A TeV Scale Origin for Higgs and Flavour

Joe Davighi, CERN

Uni Siegen Theoretical Physics Seminar, 12th May 2025

Outline of the Talk

- 1. Motivation: hierarchy problem & flavour puzzles
- 2. Flavour symmetries to lower Λ_{NP} : from MFV to U2
- 3. Flavour deconstructed gauge interactions: solving the flavour puzzle near the TeV
- 4. Phenomenology of flavour deconstruction
- 5. Flavour deconstructing the Composite Higgs: solving flavour + hierarchy problem near the TeV

If you remove the Higgs, the Standard Model reduces to

$$L_{\text{SM}\backslash \text{H}} = -\frac{1}{4} \left(\frac{F^2}{g_1^2} + \frac{\text{tr } W^2}{g_2^2} + \frac{\text{tr } G^2}{g_3^2} \right) + i \sum_{\psi, i} \bar{\psi} (\partial + A) \psi$$

This Higgs-less SM is a completely natural gauge theory (modulo CC):

Couplings $g_i = O(1)$ at weak scale

Hierarchy problem

Flavour puzzle

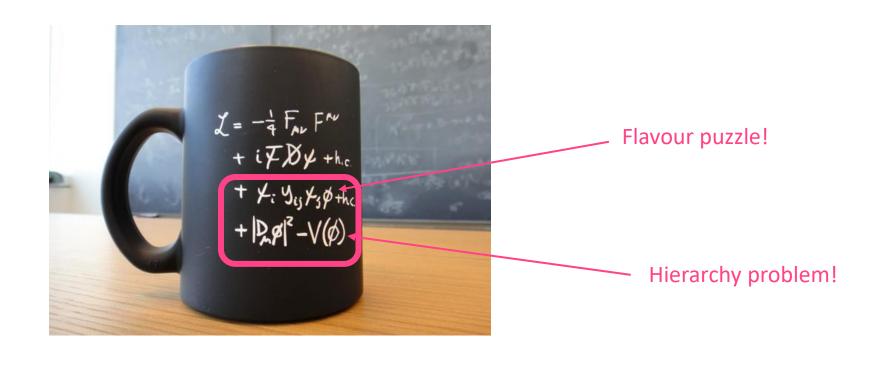
Strong CP problem [massless quarks]

If you remove the Higgs, the Standard Model reduces to

$$L_{\text{SM}\backslash H} = -\frac{1}{4} \left(\frac{F^2}{g_1^2} + \frac{\text{tr } W^2}{g_2^2} + \frac{\text{tr } G^2}{g_3^2} \right) + i \sum_{\psi, i} \bar{\psi} (\partial + A) \psi$$

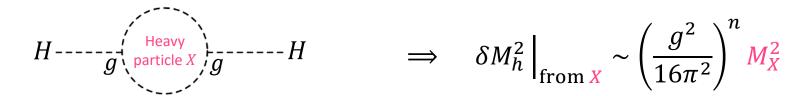
This Higgs-less SM is a completely natural gauge theory (modulo CC):

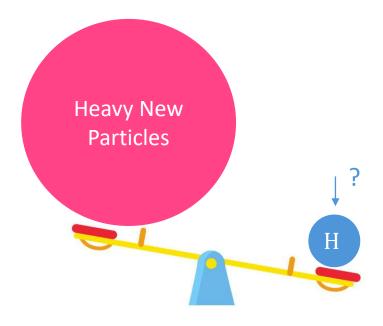
Couplings $g_i = O(1)$ at weak scale


Hierarchy problem

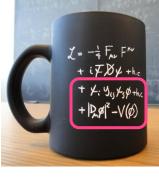
Flavour puzzle

Strong CP problem [massless quarks]


The Hierarchy Problem


Z = -\frac{1}{4} F_{Ab} F^{Ab} + i \times \times y + h.c + \times y_{ij} \times_j \tilde + h.c + |\times g|^2 - \V(\phi)

The Higgs has an unnaturally small **mass** parameter:


Large hierarchy: $\mu^2 \ll \Lambda_{\text{high scales}}^2$

 Λ could be new particles at GUT scale, flavour scale, PQ scale, neutrino see-saw scale, Planck scale...

The Hierarchy Problem

The Higgs has an unnaturally small **mass** parameter:

Large hierarchy:
$$\mu^2 \ll \Lambda_{\text{high scales}}^2$$

 Λ could be new particles at GUT scale, flavour scale, PQ scale, neutrino see-saw scale, Planck scale...

$$H - - - \frac{1}{g} \left(\frac{\text{Heavy}}{\text{particle } X} \right) g^{-----} H \qquad \Rightarrow \qquad \delta M_h^2 \left|_{\text{from } X} \sim \left(\frac{g^2}{16\pi^2} \right)^n M_X^2 \right|_{\text{from } X}$$

Two well-understood solutions: Higgs' compositeness or supersymmetry as low scale as possible

Composite Higgs

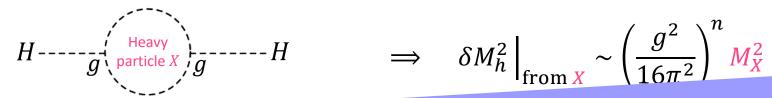
- Loops cut off by composite resonances
- To get $m_h \ll m_{\rm res}$, need Higgs to be pseudo-Goldstone bosons (\sim QCD pions)
- Explicit breaking by top Yukawa and EW gauging generates m_h^2 at 1-loop e.g.


$$\delta m_h^2 \sim \frac{1}{16\pi^2} \left(4n_c y_t^2 M_T^2 - \frac{9}{2} g_1^2 M_\rho^2 \right)$$

Supersymmetry

Inclusion of superpartner loops removes quadratic sensitivity to UV cut-off due to bose vs fermi cancellation

$$\Rightarrow \delta m_h^2 \approx \frac{1}{16\pi^2} 4n_c y_t^2 \, M_T^2 \log \frac{\Lambda^2}{M_T^2}$$
 v. $\delta m_h^2 \approx \frac{1}{16\pi^2} 4n_c y_t^2 \Lambda^2$ for top alone


The Hierarchy Problem

The Higgs has an unnaturally small **mass** parameter:

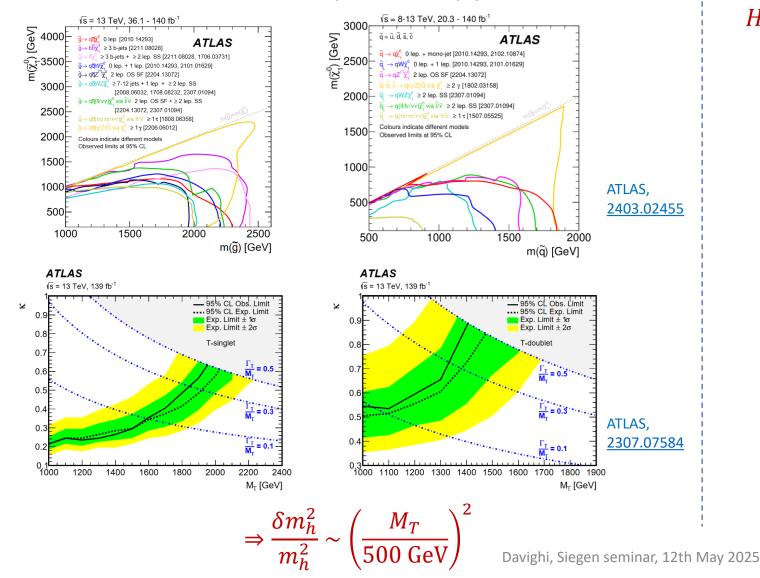
Large hierarchy:
$$\mu^2 \ll \Lambda_{\text{high scales}}^2$$

 Λ could be new particles at GUT scale, flavour scale, PQ scale, neutrino see-saw scale, Planck scale...

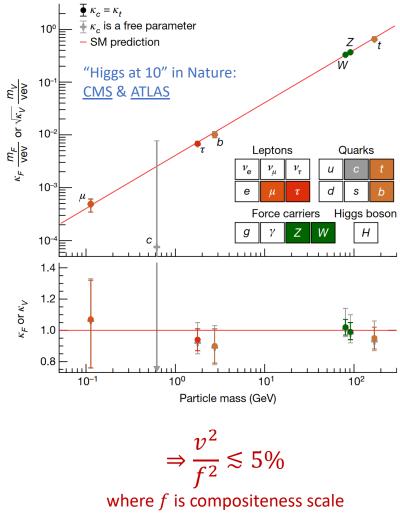
Two well-undered

Most natural (i.e. least tuned) expectation: New particle masses $M_* \lesssim (\text{loop factor})^{-1/2} m_h \sim \text{few TeV}$

- Loops cut off by composite resonances
- To get $m_h \ll m_{
 m res}$, need Higgs to be pseudo-Goldstone bosons (~ QCD pions)
- Explicit breaking by top Yukawa and EW gauging generates m_h^2 at 1-loop e.g.


$$\delta m_h^2 \sim \frac{1}{16\pi^2} \left(4n_c y_t^2 M_T^2 - \frac{9}{2} g_1^2 M_\rho^2 \right)$$

Inclusion of superpartner loops removes quadratic sensitivity to UV cut-off due to bose vs fermi cancellation


$$\Rightarrow \delta m_h^2 \approx \frac{1}{16\pi^2} 4n_c y_t^2 \, M_T^2 \log \frac{\Lambda^2}{M_T^2}$$
 v. $\delta m_h^2 \approx \frac{1}{16\pi^2} 4n_c y_t^2 \Lambda^2$ for top alone

We are now probing natural M_* directly at the LHC

Few TeV limits on SUSY particles, top partners!

