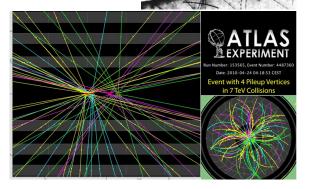
Challenges of vertexing in HL-LHC Algorithm research using OpenDataDetector

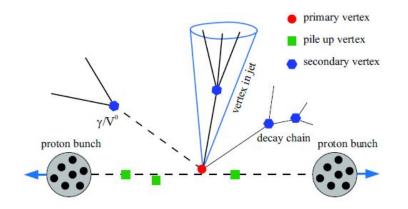
Diptaparna Biswas

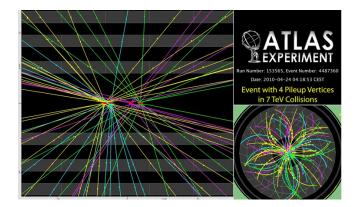


TrackOpt workshop March 26, 2025

Vertexing and the HL-LHC

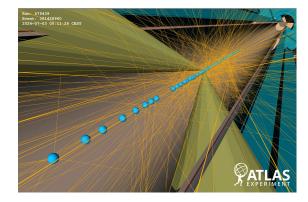
- Vertexing: Reconstructing particle interaction or decay points.
 - > Crucial for identifying primary and secondary vertices.
 - Essential for flavor tagging (b/c quarks) and LLP searches.
- HL-LHC: Significant luminosity increase for precision studies.
 - Increased luminosity = increased challenges for vertexing.
 - Dramatic rise in pile-up (140-200 collisions/bunch crossing).

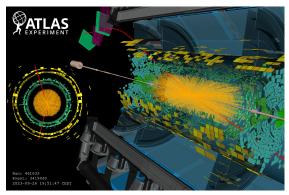

Parameter	LHC (Typical Run)	HL-LHC (Expected)
Peak Instantaneous Luminosity	~1.5 x 10 ³⁴ cm ⁻² s ⁻¹	5-7.5 x 10 ³⁴ cm ⁻² s ⁻¹
Integrated Luminosity/Year	~45 fb ⁻¹	250-350 fb⁻¹
Total Integrated Luminosity Goal	~300 fb ⁻¹	3000-4000 fb⁻¹
Average Pile-Up	20-70	~140-200



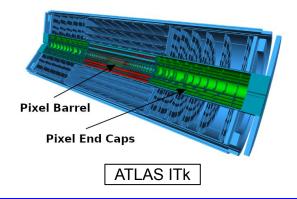
Aachen-Bonn-CERN-Munich-Oxfor

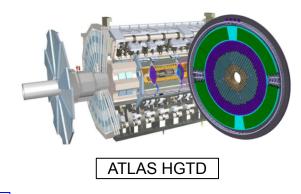
Primary vs. Secondary Vertex Reconstruction


- Primary vertex: Initial proton-proton interaction.
- Secondary vertex: Decay of unstable particles (e.g. bottom/charm hadrons).
- Traditional two-stage process: vertex finding and vertex fitting.
- Importance of correct association of tracks to the correct vertex.



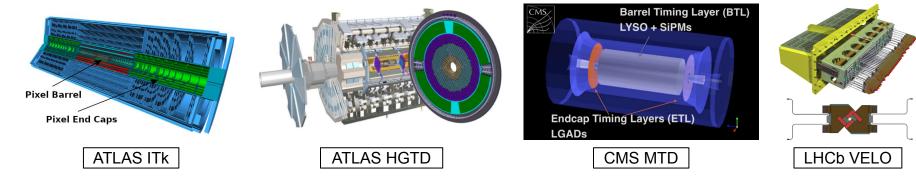
Vertexing in high luminosity environment


- The primary challenge: Pile-Up
 - Increased vertex density along the beamline.
 - > Distinguishing hard scatter vertex from pile-up.
 - > Track-vertex association becomes highly complex.
 - Merged and split vertex errors.
- Impact of Increased Track Density
 - > Makes any kind of pattern recognition challenging.
 - Increased combinatorial complexity of vertex finding.
 - > Potential for ghost tracks and fake vertices.



Maintaining and enhancing vertexing precision

- Importance of impact parameter and spatial resolution.
 - > ATLAS Inner Tracker (ITk): increased granularity.
- Leveraging time information (4D-vertexing).
 - > ATLAS HGTD and CMS MTD: precise timing information.



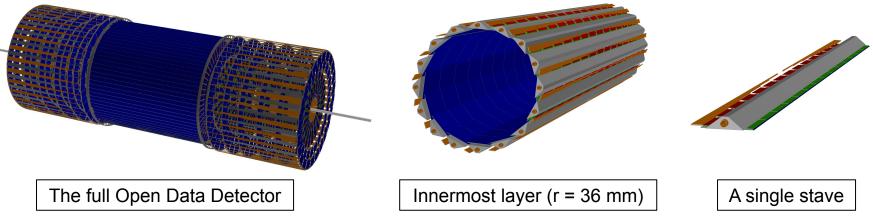
We will have a tour of ITk Pixel lab this afternoon.

