

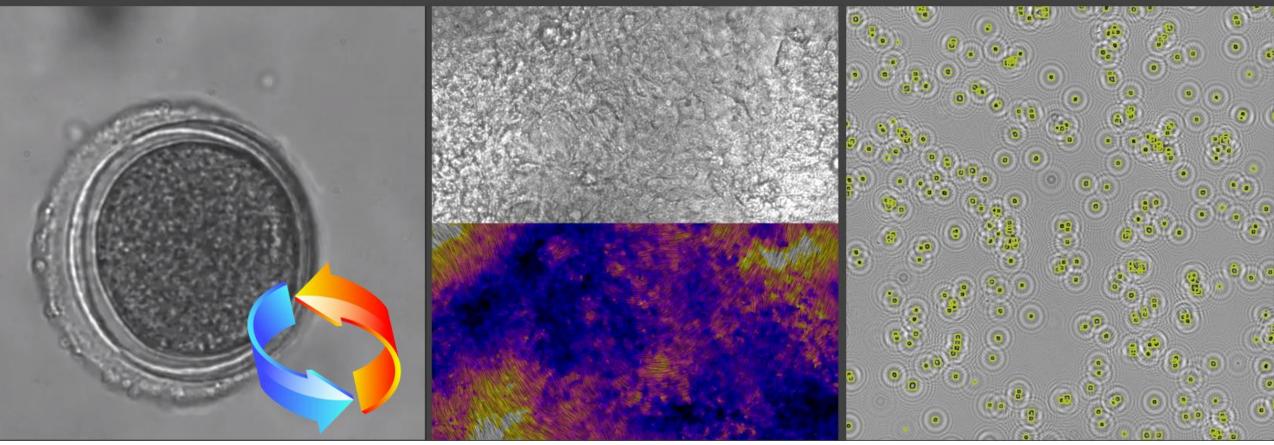
Zukunft menschlich gestalten

TRACKOPT - KICKOFF

Ivo Ihrke

Universität Siegen

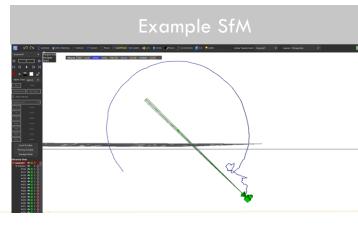
CHAIR FOR COMPUTATIONAL SENSING & COMMUNICATIONS ENGINEERING SIEGEN UNIVERSITY

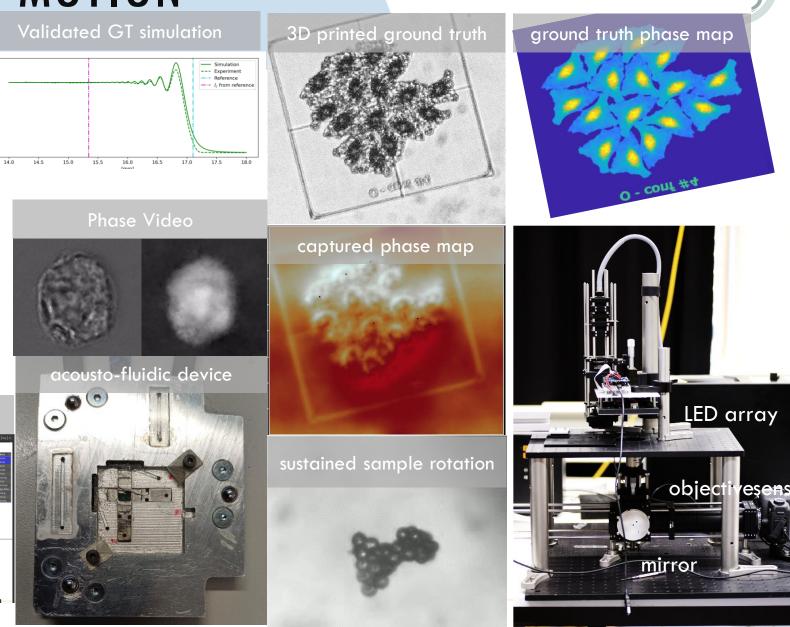

TRACKOPT — APPLICATION CELL TRACKING

Fall I: Festkorpertransformation

Fall II: elastische Verformung

Fall III: holografische Partikel

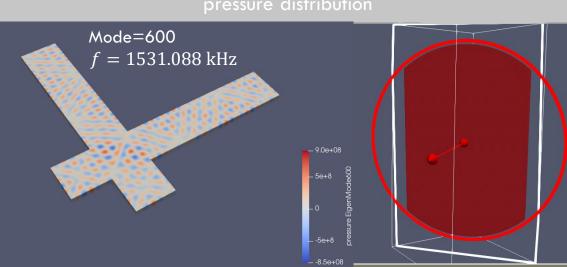


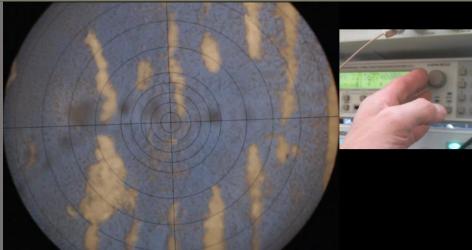

CASE I: RIGID BODY MOTION

['N 0.5 Ali

Data has been/will be acquired in a concurrent project (L2S 3D Microscopy)

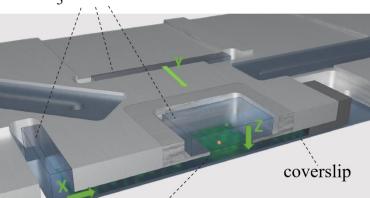
- Goal: pose estimation of single cells / cell clusters
 - tracking to enable structure from-motion
- Challenge: image formation PDE
- Properties:
- Periodic motion
- 3D constraints




UNIVERSITÄT

MICROFLUIDIC MANIPULATION DEVICE

 Enables touchless manipulation (translation, 2 rotation modes)