+ No sign of compositeness in Higgs couplings! HWW, HZZ at LHC agree with SM to 3%

The Hierarchy Problem(s)

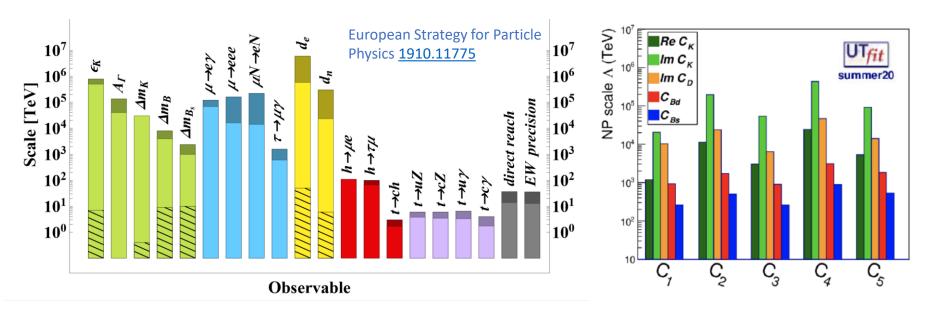

*The Higgs has an unnaturally small **mass** parameter:

Large hierarchy: $\mu^2 \ll \Lambda_{\text{high scales}}^2 \implies$ compositeness or SUSY as low scale as possible

```
LHC data \Rightarrow Little hierarchy: \mu^2 \ll \Lambda_{SM}^2 \sim \text{TeV}^2 \Rightarrow \text{accept it! or try even clever-er EW model-building} (+ LEP...)
```

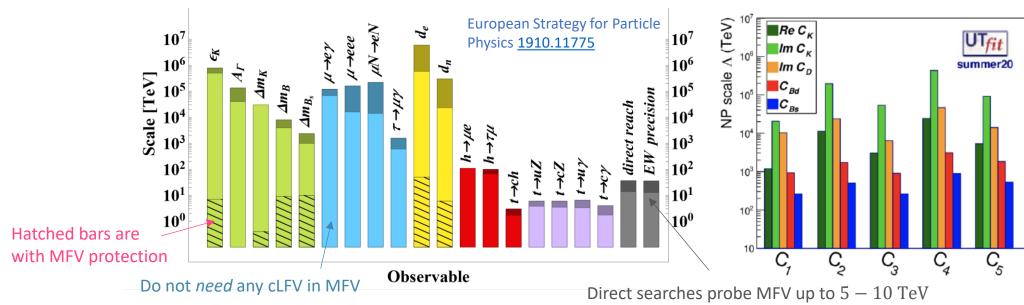
E.g. "Gegenbauer Goldstones"

Durieux, McCullough, Salvioni 2110.06941, 2202.01228


When trying to solve the (large or little) hierarchy problem, we cannot ignore flavour!

The BSM Flavour Puzzle

While the hierarchy problem points to scale $M_* \sim \text{TeV}$, flavour points to much higher scales!

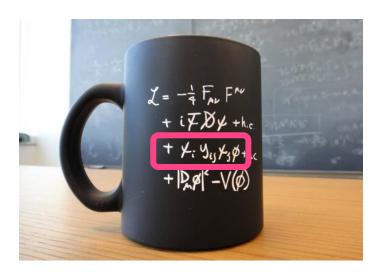


E.g. kaon mixing:
$$L \supset \frac{e^{i\alpha}(\bar{d}s)^2}{\Lambda_{sd}^2} \Longrightarrow \Lambda_{sd} \gtrsim 10^{5\div 6} \, {\rm TeV}$$

Therefore any solution to hierarchy problem (or anything at all at TeV) needs non-trivial flavour structure

The BSM Flavour Puzzle

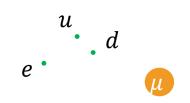
While the hierarchy problem points to scale $M_* \sim \text{TeV}$, flavour points to much higher scales!

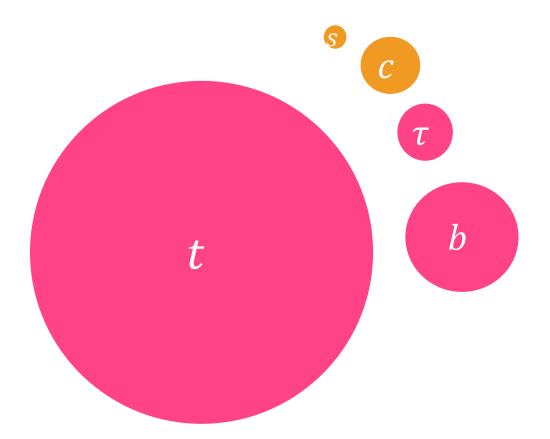

E.g. kaon mixing:
$$L \supset \frac{e^{i\alpha}(\bar{d}s)^2}{\Lambda_{sd}^2} \Longrightarrow \Lambda_{sd} \gtrsim 10^{5\div 6}~{\rm TeV}$$

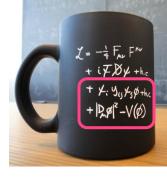
Therefore any solution to hierarchy problem (or anything at all at TeV) needs non-trivial flavour structure

Example = Minimal Flavour Violation (MFV): SM Yukawas are only source of flavour violation in SM + BSM theory

Kaon mixing with MFV:
$$\frac{1}{\Lambda_{sd}^2} \sim y_t^4 (V_{31} V_{32}^*)^2 \frac{1}{\Lambda_{NP}^2} \sim \left(\frac{10^{-5}}{\Lambda_{NP}}\right)^2$$
 is sufficient flavour protection!

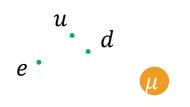

Flavour is already a rich source of mysteries within the SM



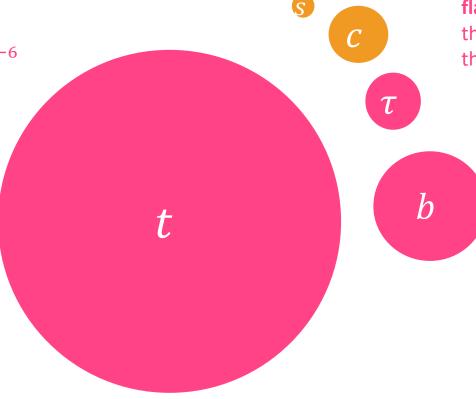

The SM Flavour Puzzle(s)

Fermion sector of SM contains many mysteries:

- 1. Why those (chiral) representations / hypercharges?
- 2. Why 3 generations?


The SM Flavour Puzzle(s)

Fermion sector of SM contains many mysteries:


- 1. Why those (chiral) representations / hypercharges?
- 2. Why 3 generations?
- 3. Why huge hierarchies in SM Yukawa couplings $y_{ij}^f \bar{f}_{L,i} H f_{R,j}$?

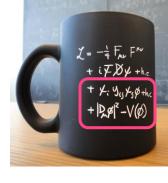
Masses: $1 \approx y_t \gg y_c \gg y_u \sim 10^{-5}$, $y_e \sim 10^{-6}$

Mixings: $V_{us} \gg V_{cb} \gg V_{ub}$

Most of the Higgs' couplings in the SM are generating flavour! Higgs is the origin also of the flavour puzzle

The SM Flavour Puzzle(s)

Fermion sector of SM contains many mysteries:


- Why those (chiral) representations / hypercharges?
- 2. Why 3 generations?
- Why huge hierarchies in SM Yukawa couplings $y_{i,i}^f \bar{f}_{L,i} H f_{R,i}$? 3.

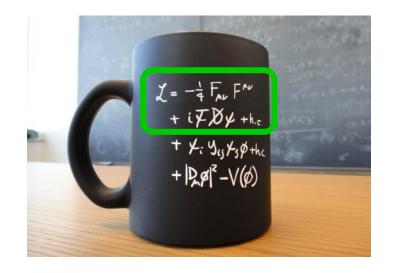
Masses: $1 \approx y_t \gg y_c \gg y_u \sim 10^{-5}$, $y_e \sim 10^{-6}$

Mixings: $V_{us} \gg V_{ch} \gg V_{uh}$

Does puzzle (3) have a dynamical explanation?

- $y_{i,i}^f$ are marginal (dimension-4) interactions: do not clearly point to a particular scale for NP explanation, unlike μ^2
- BUT since Higgs is origin of hierarchy problem & flavour puzzle: maybe they have a joint solution near TeV?

Most of the Higgs' couplings in the SM are generating flavour! Higgs is the origin also of the flavour puzzle


2. From MFV to U2

The case for flavour *non*-universal New Physics


BSM Beyond MFV

SM without Yukawas has a large $U(3)^5 = U(3)_q \times U(3)_u \times U(3)_d \times U(3)_l \times U(3)_e$ global symmetry

MFV: $U(3)^5$ broken only by $\bar{q}_{L,i} y_{ij}^u Hu_{R,j} + \cdots$

- E.g. neutral spin-1 X_{μ} couples as $L \supset X_{\mu} (\delta_{ij} + \cdots) \bar{u}_i \gamma^{\mu} u_j$
- Bounds $\Lambda_{\rm MFV} \approx 5 \div 10$ TeV driven by couplings to valence quarks e.g. $M_{W'SSM} \gtrsim 6$ TeV

BSM Beyond MFV

SM Yukawas $y_{ij}^f \bar{f}_{L,i} H f_{R,j}$ break this $U(3)^5 \to U(1)_B \times U(1)_e \times U(1)_\mu \times U(1)_\tau$;

• But only y_{33}^u is order-1

$$y_{ij}^u pprox \begin{pmatrix} & < 0.01 & 0.04 \\ & & 1 \end{pmatrix}$$
 Top Yukawa

Leaves unbroken an approximate $U(2)_q \times U(2)_u$ symmetry, with $(q_1, q_2) \sim 2$, $q_3 \sim 1$ of $U(2)_q$ etc

Imposing $U(2) \subset U(3)$ on the NP sector provides enough flavour protection to reconcile flavour bounds at the TeV: strongest constraints come from $1 \leftrightarrow 2$ flavour change (**kaon mixing**)

Barbieri et al 1105.2296, Isidori, Straub 1202.0464, Fuentes-Martin et al, 1909.02519

BSM Beyond MFV

Reasons for U(2) part 1: Lowering Λ

• U(2) is a **weaker assumption** on NP than MFV

$$C_{ij}^{\text{U2}} \sim \begin{pmatrix} a & & \\ & a & \\ & & b \end{pmatrix} + \cdots \qquad \text{vs} \qquad C_{ij}^{\text{MFV}} \sim \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix} + \cdots$$

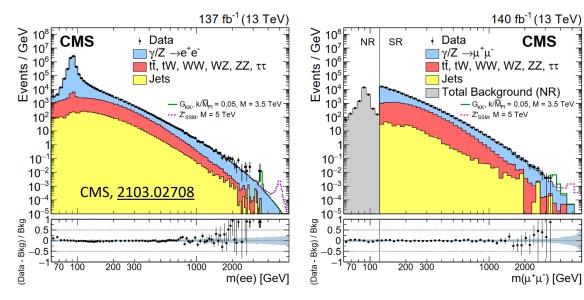
- 3rd-family alignment $a \ll b$ can reduce little hierarchy $\to \Lambda_{\mathrm{U}(2)} \approx 1 \div 2 \; \mathrm{TeV}$
- In the LHC era this allows for more natural models than with MFV

Reasons for U(2) part 2: Solving the flavour puzzle!

• Same U(2)-like non-universal BSM could explain SM and BSM flavour puzzles at same time!

$$Y^u \sim y_t \begin{pmatrix} \epsilon_c & \epsilon_{23} \\ & 1 \end{pmatrix} \quad C_X \sim \begin{pmatrix} \delta & \\ & 1 \end{pmatrix}$$

Reasons for U(2) part 1: Lowering Λ

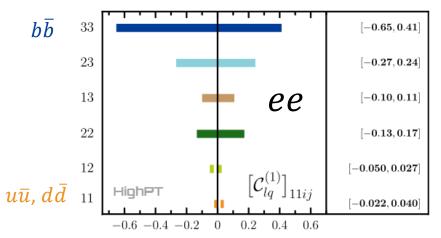

Let's review some evidence.

