssef, arxiv 2411.02194]

Tune to the LEP data

There is still a multi-year program ahead of us, so please stay tuned!

Early 1980's Early 2020's

STRING Hadronization CLUSTER Hadronization
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String Model in nutshell

String motion

From linear static potential V(r) = xr and linearity
between space-time and energy-momentum:

dp,
dz

dE

dz

dE g
gel

dp,
dt

We get a “YoYo" state which we interpret as a meson.

[Andersson, Gustafson, Ingelman, Sjostrand, Phys.Rept.97(1983)31]

String breakdowns

The quarks obtain a mass and a transverse momentum
in the breakup through a tunneling mechanism

q q’<—+—>5’ q a q’<—¢ r—;é’ q

.-

d=m q/k
m gy >0

mq = 0

with a probability:

. 2 2
™m TP ™m
P ox exp ( Lq) = exp < Lq) exp </ q)
K K K

e Suppression of heavy quarks:
uu:dd:ss:cc=1:1:0.3:10™"
e Common Gaussian pT spectrum, <pT>~ 0.4 GeV
e Diquark (g - qg breakups) ~ antiquark
= simple model for baryon production.

Iterative process (left-right symmetry) leads to
distribution of momentum fraction taken by each

hadron as: . 2
f(z) oc 122 exp(—bi)
Z P4

String model has very good energy-momentum picture however it is unpredictive in
understanding of hadron mass effects = many parameters, 10-30 depending on how you count.
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Wasserstein distance

The Wasserstein distance
e For discrete probability distributions, the Wasserstein distance is called the earth mover’s distance (EMD):
e EMD is the minimal total amount of work it takes to transform one heap into the other.

W(P,Q) = min B(y)
YEIl

e Work is defined as the amount of earth in a chunk times the distance it was moved.

B(y) = Z V(xp'xq)”xp - xq”

XpXq

B = [

Best “moving plans” of this example

5th Inter-experiment Machine Learning Workshop



Wasserstein distance

Q Xq A “moving plan” is a matrix

| 1

The value of the element is the
amount of earth from one
position to another.

Average distance of a plan y:

BO) = D ¥(pxg) 1% —

XpXq

Earth Mover’s Distance:
W(P,Q) = minB(y)
y€Ell

moving plan y The best plan
All possible plan I1

Iulh__fji
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Minimax Loss

In the paper that introduced GANs, the generator tries to minimize the following function while the discriminator tries to
maximize it:

E, [log(D(x))] + E.[log(1 — D(G(2)))]

In this function:

D(x) is the discriminator's estimate of the probability that real data instance x is real.

Ey is the expected value over all real data instances.

G(z) is the generator's output when given noise z.

D(G(z)) isthe discriminator's estimate of the probability that a fake instance is real.

E, is the expected value over all random inputs to the generator (in effect, the expected value over all generated

fake instances G(z)).

» The formula derives from the cross-entropy between the real and generated distributions.

The generator can't directly affect the log(D(x)) term in the function, so, for the generator, minimizing the loss is
equivalent to minimizing log(1 - D(G(z))) .
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Directly accommodate multiple hadron species with their relative probabilities

2.2 Machine Learning Implementation

The generator (G) and discriminator (D) functions are both parametrized as neural net-
works. Each of them is a fully connected network with four hidden layers. each with a
width of 1,000 neurons. All intermediate layers in these networks use a LeakyReLU [24]
activation function.

The non-discrete conditional inputs of G are normalized to the range of (—1, 1),
whereas the noise prior p is a Gaussian distribution with a mean of 0 and width of 1. The
noise dimension N, is set to 64. The last layer of G is divided into the variables x € R2,
which correspond to hadron kinematics, and the variables m# € R2Nt, which correspond
to hadron types. Here, N, is the number of hadron types considered. For simplicity, we
consider only the 40 most common hadron types (i.e. N; = 40)*. The hadron kinematics
Oy, and ¢y, are extracted from x with a tanh activation function, as in the previous work
[15]. The hadron type, on the other hand, is a categorical variable. In order to avoid zero
gradients when using argmaz in training, we use the Gumbel-Softmax [25] distribution to

approximate the distribution of hadron types:

exp ((logmi + gi) /7)

= > iexp((logm; +g:) /7)’

(2.4)

where g; are independent and identically distributed samples drawn from Gumbel(0. 1). 7is
a temperature parameter and as it approaches () the Gumbel-Softmax distribution becomes
identical to the categorical distribution. We anneal 7 by linearly decreasing it from 1.0 to
0.1 during training. The hadron type distributions y from the Gumbel-Softmax distribution
are then taken as the inputs for D, in addition to the hadron kinematics 6, and ¢,. During
inference, the generated hadron types are obtained from the Gumbel-Softmax distribution
with the argmaz operation. The last layer of D uses a sigmoid activation function.

All neural networks are implemented and trained using PyTorch [26]. The generator
and discriminator are optimized alternately with Adam [27] with a learning rate of 3 x 10™*
for both networks. The training uses a batch size of 40,000 and is performed for 25 epochs.
The hyperparameters are optimized with Weights and Biases [25].
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