

The hunt for high frequency gravitational waves — GravNet —

Kristof Schmieden, CPPS Seminar Siegen, 10/06/2025

Istituto Nazionale di Fisica Nucleare

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

© ICREA

About Me

- Phd: ATLAS
 - Pixel Detector, Muon System
 - Weak mixing angle
- Junior Faculty (2015-2020)
- - ATLAS
 - FASER
 - Supax + GravNet

 - ATLAS
 - Central Trigger
 - Operations
- SM precision, Higgs-> $\gamma\gamma$
- Light-by-Light scattering • Axion Like particles
- FASER • DAQ

• Standard model precision measurements

• ALPs, Axions, Gravitational Waves

• CERN Fellow + 5 year Staff (until 2020)

 Scientific staff (recently) • GW + Axions GravNet

• ATLAS

Focus of this talk

Our (incomplete) view of the universe

Gravitational waves probe all components and may come from the early universe

Kristof Schmieden

Gravitational Waves

2016 breakthrough in fundamental physics:

Observation of gravitational waves by LIGO / Virgo

PRL 116, 061102 (2016)

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

Ş **Observation of Gravitational Waves from a Binary Black Hole Merger**

Culture

B. P. Abbott et al.* (LIGO Scientific Collaboration and Virgo Collaboration) (Received 21 January 2016; published 11 February 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10^{-21} . It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the

Lifestyle

The New York Times

Gravitational Waves Detected, **Confirming Einstein's Theory**

Gravitational waves: breakthrough discovery after a century of expectation

Scientists announce discovery of clear gravitational wave signal, ripples in spacetime first predicted by Albert Einstein

Kristof Schmieden

4

week ending 12 FEBRUARY 2016

• 9 years later:

- 90 observed GW events, > 200 Candidate events
- Able to start statistical analysis
- New observational window into the universe established

Kristof Schmieden

[https://dcc.ligo.org/LIGO-G2102395/public]

• 2023: First observation of GW in pulsar timing array data

• Very low frequency: 10^{-8} Hz

What about high frequency GWs?

[Gabriella Agazie et al 2023 ApJL 951 L8]

THE ASTROPHYSICAL JOURNAL LETTERS, 951:L8 (24pp), 2023 July 1 © 2023. The Author(s). Published by the American Astronomical Society. OPEN ACCESS https://doi.org/10.3847/2041-8213/acdac6

The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background

Gabriella Agazie¹^(b), Akash Anumarlapudi¹^(b), Anne M. Archibald²^(b), Zaven Arzoumanian³, Paul T. Baker⁴^(b), Bence Bécsy⁵^(b), Laura Blecha⁶^(b), Adam Brazier^{7,8}^(b), Paul R. Brook⁹^(b), Sarah Burke-Spolaor^{10,11}^(b), Rand Burnette⁵, Robin Case⁵, Maria Charisi¹²^(b) Shami Chatteriee⁷^(b) Katerina Chatziioannou¹³^(b) Belinda D. Cheeseboro^{10,11} Siyuan Chen¹⁴^(b)

$\mathsf{PTA} \ 10^{-8} \mathsf{Hz}$

Kristof Schmieden

- High frequency gravitational wave (HFGW) sources
 - Could explain dark matter
 - No astrophysical backgrounds
 - (No known sources)
- Very weak existing limits for
 - f = 1 MHz ... 10 GHz

GravNet:

Dedicated effort probing high frequency gravitational waves using cavity resonators

What are gravitational waves?

Cosmological constant * metric tensor

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = \kappa T_{\mu\nu}$$

Energy-Momentum tensor

Einstein tensor

$$G_{\mu
u}\equiv R_{\mu
u}-rac{1}{2}R\,g_{\mu
u}$$

- Wave solution of Einstein equations:
 - 2 Polarisations

Quadrupole structure

Kristof Schmieden

Maxwell equations on variably curved space time

Periodic compression of B-field $\propto hB$

$$\rightarrow \overrightarrow{\nabla} \times \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t} \neq 0$$

$$E_{x} \simeq = \frac{A_{+}}{2} B_{y}^{0} e^{i(k_{g}z - \omega_{g}t)} = \frac{h_{+}}{2} B_{y}^{0}$$

Two polarisations of GW \bullet

$$h_{+} = A_{+} e^{i(k_{g}z - \omega_{g}t)}, h_{\times} = iA_{\times} e^{i(k_{g}z - \omega_{g}t)}$$

Gravitational & Electromagnetic Waves

• GW leads to source of **effective current** in Maxwell's equation

 $j_{eff} \propto \omega_g h B_0 e^{i(k_g z - \omega_g t)}$

Conversion of GW energy into Photons and vice-versa!

• => **GW can excite EM field** within RF resonator!