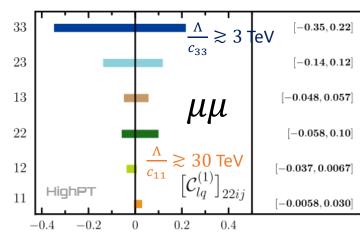
$$f_{\mathrm{U}(2)}$$
 ————

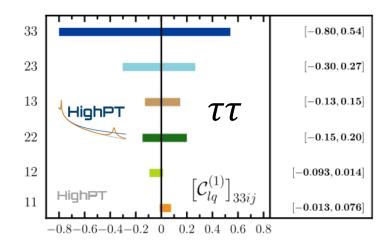
Exhibit A: High- p_T Drell-Yan tails $pp \rightarrow ll$

CMS

2000

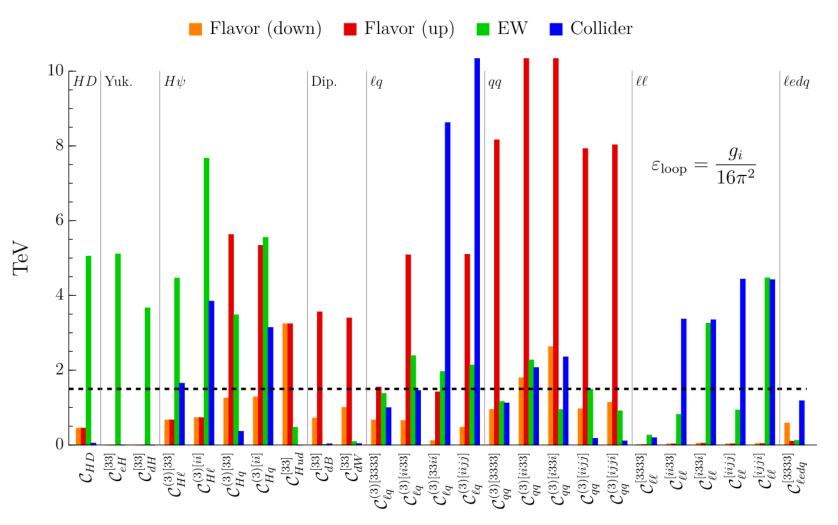




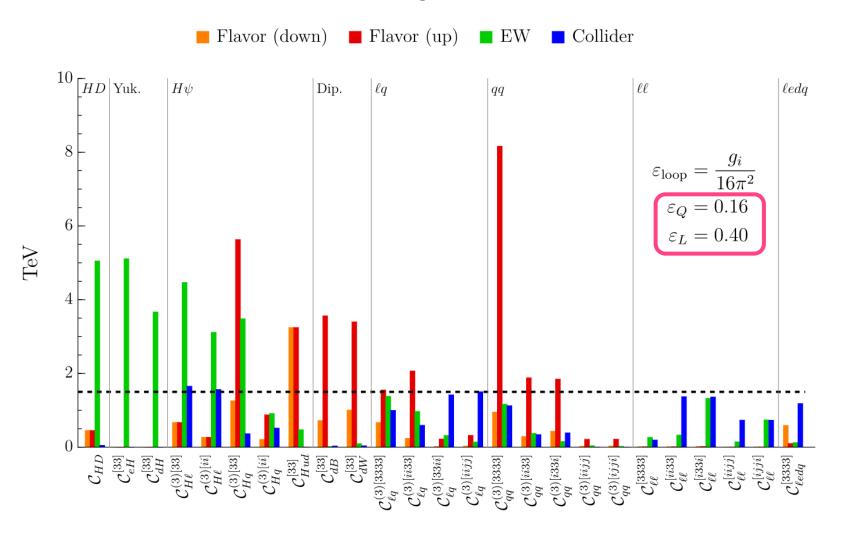

Bounds on dim-6 semi-leptonic operators:

$$L_{\rm SMEFT} \supset \frac{C_{lq}^{(1)}}{1 \, {\rm TeV^2}} \, \bar{l} \gamma^{\mu} l \, \bar{q} \gamma_{\mu} q$$

Allwicher, Faroughy, Jaffredo, Sumensari, Wilsch, 2207.10714 Allwicher, Faroughy, Jaffredo, Sumensari, Wilsch, 2207.10756



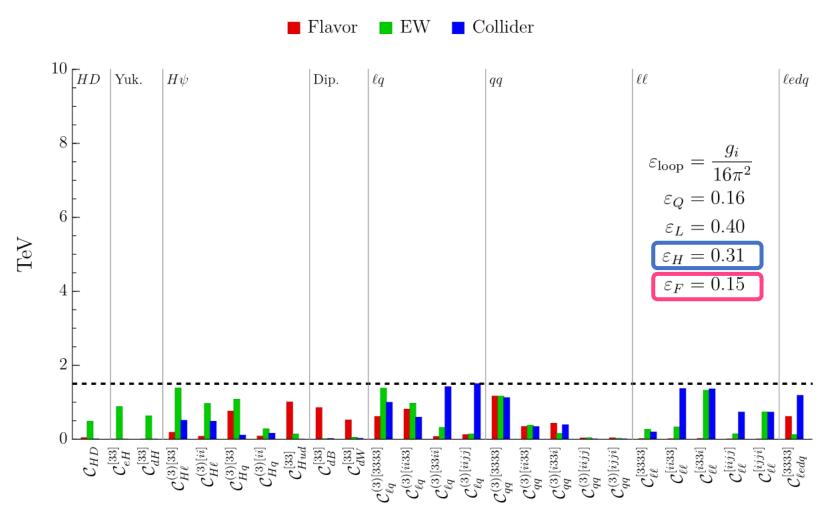
Davighi, Siegen seminar, 12th May 2025


Exhibit B: global lessons from SMEFT likelihoods

MFV-like

Allwicher, Cornella, Isidori, Stefanek, 2311.00020

Exhibit B: global lessons from SMEFT likelihoods

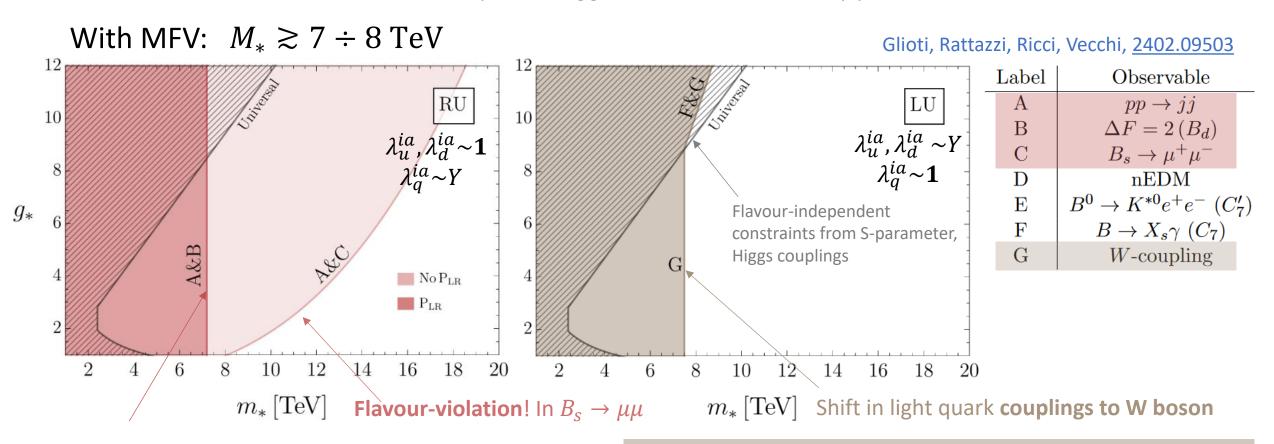


U2-like

Allwicher, Cornella, Isidori, Stefanek, 2311.00020

Mild suppression of operators with light-generation quarks and leptons

Exhibit B: global lessons from SMEFT likelihoods

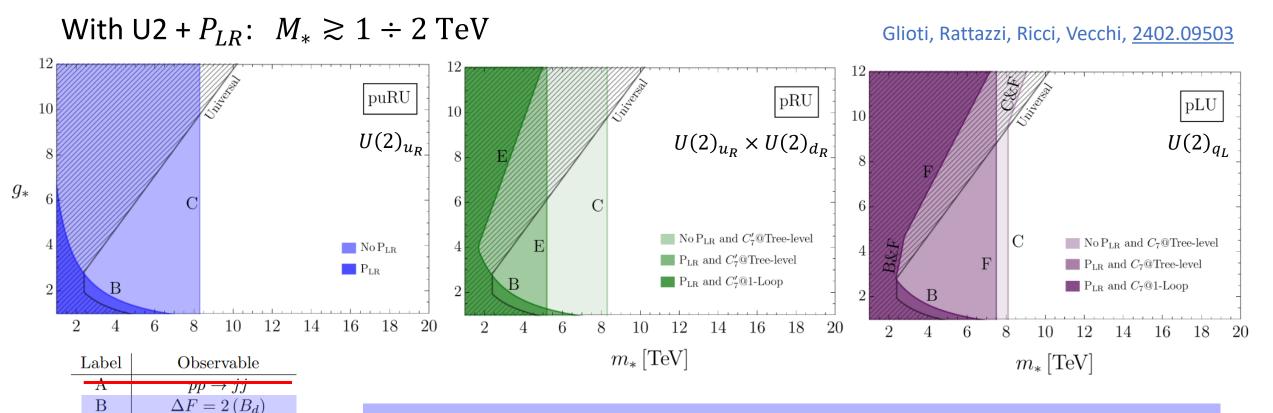

U2-like

Allwicher, Cornella, Isidori, Stefanek, 2311.00020

Mild suppression of operators with light-generation quarks and leptons

- + suppression of Higgs insertions
- + approximate down-alignment

Exhibit C: composite Higgs solutions to hierarchy problem



Di-jet constraints from **LHC**, driven by light quark couplings

 $P_{\rm LR}$ is an extension of custodial by a `left-right' exchange symmetry [kills Zb_Lb_L correction]

Strongest current bounds are driven by couplings to **light generation fermions** OR **flavour violation**, not EW constraints

Exhibit C: composite Higgs solutions to hierarchy problem

Going from MFV to U(2), we decouple the strong LHC constraints: dominant bounds now heavy-to-light quark flavour-violation + universal EW constraints

 \mathbf{C}

 \mathbf{D}

 \mathbf{F}

 $B_s \to \mu^+ \mu^$ nEDM

 $B^0 \to K^{*0} e^+ e^- (C_7')$

 $B \to X_s \gamma$ (C_7)

So far we have considered the pheno consequences of $U(2)^n$ imposed as a global symmetry

What might be the origin of this $U(2)^n$?