Upgrading detectors for HL-LHC

Detector Name	Experiment	Key Technology	Primary Benefit for Vertexing	Expected Performance
Inner Tracker (ITk)	ATLAS	All-Silicon (Strips/Pixels)	Increased granularity, improved spatial resolution	Spatial Resolution: ~10-15 µm
HGTD	ATLAS	Low Gain Avalanche Detectors (LGADs)	Precise timing for charged particles in forward region	Timing Resolution: 30-50 ps
MTD	CMS	Scintillators (Barrel), LGADs (Endcaps)	Precise timing for Minimum Ionizing Particles (MIPs)	Timing Resolution: ~30 ps
VELO Upgrade	LHCb	Hybrid Pixel Detector	Enhanced rate and timing capabilities for primary vertexing	Improved Efficiency & Precision

ACTS: A Common Tracking Software

- Evolved from ATLAS Common Tracking Software
- Key Features:
 - > Flexible tracking geometry description.
 - Simple and efficient event data model.
 - > Algorithms for seed finding, track propagation, track fitting and vertexing.
- Designed in modern C++ (C++17/20): emphasis on parallel execution.
- Existing primary vertexing algorithms in ACTS:
 - Iterative Vertex Finder (IVF)
 - Adaptive Multi-Vertex Finder (AMVF)



ODD: Open Data Detector

- Provides a template for an HL-LHC-style detector.
- Designed for algorithm research and development.
- Based on the detector used in the <u>TrackML</u> challenge.
- Inspired by the ATLAS Inner Tracker (ITk) upgrade.

Synergy between ACTS and ODD

- ODD can be integrated as a third-party component within ACTS.
- Many ACTS example applications use ODD as the default geometry.
- ODD serves as a crucial platform for testing and benchmarking ACTS track and vertex reconstruction algorithms.
- ACTS provides a full reconstruction chain example utilizing the ODD.
- IRIS-HEP members actively contribute to ACTS development and often use ODD for testing.

Synthetic dataset for TrackOpt vertexing project

- We are using ODD to prepare our datasets for vertexing research.
 - > Primary computational resource: OMNI cluster of Universität Siegen.
 - Located in Adolf-Reichwein (AR) campus, operated by ZIMT.
 - Total 439 HPC nodes, each with 64 cores and 256 GB of RAM.
 - Peak performance is ~1044 TFlops.
 - Storage capacity ~500 TB.
 - > Other possible resources:
 - SiMPLE cluster at the HEP department can be a fallback solution.
 - Limited computational power, but also limited load (number of users).
 - Cloud resources
 - Google Cloud Platform provides up to \$5000 research credit for one year.

Preparation of synthetic dataset: the setup

- Inside the ACTS toolkit, the $pp \rightarrow t\bar{t}$ process is generated using Pythia 8.
- Full Geant4 simulation of the OpenDataDetector geometry.
- The value of pile-up is chosen to be 200.
- Built-in track and vertex reconstruction is performed after simulation.
- Each event takes around ~ 5 minutes, for gen+sim+reco.
 - > Geant4 can utilize only one core at a time, memory consumption \sim 12 GB.

-rw-rr 1 db466094 554M Mar 22 08:52 estimatedparams.root	-rw-rr 1 db466094 267K Mar 22 08:56 performance_fitting_ckf.root
-rw-rr 1 db466094 825M Mar 22 08:52 measurements.root	-rw-rr 1 db466094 18K Mar 22 08:56 performance_seeding.root
-rw-rr 1 db466094 54M Mar 22 08:57 my_full_chain_odd.log	-rw-rr 1 db466094 16M Mar 22 08:56 performance_vertexing.root
-rw-rr 1 db466094 106M Mar 22 08:52 particles.root	-rw-rr 1 db466094 1.4K Mar 22 08:56 timing.csv
-rw-rr 1 db466094 37K Mar 22 08:56 performance_finding_ambi.root	-rw-rr 1 db466094 27M Mar 22 08:56 tracksummary_ambi.root
-rw-rr 1 db466094 46K Mar 22 08:56 performance_finding_ckf.root	-rw-rr 1 db466094 57M Mar 22 08:52 tracksummary_ckf.root
-rw-rr 1 db466094 232K Mar 22 08:56 performance_fitting_ambi.root	-rw-rr 1 db466094 12M Mar 22 08:52 vertices.root

Preparation of synthetic dataset: the challenges

- Each HPC node on OMNI cluster has 64 cores and 256 GB memory.
 - > That's just 4 GB per core. So, we cannot use all the cores in a node simultaneously.
- CVMFS access is suboptimal as compared to CERN-managed lxplus.
 - Slow access and often crashes during too many concurrent accesses.
 - > Working with ZIMT to mitigate this.
- OMNI cluster offers *unlimited* storage as "workspace".
 - ➢ But it's time-limited (max 90 days), and non-sharable.
- Simulation of hadronic interaction is turned off by default in ODD.
 - \succ Need to figure out how to enable it.

Summary and outlook

- Vertexing is one of the most challenging problems for the future experiments in particle Physics, and can be formulated as a clustering problem.
- ACTS/ODD provides a great means of generating synthetic dataset, useful for algorithm research and developments.
- Immediate next steps:
 - ➢ Generating a synthetic dataset of sufficient statistics (at least 100k events).
 - > Building the preprocessing pipeline to stitch together separate ROOT files.
 - Deciding the interface to the TrackOpt software.

Performance Metric	Primary Vertices	Secondary Vertices
Spatial Resolution (x, y)	< 15 µm	< 20 μm
Spatial Resolution (z)	< 50 μm	< 75 μm
Reconstruction Efficiency	> 98%	> 90%
Pile-Up Rejection Rate	> 95%	N/A