• If signal duration long enough: exploit resonance enhancement

Kristof Schmieden

Gravitational Waves & Haloscopes

- Direct conversion of GW to photons: **inverse Gertsenshtein effect**
 - Gertsenshtein effect described 1962
 - Inverse effect calculated in 70ies [Ya. B. Zel'dovich]
 - White-paper on HFGW detection: 2020 [Living Rev. Rel. 24 (2021) no.1, 4] Update 2025: arXiv:2501.11723

How can this be used to detect GWs?

Typical setup

Kristof Schmieden

UNIVERSITÄT BONN

Typical setup - Connection to Axion searches

Same technological challenges

- High field magnets
- Ultra low noise amplifier
- Highly sensitive readout systems

• Fundamentally different signal properties

- Duration
- Coupling of GW and B-field:
 - Orientation
 - Cavity geometry
 - Sensitive Mode

• Suspicious similarity with **axion haloscopes**

Indeed: Identical setup

Typical setup - Connection to Axion searches

Well established experimental method

100 MHz

Field Cancellation SQUID Amplifier Package

Antenna

Dilution Refri

Coil

8 Tesla Mag

Microwave C

Tuning Ro

ADMX 1 GHz

Organ 100 GHz

What was done at Mainz

SUPAOX

- Setup at Mainz (finished):
 - 13T B-field, 2K, SC cavity, HEMT amplifier
 - Data taken in 2024
 - Dark Photon & Axion results
- **Supax:** superconducting axion search @ Mainz
 - First results on dark photons (~commissioning) [arXiv:2308.08337]
 - Goals:
 - Study of new **SC materials** for resonant cavity experiments
 - Study of cavity geometries optimised for GW searches
 - Together with Mainz theory section (P. Schwaller)

UNIVERSITÄT BONN

Supax / GravNet - Measurements

Kristof Schmieden

UNIVERSITÄT BONN

Supax / GravNet - Cavities

• Test of various cavity geometries and coatings

15 cm

Cu coated with NbN Coating by Zubtsovskii @ Uni Siegen

Working setup

Sensitive to HFGW (~ GHz)

- Which **sources** can be seen?

Is there anything emitting GHz gravitational waves?

- Black hole merging events • What about:
 - Chirp signals
 - $m_{BH} \sim O(10 M_{\odot})$: frequency in acoustic range

 $f \approx 100 \, Hz \rightarrow m_{BH} \approx 30 \, M_{\odot}$, Duration: 0.1s

• Lighter BHs => higher frequencies

Lower BH mass

Lower merger duration

Higher GW **frequency**

 $f \approx GHz \rightarrow m_{BH} < 10^{-6} M_{\odot}$, Duration: $< \mu s$

- Chandrasekhar limit:
- Up to 1.4 M_{\odot} white dwarfs are stable • Tolman–Oppenheimer–Volkoff limit: Neutron stars stable up to 2 - 3 M_{\odot} • Corresponding to stellar progenitor masses $O(10M_{\odot})$

Any issues with black hole masses of $10^{-6}M_{\odot}$?

Lightest BH should be around $2 - 3M_{\odot}$ (Lightest currently observed: $3 M_{\odot}$)

- Primordial black hole mergers
 - Hypothetical BHs created shortly after the big bang, before the first stars were formed
 - Not limited to the mass range of stellar BHs
- Formation:
 - Small scale perturbation in early universe
 - Amplitude of space-time curvature perturbations enhanced by some mechanism
 - Perturbation freeze in during inflation
 - Post-inflation collapse if larger than some threshold
 - Population of PBHs
 - Masses controlled by energy in one Hubble volume

Kristof Schmieden

- Merging event very short, unknown frequency
- Focus on inspiral:
 - Sweep of huge frequency span

Sources of HF GW - Primordial Black Holes

• Sources for HFGWs:

- Primordial black hole mergers
- Boson clouds (BH superradiance)

•

Primordial black holes:

- Black holes created in the early universe
 - Unlike stellar BH: No minimum mass requirement
 - Expected Mass range: $10^{-10} 10^{-16} M_{\odot}$
 - Density unknown
- Merging events expected
 - Low mass -> High frequency
 - Fast transients (µs ms)

Why are PBH interesting objects?