3. On the Origin of U2: Flavour Deconstruction

What might be the origin of this $U(2)^n$?

General hypothesis:

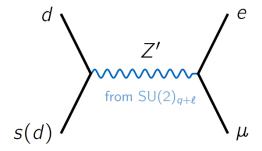
- The U(2)s manifest in Yukawas and NP couplings have common dynamical origin:
 - = accidental symmetries from a flavour non-universal [3 vs 1+2] gauge symmetry, broken \sim TeV

What might be the origin of this $U(2)^n$?

General hypothesis:

- The U(2)s manifest in Yukawas and NP couplings have common dynamical origin:
 - = accidental symmetries from a flavour non-universal [3 vs 1+2] gauge symmetry, broken \sim TeV

But what symmetry to gauge? There are many options...


Flavour non-universal gauge interactions

Horizontal Approach: $G = G_{SM} \times G_{hor} \rightarrow G_{SM}$

Froggatt, Nielsen, Nucl Phys B (1979)

Gauge some $H \subset U(2)^n \times U(1)_3^m$ directly, and break to nothing Gives a bunch of Z' bosons that can be decoupled from the Higgs (can take $g \ll 1$) But typically **flavour-violating** and so **high scale**

• Bounds e.g. from LFV decay $K_L o \mu^\pm e^\mp \Longrightarrow rac{M}{g} \gtrsim 10^{2 \div 3} \; {\rm TeV}$

Recent examples:

Allanach, Davighi, <u>1809.01158</u>; <u>1905.10327</u> Darmé, Deandrea, Mahmoudi, <u>2307.09595</u> Greljo, Thomsen, <u>2309.11547</u> Antusch, Greljo, Stefanek, Thomsen, <u>2311.09288</u> Greljo, Thomsen, Tiblom, <u>2406.02687</u>

Flavour non-universality, non-horizontally

Deconstruction Approach

$$G_1 \times G_2 \times G_{3+H} \xrightarrow{\langle \phi_{12} \rangle \sim 10^{2 \div 3} \text{ TeV}} G_{12} \times G_{3+\text{Higgs}} \xrightarrow{\langle \phi_{12} \rangle \sim 1 \text{ TeV}} G_{123} = G_{\text{SM}}$$

$$y_1 \ll y_2 \qquad \qquad y_{12} \ll y_3 \qquad \qquad y_{12} \ll y_3 \qquad \qquad y_{12} \ll y_3 \qquad \qquad y_{13} \ll y_3 \qquad \qquad y_{14} \ll y_3 \qquad \qquad$$

Li, Ma, <u>1981</u>, ... Arkani-Hamed, Cohen, Georgi <u>hep-th/0104005</u> ... Craig, Green, Katz <u>1103.3708</u> ... Bordone, Cornella, Fuentes-Martin, Isidori, <u>1712.01368</u> ... Davighi, Isidori, <u>2303.01520</u>

Can reside near 1 TeV because no direct flavour violation at the low scale

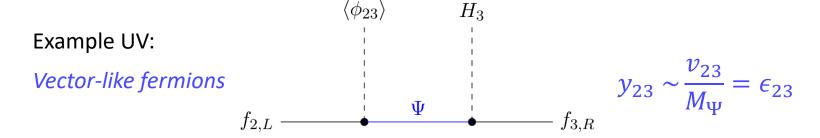
(more later...)

Flavour non-universality, non-horizontally

Deconstruction Approach

$$G_1 \times G_2 \times G_{3+\mathrm{H}} \xrightarrow{\langle \phi_{12} \rangle \sim 10^{2 \div 3} \, \mathrm{TeV}} G_{12} \times G_{3+\mathrm{Higgs}} \xrightarrow{\langle \phi_{12} \rangle \sim 1 \, \mathrm{TeV}} G_{123} = G_{\mathrm{SM}}$$

$$y_1 \ll y_2 \qquad \qquad y_{12} \ll y_3$$


$$U(2) \, \mathrm{violation} \qquad \qquad \mathrm{Universality \, violation}$$

Li, Ma, <u>1981</u>, ... Arkani-Hamed, Cohen, Georgi <u>hep-th/0104005</u> ... Craig, Green, Katz <u>1103.3708</u> ... Bordone, Cornella, Fuentes-Martin, Isidori, <u>1712.01368</u> ... Davighi, Isidori, <u>2303.01520</u>

How it explains SM flavour:

To connect 3rd family / Higgs to 2nd family, need ϕ_{23} insertion $\Rightarrow \epsilon_{23} \coloneqq \frac{v_{23}}{\Lambda_{23}}$ suppression

To connect 3rd family / Higgs to 1st family, $\phi_{12}\phi_{23}$ insertion $\Longrightarrow \frac{v_{12}}{\Lambda_{12}}\frac{v_{23}}{\Lambda_{23}}$ suppression

Flavour non-universality, non-horizontally

Deconstruction Approach

$$G_1 \times G_2 \times G_{3+\mathrm{H}} \xrightarrow{\langle \phi_{12} \rangle \sim 10^{2 \div 3} \, \mathrm{TeV}} G_{12} \times G_{3+\mathrm{Higgs}} \xrightarrow{\langle \phi_{12} \rangle \sim 1 \, \mathrm{TeV}} G_{123} = G_{\mathrm{SM}}$$

$$y_1 \ll y_2 \qquad \qquad y_{12} \ll y_3$$

$$U(2) \, \mathrm{violation} \qquad \qquad \mathrm{Universality \, violation}$$

Li, Ma, 1981, ... Arkani-Hamed, Cohen, Georgi hep-th/0104005 ... Craig, Green, Katz 1103.3708 ... Bordone, Cornella, Fuentes-Martin, Isidori, 1712.01368 ... Davighi, Isidori, 2303.01520

Further theoretical appeal:

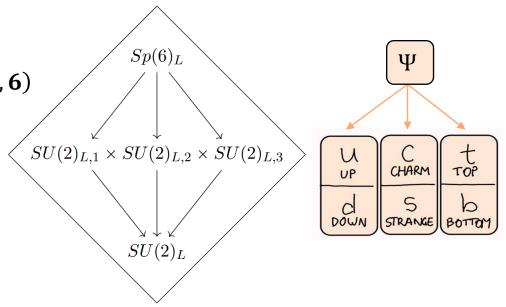
- Charge assignment and anomaly-freedom inherited from SM no *ad hoc* choices
- Breaking pattern $G_A \times G_B \to G_{A+B}$, given scalar condensate ϕ , is **generic** for simple G
 - for any scalar rep $\phi \sim (R_{12} \neq 1, R_3 \neq 1)$, you always break to the diagonal (flavour-universal) subgroup
 - ... because there is no other non-trivial subgroup embedding, by Goursat's lemma
- Easy to find semi-simple UV completions with deconstruction approach Craig, Garcia-Garcia, Sutherland, 1704.07831

• In contrast most $G_{\rm SM} \times U(1)_X$, even anomaly-free, have no semi-simple completion

Davighi, Tooby-Smith, 2206.11271

From Deconstruction to Unification

Davighi, Tooby-Smith, <u>2201.07245</u>, Davighi, <u>2206.04482</u>


Whence $G_1 \times G_2 \times G_{3+H}$? One path is to **reunify** in the UV! Using e.g. $SU(2)^{n_f} \cong Sp(2)^{n_f} \hookrightarrow Sp(2n_f)$

Electroweak flavour unification: $G_{UV} = SU(4) \times Sp(6)_L \times Sp(6)_R$

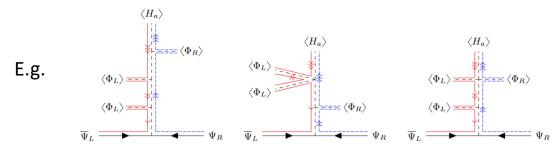
• All SM matter unified* into a single pair $\Psi_L \sim (4, 6, 1) + \Psi_R \sim (4, 1, 6)$

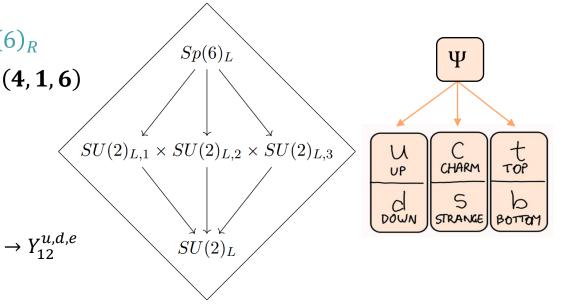
Reminder:

$$Sp(6) = \{U \in SU(6) | U^T \Omega U = \Omega\} \text{ where } \Omega = \begin{pmatrix} 0 & I_3 \\ -I_3 & 0 \end{pmatrix}$$

^{*}Very few anomaly-free options that do this!

See the classification of all embeddings of 3-flavour SM gauge algebra: Allanach, Gripaios, Tooby-Smith, 2104.14555

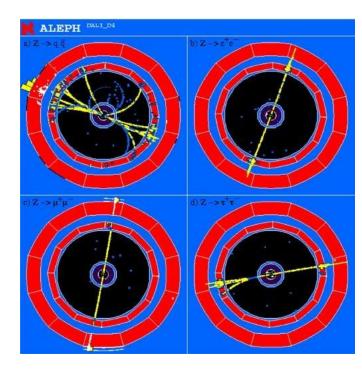

From Deconstruction to Unification

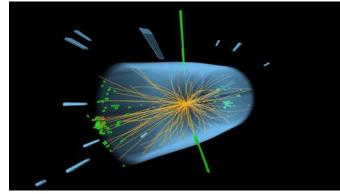

Davighi, Tooby-Smith, <u>2201.07245</u>, Davighi, <u>2206.04482</u>

Whence $G_1 \times G_2 \times G_{3+H}$? One path is to **reunify** in the UV! Using e.g. $SU(2)^{n_f} \cong Sp(2)^{n_f} \hookrightarrow Sp(2n_f)$

Electroweak flavour unification: $G_{UV} = SU(4) \times Sp(6)_L \times Sp(6)_R$

- All SM matter unified* into a single pair $\Psi_L \sim (\mathbf{4}, \mathbf{6}, \mathbf{1}) + \Psi_R \sim (\mathbf{4}, \mathbf{1}, \mathbf{6})$
- Offers a "gauge answer" to "why 3 generations?"
- Solves flavour puzzle with the minimal ingredients




Low-energy pheno matches that of deconstruction...

*Very few anomaly-free options that do this!

See the classification of all embeddings of 3-flavour SM gauge algebra: Allanach, Gripaios, Tooby-Smith, 2104.14555

4. Phenomenology of Flavour Deconstruction

Phenomenology of Flavour Deconstruction

Deconstruction approach has much richer phenomenology than the horizontal approach

 $G_{12} \times G_{3+{
m Higgs}} \rightarrow G_{123}$ gives vectors in adj G, w flavour diagonal BUT non-universal couplings

$$C_{ij} \sim g_{\rm SM} egin{pmatrix} g_{12}/g_3 & & & & \\ & g_{12}/g_3 & & & \\ & & g_3/g_{12} \end{pmatrix}, & g_{12}, g_3 \geq g_{\rm SM}. & {\sf Define } an heta = g_3/g_{12}$$

- $G_{12} \times G_{3+H} \to G_{SM}$ can occur near TeV because no flavour violation, + $g_3 \gg g_{1,2}$ U2 limit possible
- $G_{12} \times G_{3+H} \rightarrow G_{SM}$ should occur near TeV to not worsen the little hierarchy problem

$$H - --- g \left(\frac{\text{Heavy}}{\text{particle } X}\right) g - --- H$$
 $\delta m_h^2 \sim \frac{g_{\text{SM}}^2 \tan^2 \theta M^2}{16\pi^2}$

Davighi, Isidori <u>2303.01520</u> Davighi, Gosnay, Miller, Renner <u>2312.13346</u> + ...

Davighi, Isidori <u>2303.01520</u>

	Deconstructed force	SU(3)	$SU(2)_L$	$SU(2)_R$	$U(1)_{Y}$	$U(1)_{B-L}$
Flavour	$ V_{cb} \ll 1$	\checkmark	\checkmark	×	\checkmark	✓
	$y_i \ll y_3$	×	✓	\checkmark	\checkmark	×
EW	Natural upper limit of $ \tan \theta M$	90 TeV	20 TeV	40 TeV	40 TeV	500 TeV
	EWPOs order	1-loop	Tree	Tree	Tree	1-loop

$$\begin{pmatrix} \times & \times \\ \times & \times \end{pmatrix}$$

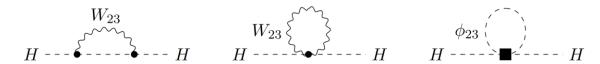
Davighi, Isidori <u>2303.01520</u>

	Deconstructed force	SU(3)	$SU(2)_L$	$SU(2)_R$	$U(1)_{Y}$	$U(1)_{B-L}$
Flavour	$ V_{cb} \ll 1$	√	√	×	√	√
	$y_i \ll y_3$	×	✓	✓	✓	×
EW	Natural upper limit of $ \tan \theta M$	90 TeV	20 TeV	40 TeV	40 TeV	500 TeV
	EWPOs order	1-loop	Tree	Tree	Tree	1-loop

"EWPO"s:

	Observable	Definition
	Γ_Z	$\sum_f \Gamma(Z \to f\bar{f})$
	$\sigma_{ m had}$	$\frac{12\pi}{m_Z} \frac{\Gamma(Z \to e^+ e^-) \Gamma(Z \to q\bar{q})}{\Gamma_Z^2}$
	$R_f \ (f = e, \mu, \tau, c, b)$	$rac{\Gamma(Z o far{f})}{\sum_q\Gamma(Z o qar{q})}$
Z-pole	$A_f (f = e, \mu, \tau, s, c, b)$	$\frac{\Gamma(Z \to f_L \bar{f}_L) - \Gamma(Z \to f_R \bar{f}_R)}{\Gamma(Z \to f \bar{f})}$
	$A_{\rm FB}^{0,\ell} \ (\ell = e, \mu, \tau)$	$rac{3}{4}A_eA_\ell$
	$A_q^{\text{FB}} \ (q = c, b)$	$\frac{3}{4}A_eA_q$
	R_{uc}	$\frac{\Gamma(Z \to u\bar{u}) + \Gamma(Z \to c\bar{c})}{2\sum_q \Gamma(Z \to q\bar{q})}$
	m_W	•
W-pole	Γ_W	$\sum_{f_1, f_2} \Gamma(W \to f_1 f_2)$
W-pole	$\text{Br}(W \to \ell \nu) \ (\ell = e, \mu, \tau)$	
	R_{W_c}	$\frac{\Gamma(W \to cs)}{\Gamma(W \to ud) + \Gamma(W \to cs)}$

$$\begin{pmatrix} \times & \times \\ \times & \times \end{pmatrix}$$

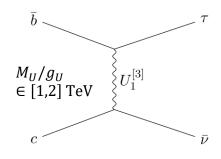

LEP-1 and SLC

LEP-2, Tevatron, and LHC

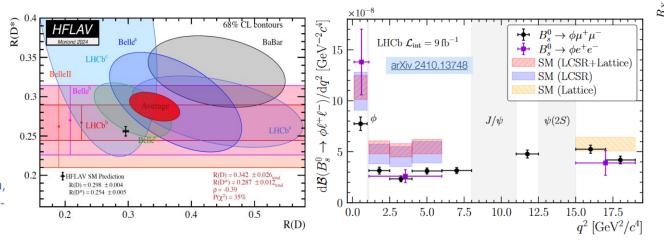
Davighi, Isidori <u>2303.01520</u>

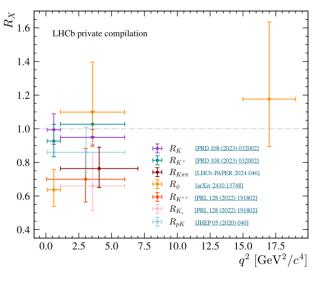
	Deconstructed force	SU(3)	$SU(2)_L$	$SU(2)_R$	$U(1)_Y$	$U(1)_{B-L}$
Flavour	$ V_{cb} \ll 1$	\checkmark	√	×	√	√
	$y_i \ll y_3$	×	✓	\checkmark	\checkmark	×
→ EW	Natural upper limit of $ \tan \theta M$	90 TeV	20 TeV	40 TeV	40 TeV	500 TeV
	EWPOs order	1-loop	Tree	Tree	Tree	1-loop
	$Y \sim \begin{pmatrix} \times \\ \times \end{pmatrix}$	× × ×	$\begin{pmatrix} & & \\ \times & \times & \times \end{pmatrix}$	(×) (× × × × × × × × × × × × × × × × × ×

"Finite naturalness" limits on M_X from requiring the finite part of $\delta m_h^2 \lesssim 1~{
m TeV^2}$


General Lesson

- Need to deconstruct part of the EW symmetry to explain the flavour puzzle (because Higgs is colourless)
- Automatically implies 1-loop δm_h^2 and tree-level δ EWPOs


Davighi, Isidori <u>2303.01520</u>

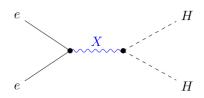

	Deconstructed force	SU(3)	$SU(2)_L$	$SU(2)_R$	$U(1)_Y$	$U(1)_{B-L}$
Flavour	$ V_{cb} \ll 1$	\checkmark	\checkmark	×	√	√
	$y_i \ll y_3$	×	\checkmark	\checkmark	✓	×
EW	Natural upper limit of $ \tan \theta M$	90 TeV	20 TeV	40 TeV	40 TeV	500 TeV
	EWPOs order	1-loop	Tree	Tree	Tree	1-loop

Aside: If enlarge $SU(3)^{[3]} \to SU(4)^{[3]}$, can also explain $b \to c\tau\nu$ anomalies in $R_{D^{(*)}}$ & $bs\mu\mu$ via '4-3-2-1' models

Buttazzo, Greljo, Isidori, Marzocca, 1706.07808; Di Luzio, Greljo, Nardecchia, 1708.08450; Bordone, Cornella, Fuentes-Martin, Isidori, 1712.01368; Greljo, Stefanek, 1802.04274; Di Luzio, Fuentes-Martin, Greljo, Nardecchia, Renner, 1808.00942; Fuentes-Martin, Stangl, 2004.11376 ...

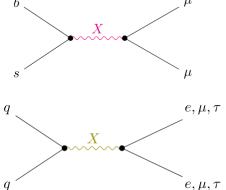
Experimental hints for deconstruction near TeV?

LHCb Implications 2024

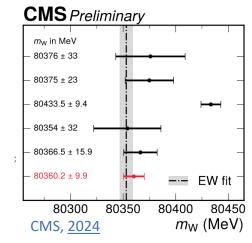

Phenomenology of Deconstructed EW Forces

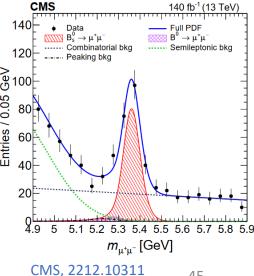
 $DU(1)_V$: Davighi, Stefanek 2305.16280;

 $DSU(2)_T$: Davighi, Gosnay, Miller, Renner 2312.13346 + ...

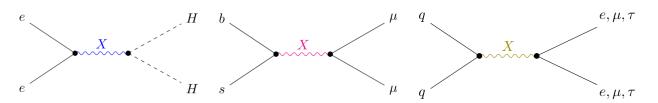

EWPOs: tree-level shifts in \mathbb{Z}/\mathbb{W} -pole means EW constraints often strongest!

• A key observable is m_W : $\mathrm{D}SU(2)_L \Rightarrow \delta m_W < 0$; $\mathrm{D}U(1)_Y \Rightarrow \delta m_W > 0$

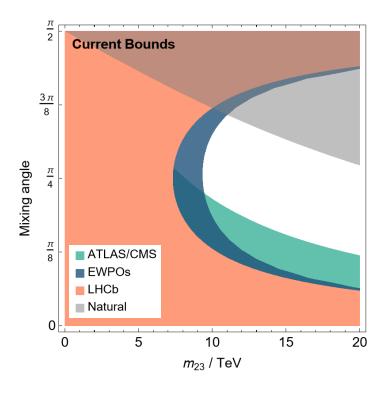

Flavour: key observable is $BR(B_s \to \mu^+\mu^-)$, measured precisely at LHC


• B_S mixing strictly subleading in these models

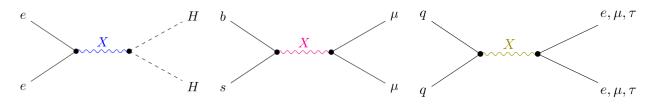
LHC high p_T : driven by valence-quark couplings


• Favours $g_3 \gg g_{12}$ region i.e. $\theta \to \pi/2$

Phenomenology of Deconstructed EW Forces

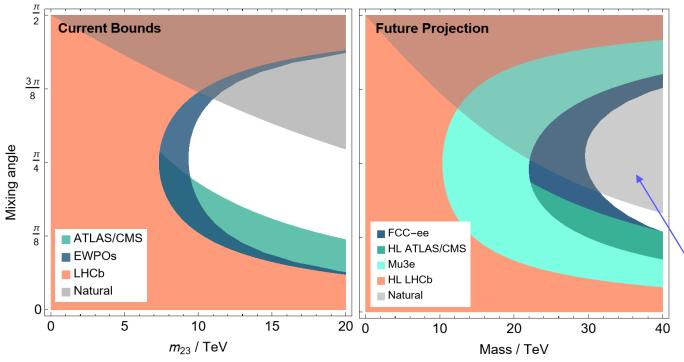

Davighi, Gosnay, Miller, Renner 2312.13346 + ...