Could be dark matter

- Expected Strain: $< 10^{-24}$
 - (If all of DM is PBH, one event per year)

Sources of HF GW - Axion Superradiance

• Sources for HFGWs:

- Primordial black hole merges
- Boson clouds (BH superradiance)

Superradiance Instability Phase

Kristof Schmieden

Axion superradiance:

- Compton wavelength of boson = size of BH
 - Boson accumulates outside BH event horizon
 - Annihilation into gravitons if mass > threshold • $\omega_a < m\Omega_H$

Gravitational Wave Emission Phase

Sources of HF GW - Axion Superradiance

• Sources for HFGWs:

- Primordial black hole merges
- Boson clouds (BH superradiance)

Axion superradiance:

- Compton wavelength of boson = size of BH
 - Boson accumulates outside BH event horizon
 - Annihilation into gravitons if mass > threshold
- Requires **light**, **spinning BHs**
- Requires axion (-like) bosons

- **Monochromatic**, coherent signal!
- Decay times of min. to years (depending) on BH mass)
- Strain assuming distance = radius of sphere with one event per year

Sources of HF GW - Stochastic Background

• Sources for HFGWs:

- Primordial black hole merges
- Boson clouds (BH superradiance)
- Stochastic GW sources

Several sources possible:

- Phase transitions in the early universe
- Dynamics of inflation and subsequent (p-)reheating
- Fluctuations in the thermal plasma
- Cosmic strings

UNIVERSITÄT BON

High Frequency Gravitational Wave - Strains

- Primoridal black hole mergers • Chirp signals
- GW from boson superradiance • Monochromatic over long timescales
- Stochastic GW background • Even lower strains ...

• Ligo / Virgo Signals • BH mergers

Kristof Schmieden

Expected Strain

- $h_0 < 10^{-24}$
- $h_0 < 10^{-29}$
- $h_0 < 10^{-32}$

Expected Sensitivity:

- 1 cavity
- T = 100 mK
- B = 12 T
- $f_0 = 8 \text{ GHz}$

 $h_0 > 10^{-21}$

Observed Strain

• $h_0 < 10^{-21}$

How to improve the sensitivity?

GravNet in the next years

A Global Network of HFGW Detectors

- Starting point of GravNet
 - Initial sites: Bonn, Mainz, Frascati
 - Technical synergies: magnets and local infrastructure already available
- GPS based data-acquisition scheme • Experience from GNOME Network
- Nine small resonant cavities (5-8 GHz) • Operation of three cavities in one magnet
- One large resonant cavities (100 MHz)

A Global Network of HFGW Detectors

- **Example**: 8 GHz corresponds to a sphere of diameter \approx 5cm
 - High frequencies typically correspond to small volumes
- Challenge: Signal power depends nearly quadratically on volume V

$$P_{sig} = \frac{1}{2} Q \omega_g^3 V^{5/3} (\eta_n h_0 B_0)^2 \frac{1}{\mu_0 c^2}$$
 hallenge

Higher Magnetic Fields
 Single Photon readout
 Operation of several cavities in parallel
 Operation of several cavities in parallel

ø = 48mm, GravNet prototype cavity

nge: Signal power de

Visit the SUPAX Poster (K. S

The FLASH cavity

- Reuse of the FIDUNA magnet system at INFN Frascati within the FLASH Experiment:
 - Axion Search (0.49-1.49 µeV)
 - Res. Frequency: 100-300 MHz

• System properties:

- V = 4.15 m³
- B = 1.1T
- $Q_L = 1.4 \times 10^5$
- Tsys = 4.9K

- Readout:
 - SQUID readout
 - Limited by thermal noise

R&D Efforts

Drastically reduce noise in readout

- Use of quantum sensing
- Single RD photon detection
- Quantum non-demolition

- Shape to improve coupling Optim Fise as a guality factor with couplingpterconductors
- Usage of advanced Enhance quality factor using machine learning tool GravNet Goal: gain in sensitivity to amplitude by O(100) - O(1000)

Optimize Cavity

Optimize Data Analysis

 Combination of data from distributed detectors

Readout Noise

Using parametric amplifiers (e.g. JPA):

- Added noise ~ 200 mK
 - Below standard quantum limit

Kristof Schmieden

Readout Noise

<u>Appl. Sci. 2024, 14(4), 1478</u>

Kristof Schmieden

Optimise setup

• High purity copper: ~5.10⁴

- Superconducting: difficult in high magnetic field!
 - Target: 10^{6}
 - Achieved: 3.10⁵ (CAPP, non tunable)
 - Materials under study: Nb₃Sn, **NbN**, HTS materials (YBCO)

- Supax measurement [arXiv: 2412.14958]
- D. Ahn et. al (CAPP), ~7 GHz https://arxiv.org/abs/2002.08769
- J. Golm et. al (RADES), ~8 GHz https://arxiv.org/abs/2110.01296

Data Analysis

Naive approach
 Nai Seapproclatch in FFT spectrum
 Bump-hunt in frequency domain

UNIVERSITÄT BONN

Advanced approach

AdvSearce applying signatore in time series using

modern anomaly detection methods

- Search for signature in time series
- Modern anomaly detection methods

How to Combine Signals

- Adding N coherent signals (in phase) yields an improvement on the SNR of ~N
- Single photon readout:
 - Measurement becomes **counting experiment**
 - Thermal/quantum noise yields a certain number of photons per time-interval
 - Expect one signal event per year
 - Additional cavities/experimental sites suppress background (combinatorics)
- Relevant quantity: Induced power should be in the order of O(1) photon

GravNet: Expected Sensitvities

- PBH merger signals, assuming thermal background only
- Target: $h < 10^{-24}$
 - Only few orders of magnitude missing!

Kristof Schmieden

- Limit for monochromatic signals with longer integration times
- General development: go broadband

GravNet: Expected Sensitvities

- PBH merger signals, assuming thermal background only
- Target: h < 10⁻²⁴
 - Only few orders of magnitude missing!

Kristof Schmieden

Isn't this depressing?

roposal under study

"[interferometers] have so low sensitivity that they are of little experimental interest" p"[mterferometers] have so low sensitivity that they are of little Kristof Sclexperimental interest"

UNIVERSITÄT BONN

50 years of work, 23 attempts

Rainer Weiss Massachussets Institute of Tech

Barry C. Barish California Institute of Technology

Kip S. Thorne California Institute of Technology

21SS rish rne

vation of gravitational waves'

Alternative Technologies

- Large range of experimental approaches tackling HFGW
- Three Categories:
 - Conversion of GWs (gravitons) into Photons
 - Something is mechanically deformed
 - Spin interaction

- Energy density in E-field about 10^{-6} compared to B-fields due to electron release
- 4.2 Detection at freq
 - 4.2.1 Optically
 - 4.2.2 Inverse G
 - 4.2.3 GW to ele
 - 4.2.4 Resonant
 - 4.2.5 Heterody
 - 4.2.6 Bulk acou
 - 4.2.7 Supercond
 - 4.2.8 GW defor
 - 4.2.9 Graviton-

[arXiv:2011.12414]

uencies beyond current detectors	••
levitated sensors	•••
ertsenshtein effect)
ectromagnetic wave conversion in a static electric field)
polarisation rotation	• •
ne enhancement of magnetic conversion	
stic wave devices	
ducting rings	• •
mation of microwave cavities	
magnon resonance	

Alternative Technologies - Hetrodyne Detection

- Heterodyne enhancement of GW signals
 - Coupled resonators: mode splitting
- Pump frequency: $\omega_{s} \sim \text{GHz}$
- Energy transfer to signal mode $\omega_a = \omega_s + 2\Delta\omega$
 - GW frequency: $\Delta \omega$

• **Pro**:

Amplification linear in Pump Power

• **Con**:

DESY.

- Frequency stability of modes
- RF leakage into signal mode

UNIVERSITÄT BON

MAGO experiment @ Desy

Sensitivity from 10 kHz - 100MHz (with various cavities)

 $h_0 > 10^{-22}$ $h_0 > 10^{-21}$

Alternative Technologies - Mechanical Deformation

ESY.

Kristof Schmieden

- Transfer of mechanical to EM energy
- Competing process for any cavity based detector
- Exploit mechanical resonances for enhancement
- Noise from environmental vibrations

 $Q_{LC} \sim 10^6 \ll Q_{cav} \sim 10^{11}$

 $\sim 10^6 \ll$

Alternative Technologies - Mechanical Deformation

Kristof Schmieden

- Original Idea:
 - Weber bar: 2m x 1m aluminum rod
 - Sensitivity at ~kHz:
 - $h_0 > 10^{-16}$

 $Q_{LC} \sim 10^6 \ll Q_{cav} \sim 10^{11}$

Alternative Technologies - Levitated Sensors

- Limited by thermal noise & Laser heating of levitated particle
- Sensitivity from 10 kHz 100kHz

•
$$h_0 > 10^{-21}$$

Kristof Schmieden

- Trapping dielectric nano-particles in Laser-field
- Second beam for cooling and readout
- GW displaces nanoparticle w.r.t. trap minimum

Alternative Technologies - Bulk Acoustic Devices

- Piezoelectric resonator
 - Freq: MHz GHz
 - Consumer product
- GW deforms resonator
 - Periodically changing resonance frequency

UNIVERSITÄT BONN

[Sci Rep 13, 10638 (2023). <u>https://doi.org/10.1038/</u>]

• Sensitivity from 5 - 10 MHz

•
$$h_0 > 10^{-21}$$

Which Technology to Choose?

- GravNet will start with cavities since their technology is mature
- Most interesting HFGW sources are transient
 - Any HFGW search will profit from combining signals
 - Most developments (Quantum sensing, Superconducting cavities, analysis) is of generic use
 - Magnetic fields and ultra cold volumes are used in several approaches
- We will switch to the most promising experimental approach in the next years

UNIVERSITAT BON

Take Away Messages

• Lots of challenges, lots of opportunities

We are looking for new collaborators
Kick-off workshop (26/27June)
https://indico.him.uni-mainz.de/event/229

UNIVERSITÄT BONN