See also Capdevila, Crivellin, Lizana, Pokorski 2401.00848



[pheno of Electroweak Flavour Unification]

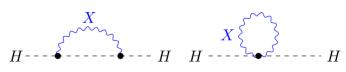
Phenomenology of Deconstructed EW Forces


Davighi, Gosnay, Miller, Renner 2312.13346 + ...

See also Capdevila, Crivellin, Lizana, Pokorski 2401.00848

Ex: $Sp(6)_L \rightarrow SU(2)_L^3 \rightarrow SU(2)_L$

[pheno of Electroweak Flavour Unification]



Showcases complementarity of FCC and HL

- HL-LHC Drell—Yan and Mu3e rule out impressive parameter space in the medium term before FCC-ee
- Tera-Z EW precision programme can cover entire natural parameter space
- Tau LFUV alone at FCC-ee probes 11 TeV

$$\delta m_h^2 \sim \frac{g_{\rm SM}^2 \tan^2 \theta M^2}{16\pi^2} > \text{TeV}^2$$

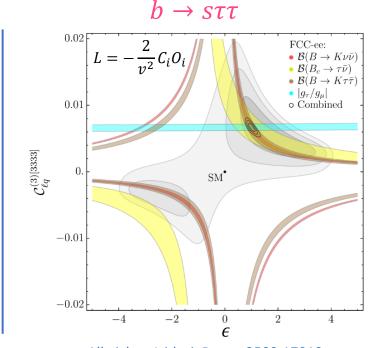
worsens hierarchy problem...

Aside: Flavour Opportunities at FCC-ee

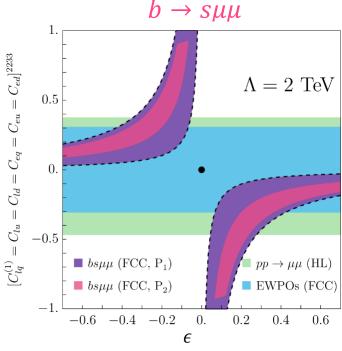
Monteil, Wilkinson, 2106.01259

Particle production (10 ⁹)	B^0/\overline{B}^0	B^+/B^-	B_s^0/\overline{B}_s^0	B_c^+/\overline{B}_c^-	$\Lambda_b/\overline{\Lambda}_b$	$c\overline{c}$	$\tau^+\tau^-$
Belle II	27.5	27.5	n/a	n/a	n/a	65	45
FCC-ee	620	620	150	4	130	600	170

- Vs. B factories: tera-Z statistics \rightarrow 15x (at least...) more $b\bar{b}$ pairs than Belle II + BOOSTED!
- Vs. LHC: clean environment → precision measurements with neutrinos (taus)


FCC-ee flagships

1. $B \to K^* \tau \tau$ new frontier!


2. $B_c \rightarrow \tau \nu$ new frontier!

3. $b \rightarrow s\bar{\nu}\nu$ 10% to 1% precision

Kamenik, Monteil, Semkiv, Vale Silva <u>1705.11106</u>
Miralles, <u>Thesis 2024</u>
Amhis, Hartmann, Helsens, Hill, Sumensari, <u>2105.13330</u>
Zuo, Fedele, Helsens, Hill, Iguro, Klute, <u>2305.02998</u>
Amhis, Kenzie, Reboud, Wiederhold, 2309.11353

Allwicher, Isidori, Pesut, 2503.17019

Bordone, Cornella, Davighi, 2503.22635

Phenomenology of EW Flavour Deconstruction

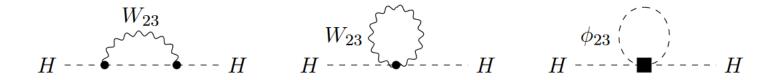
Summary $DU(1)_Y$ vs. $DSU(2)_L$:

	Deconstructed $SU(2)_L$	Deconstructed $U(1)_Y$
Electroweak: Z-pole & W-pole	9 TeV (5 TeV if exc. m_W)	2 TeV
Flavour: $B_s \rightarrow \mu\mu$ (up-alignment)	7.5 TeV	2 TeV
High p_{T} : Drell–Yan pp $ ightarrow$ ee, $\mu\mu, au au$	4.5 TeV	3.5 TeV
EW projection FCC-ee: on and off Z-pole & W-pole	30 TeV	7 TeV

Davighi, Gosnay, Miller, Renner 2312.13346

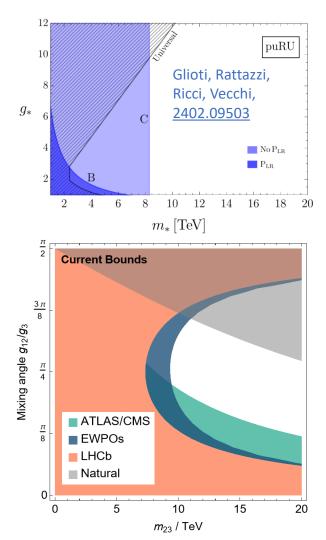
Davighi, Stefanek 2305.16280

5. Deconstructing the Composite Higgs


Covone, Davighi, Isidori, Pesut, <u>2407.10950</u>

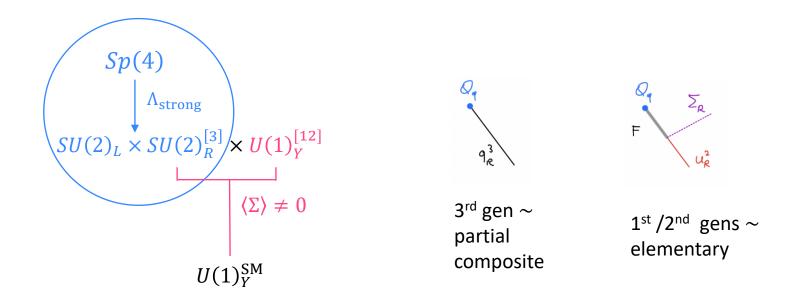
Back to the Hierarchy Problem

We saw that U2 is needed for $1 \div 2$ TeV comp Higgs solution to hierarchy problem


We also saw that flavour deconstruction can deliver U2 + solve flavour puzzle near TeV

- ... but EWPOs + flavour + high pT push us to regions with large finite δm_h^2
- Motivates us to solve the hierarchy problem simultaneously

→ **Joint solution** near TeV of hierarchy problem & flavour puzzle?


Maybe the flavour deconstruction can even help reduce little hierarchy in CH?

Covone, Davighi, Isidori, Pesut, <u>2407.10950</u>

Flavour deconstruction can be combined with Comp Higgs at $\sim 2 \text{ TeV}$:

- Delivers gauge explanation for U(2) needed to reduce little hierarchy
- Compositeness cures large hierarchy problem
- Explains SM flavour puzzle in same dynamical step(s)!

Covone, Davighi, Isidori, Pesut, 2407.10950

Flavour deconstruction can be combined with Comp Higgs at $\sim 2 \text{ TeV}$:

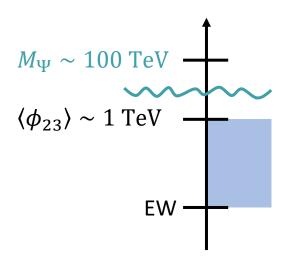
- Delivers gauge explanation for U(2) needed to reduce little hierarchy
- Compositeness cures large hierarchy problem
- Explains SM flavour puzzle in same dynamical step(s)!
- Higgs potential:

$$m_h^2 = \frac{1}{16\pi^2} \left[4n_c y_t^2 M_T^2 - \frac{9}{2} g_{R,3}^2 M_\rho^2 \left(1 - \frac{2M_{W_R}^2}{M_\rho^2} \right) \right]$$

Deconstruction helps the CHM be more natural!

- Gauge coupling $g_{R,3}^2$ can be pumped up w.r.t SM g_Y to better cancel top contribution to m_h^2
- Numerically, this allows top partner to be heavier ($M_T > 1.5 \, {
 m TeV}$), better compatibility with direct searches

CH makes deconstruction more predictive! (+ natural)


- Require $2M_{W_R}^2 < M_{\rho}^2$ to avoid sign flip in m_h^2 , i.e. deconstruction bosons must be sufficiently light
- Experiment dictates $M_{W_R} > \text{few TeV}$. Squeezed!

Covone, Davighi, Isidori, Pesut, 2407.10950

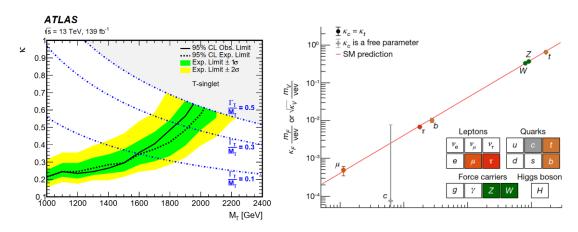
Flavour deconstruction can be combined with Comp Higgs at ~ 2 TeV:

- Delivers gauge explanation for U(2) needed to reduce little hierarchy
- Compositeness cures large hierarchy problem
- Explains SM flavour puzzle in same dynamical step(s)!
- Higgs potential:

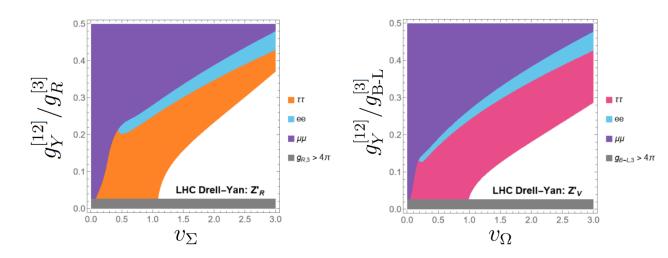
$$m_h^2 = \frac{1}{16\pi^2} \left[4n_c y_t^2 M_T^2 - \frac{9}{2} g_{R,3}^2 M_\rho^2 \left(1 - \frac{2M_{W_R}^2}{M_\rho^2} \right) \right]$$

Deconstruction helps the CHM be more natural!

- Gauge coupling $g_{R,3}^2$ can be pumped up w.r.t SM g_Y to better cancel top contribution to m_h^2
- Numerically, this allows top partner to be heavier ($M_T > 1.5 \text{ TeV}$), better compatibility with direct searches


CH makes deconstruction more predictive! (+ natural)

- Require $2M_{W_R}^2 < M_{\rho}^2$ to avoid sign flip in m_h^2 , i.e. deconstruction bosons must be sufficiently light
- Experiment dictates $M_{W_R} > \text{few TeV}$. Squeezed!
- To explain $y_2 \ll y_3$, need $M_\Psi > \text{few } 100 \text{ TeV}$. Now this gives no radiative contribution to Higgs mass thanks to compositeness at lower scale \odot


Covone, Davighi, Isidori, Pesut, <u>2407.10950</u>

Phenomenology resembles that of minimal CHM with U2 x deconstructed gauge bosons

- Modified HWW and HZZ
- Top partners et al
- Universal shifts in EWPOs

- Flavour e.g. $B \to X_S \gamma$ particularly strong
- LHC Drell—Yan
- Non-universal shifts in EWPOs

Viable benchmark:

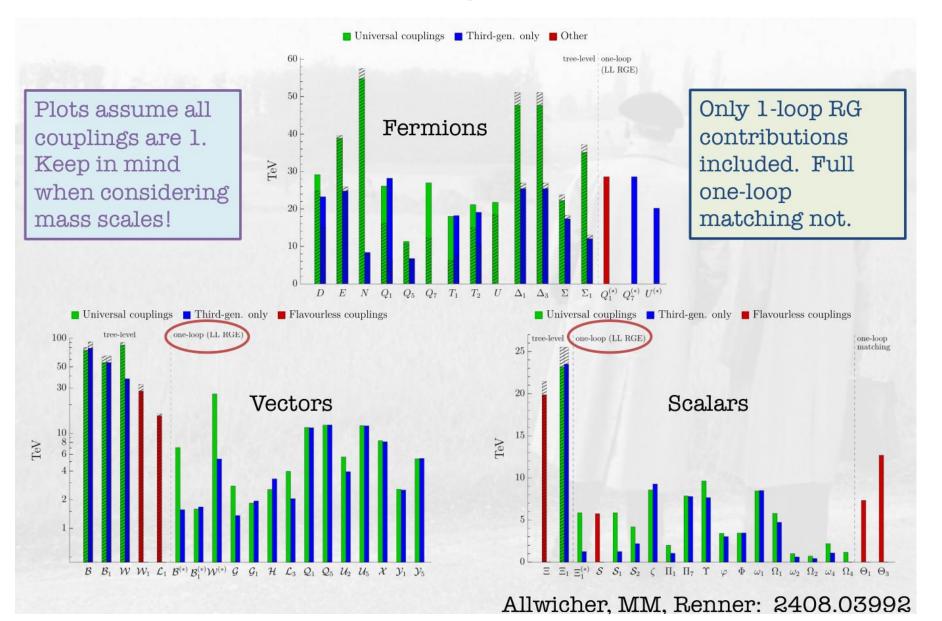
- Large $g_{R,3} \sim 1$
- Light top partner $M_T \approx 2$ TeV; spin-1 resonance $M_{
 ho} \approx 10$ TeV
- Deconstruction scale $v_{\Sigma} \approx 3 \text{ TeV}$
- Order 5% tuning in Higgs mass

Conclusions

The Higgs remains a central motivation for high-energy BSM. Flavour cannot be overlooked.

Pre-LHC: postpone flavour and solve the hierarchy problem with MFV

New vision: an intrinsically flavour non-universal approach can


- 1. Emerge from interesting new gauge-flavour unified theories
- 2. Render m_h more natural e.g. in composite Higgs framework
- 3. Simultaneously unlock the flavour puzzle e.g. by flavour deconstruction
- 4. ... and has rich phenomenology: great potential at HL-LHC and FCC-ee is just beginning to be explored

Thank you!

Backup

EWPOs at tera Z probe most BSM to few TeV

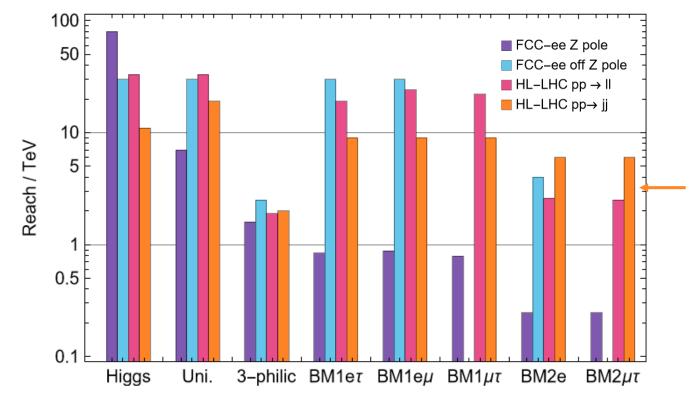
Allwicher, McCullough, Renner, 2408.03992

Celada, Hoeve, Mantani, Rojo, Rossia, Thomas, Vryonidou, <u>2404.12809</u>;

Hoeve, Mantani, Rojo, Rossia, Vryonidou, 2502.20453

Slide from Matthew McCullough @ CERN EP/TH Faculty Meeting, Sep 2024

... with ≈ 1 exception


Davighi, 2412.07694

Z' extension, from a gauged U(1), avoids running into EWPOs at 1-loop for the anomaly-free charges:

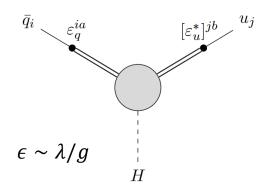
•
$$(U_1, U_2, U_3) = (X_u, -X_u, 0), X_u = p^2 + q^2$$

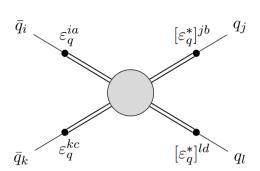
•
$$(D_1, D_2, D_3) = (X_d, -X_d, 0), X_d = p^2 + 2pq - q^2$$

•
$$(E_1, E_2, E_3) = (X_e, -X_e, 0),$$
 $X_e = -p^2 + 2pq + q^2$

Models that are "invisible" on the Z pole are very visible at LHC!

How to generate flavour in Composite Higgs Models?


The problem with elementary fermions: $L_{\rm strong} \supset \frac{1}{\Lambda^{d-1}} \bar{q} O_H u + \Lambda^{4-d'} O_H O_H^\dagger + \frac{1}{\Lambda^2} (\bar{q} q)^2$ Cannot have Λ low due to flavour bounds


 O_H is a composite scalar operator with quantum numbers of Higgs. Want $d \approx 1$ to get large top Yukawa

Want $O_H O_H^{\dagger}$ to be irrelevant! But $d \approx 1$ (quasi-free) implies $d' \approx 2d \approx 2$

Partial Compositeness is a solution: $L \supset \lambda_q^{ia} \bar{q}_i O_a^q + \lambda_u^{ia} \bar{u}_i O_a^u + \bar{O}_a^q O_H O_b^u$

Kaplan, <u>1991</u> Review: Panico, Wulzer, 1506.01961

Yukawa couplings now generated by **relevant** operators

Flavour from Anarchy?

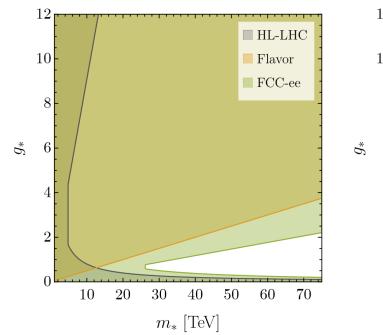
Partial compositeness even promised a dynamical solution to flavour puzzle:

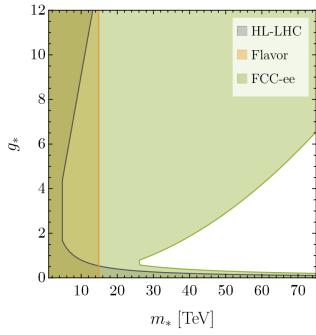
- The $\lambda_q^{ia} \bar{q}_i O_a^q$ mixing operators run with scale
- If λ_q^{ia} anarchic at high scale $\Lambda_{\rm high}$, slight differences in anomalous dimensions of O_a^q transmute to exponential hierarchies in the resulting "proto-Yukawas" at scale m_*

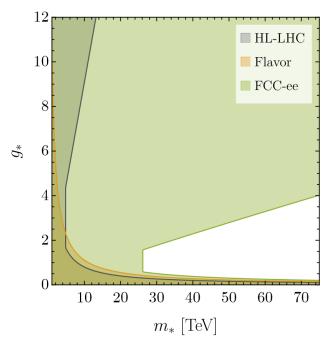
$$\lambda_{\psi}^{ia}(m_*) \simeq \lambda_{\psi}^{ia}(\Lambda) \left(\frac{m_*}{\Lambda}\right)^{\gamma_{\psi}^a} \equiv \lambda_{\psi}^{ia}(\Lambda) e^{-\gamma_{\psi}^a L}, \qquad L \equiv \ln \Lambda/m_*$$

- BUT this entails large flavour violation also at m_st
- Strongest bound from neutron EDM $\Rightarrow M_* \gtrsim 20 \div 25 \text{ TeV}$

[Even assuming 1-loop suppressed quark dipole operators]

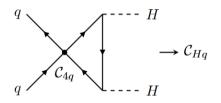

- Such a high scale degrades this as a solution to the hierarchy problem AND is untestable in colliders
- We **need** a flavour symmetry to bring down m_st


Composite Higgs @ HL-LHC, FCC-ee


FCC-ee "tera-Z" run: approx. 10^5 times LEP dataset on Z-pole

Stefanek, 2407.09593

With this precision, RG-running into EWPOs at 1-loop (and even 2-loop) is crucially important

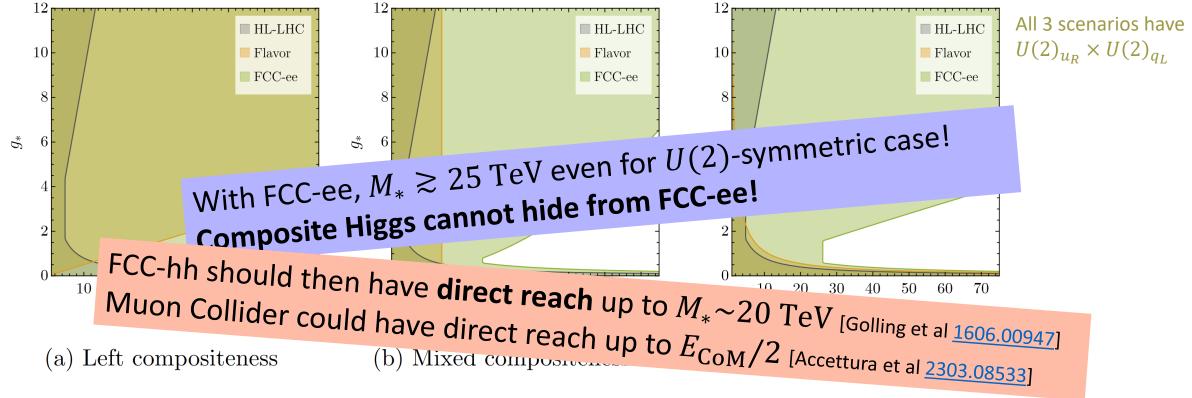

All 3 scenarios have $U(2)_{u_R} \times U(2)_{q_L}$

(a) Left compositeness

(b) Mixed compositeness

(c) Right compositeness

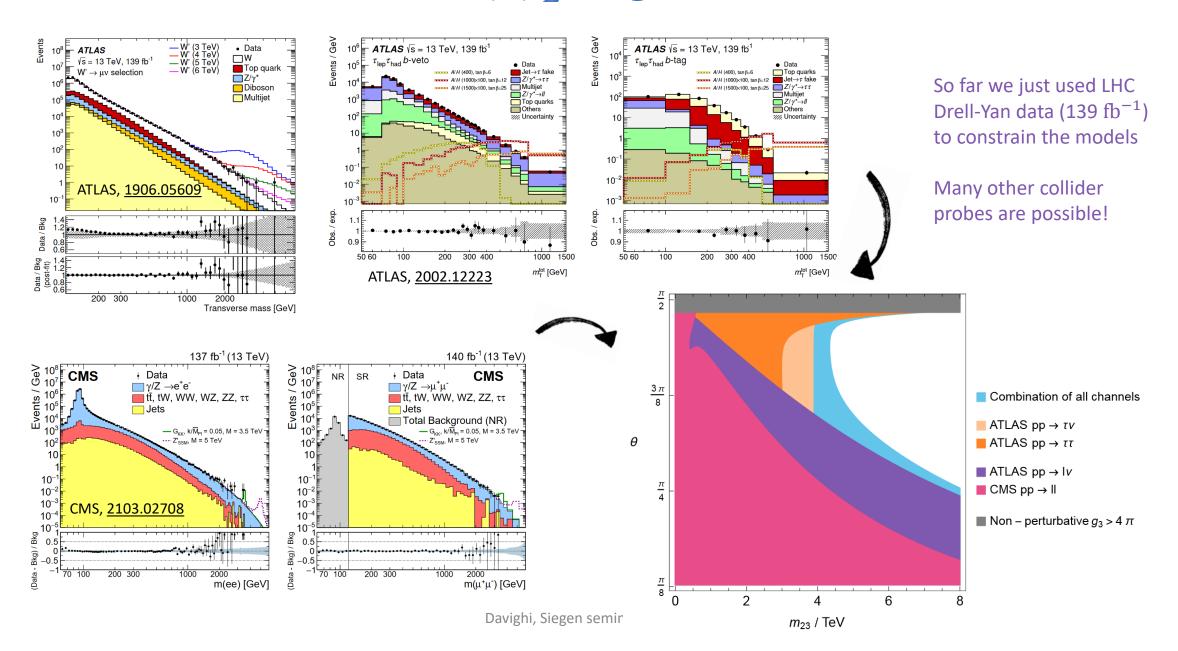
All sectors contribute to EWPO bounds at this precision, including e.g. 4 top operators which shift m_W at NLL


Even current EWPOs give stronger constraint on $O_{tt} \sim (t\bar{t})^2$ than LHC $pp \rightarrow t\bar{t}$ and $pp \rightarrow t\bar{t}t\bar{t}$ measurements!

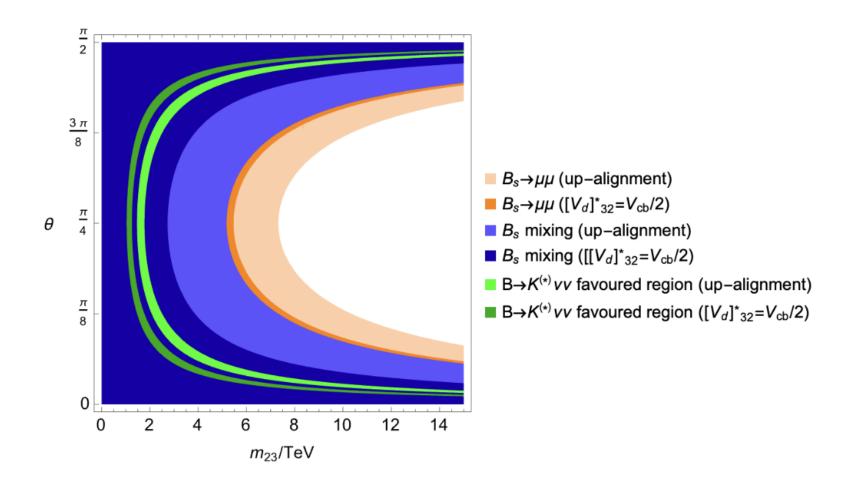
Composite Higgs @ HL-LHC, FCC-ee

FCC-ee "tera-Z" run: approx. 10^5 times LEP dataset on Z-pole

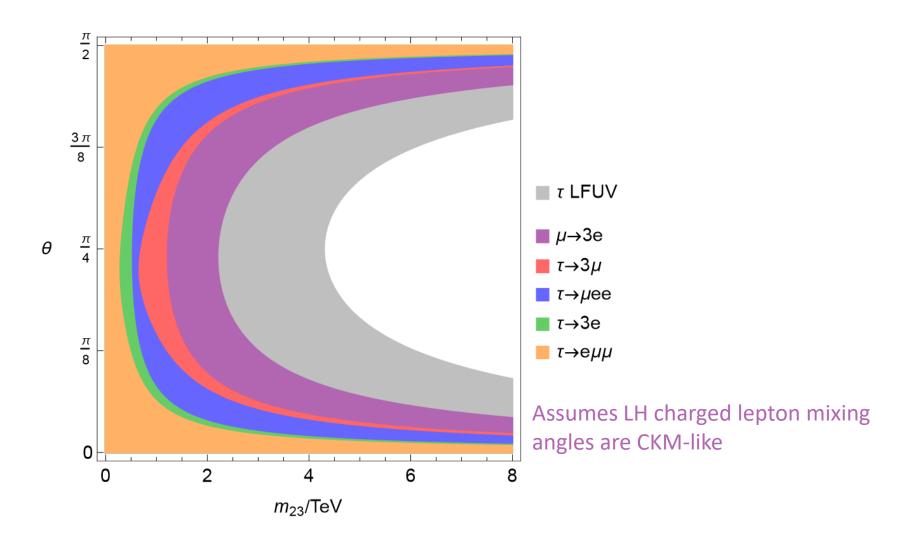
Stefanek, 2407.09593


With this precision, RG-running into EWPOs at 1-loop (and even 2-loop) is crucially important

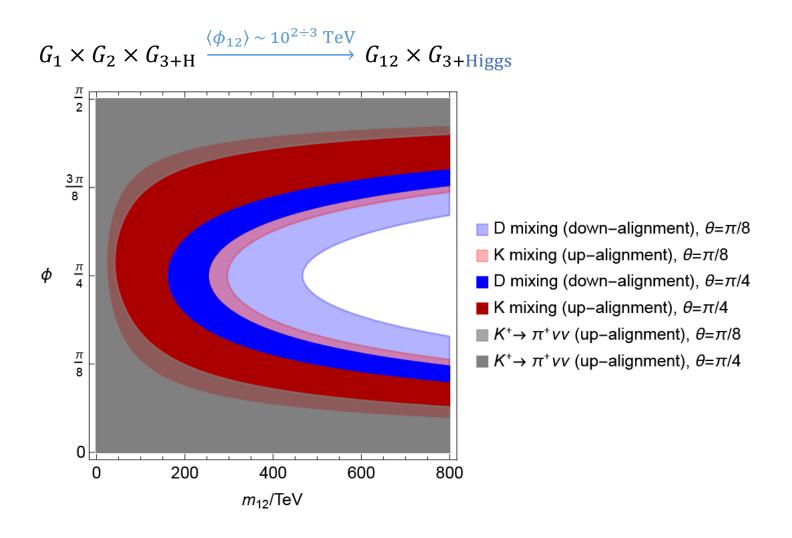
All sectors contribute to EWPO bounds at this precision, including e.g. 4 top operators which shift m_W at NLL



Deconstructed $SU(2)_L$: High mass LHC constraints



Deconstructed $SU(2)_L$: B-physics constraints

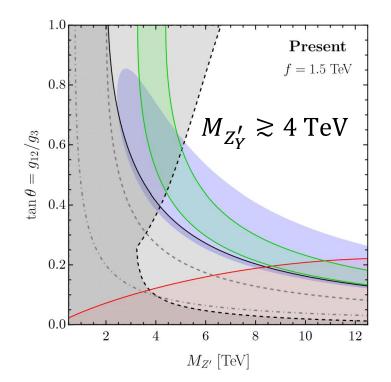

Davighi, Gosnay, Miller, Renner 2312.13346

Deconstructed $SU(2)_L$: charged lepton constraints

Deconstructed $SU(2)_L$: constraints on the 1-2 breaking

Deconstructed $U(1)_Y$

See also Fernández Navarro, King <u>2305.07690</u> Allanach, Davighi <u>1809.01158</u>


Davighi, Stefanek 2305.16280

More natural model; double benefit from $g_Y \sim g_L/2$ (roughly x2 smaller δm_h^2 , roughly x2 smaller NP effects)

	Flavour (mixing, $bs\mu\mu$)	LHC Drell-Yan $pp o ll$	Electroweak Precision
$U(1)_{Y,12} \times U(1)_{Y,3}$	$O_{qq}^{(1)}$, O_{dd} , $O_{lq}^{(1)}$, O_{qe} ,	$O_{lq}^{(1)}$, O_{qe} , O_{eu} , O_{ed} ,	$O_{Hq}^{(1)}, O_{Hl}^{(1)}, O_{He},, O_{HD}$

LL 4-quark operators especially small thanks to $Y_O g_Y \sim 1/18$

+ve shift in M_W currently preferred by EW fit (even ignoring CDF II measurement)

- B_S mixing (with up-alignment! Suppressed by $Y_O g_Y$)
- $B_s \to \mu\mu$ exclusion (strong-ish because our $bs\mu\mu$ is $\approx C_{10}$)
- Electroweak fit (1 sigma) using a new M_W average
- ——— Electroweak fit (2 sigma exclusion) excluding CDF II M_W
- ---- High p_T exclusion (recast of $pp \rightarrow ee$, μμ, ττ searches)
- ——— Percent tuning in M_h^2
- A "natural" explanation of fermion mass hierarchies