 To be used for 3D cell imaging via tomography

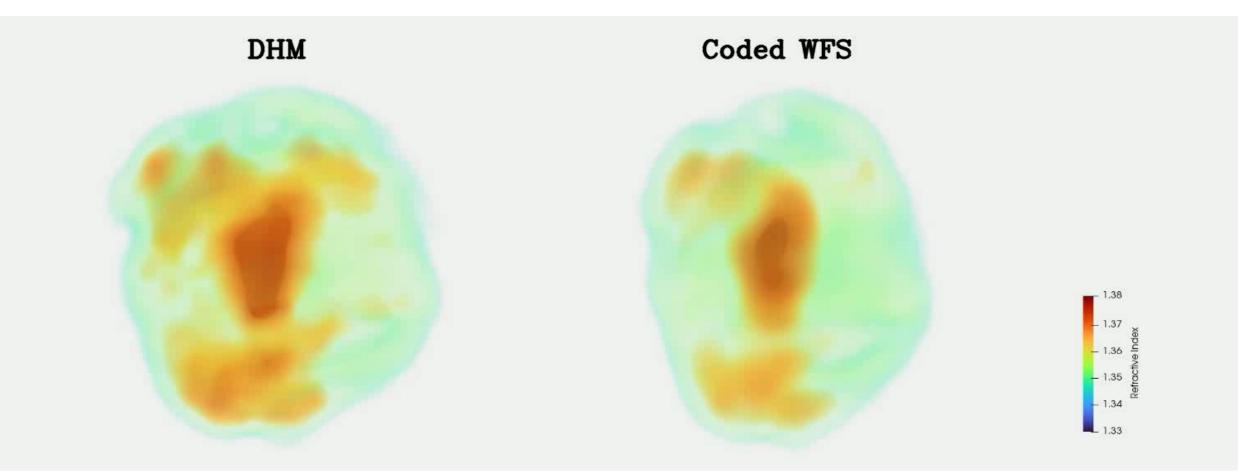
control via frequency tuning

LiNbO₃ transducers

fluid-filled sample chamber

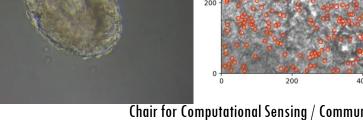

acoustofluidic platform

sustained sample rotation

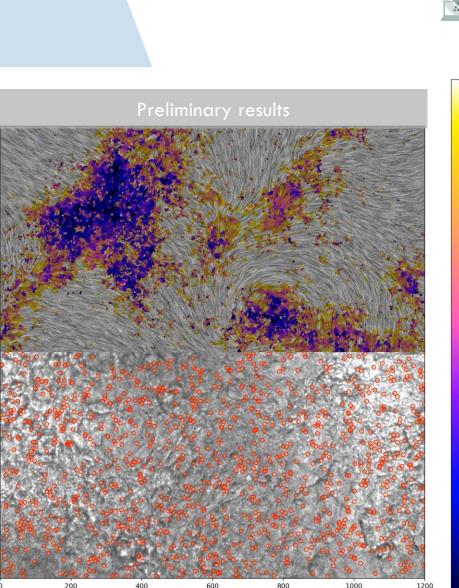


phase video

FIRST TOMOGRAPHY RESULT



CASE II: ELASTIC DEFORMATION

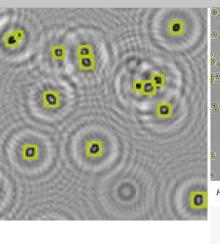

- Working with a biomedical group in Tampere / Finland
- Target: cardiomyocytes (cardiac muscle cells)
 - These cells show dynamic deformations
 - Different complexity levels:
 - Monolayers
 - Multi-layers
 - Organoids
 - Cyclic motion

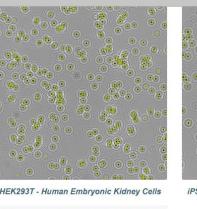
Show Tampere video

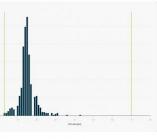
120

100

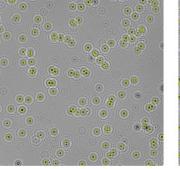
Chair for Computational Sensing / Communications Engineering, Siegen University

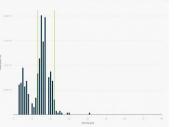

CASE III: HOLOGRAPHIC PARTICLES

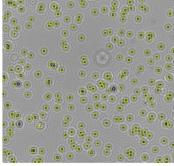

UNIVERSITÄT


In cooperation with anvajo GmbH (Dresden)

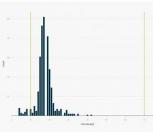
- Inline-holographic images of particles
- Goal: 3D tracking (tumbling particles would yield 3D projections enabling improved classification)
- Constraints: random walk, image formation: coherent imaging


Example cells in ur




HEK293T - Human Embryonic Kidney Cells

iPS cells - human induced pluripotent stem cells



iPS cells - human induced pluripotent sten

HeLa cells

n

HeLa cells

Point of care testing device for veterinarians

- Red Blood Cells/ White Blood Cells
- Squamous Epithelial Cells/ Non-Squamous Epithelial Cells
- Hyaline Casts/ Non-Hyaline Casts
- Calcium Oxalates Dihydrates/ Struvites/ Unclassified Crystals
- Bacteria (suspected presence)

WORK PLAN

	Monat	1–3	4-6	7–9	10-12	13 - 15	16–18	19-21	22-24	25 - 27	28-30	31–33	34-36
	AP 1	A	AP 1.1		AP 1.2					AP 1.3			
Γ	AP 2.1	Fall I				Fall II				Fall III			
Γ	AP 2.2	Fall I				Fall II				Fall III			
Γ	AP 2.3			Fall	Ι			Fall II				Fall III	
Γ	AP 3		AP	3.1					AP	3.2			
	AP 4	AP 4.1				AP	4.2			AP 4.3			
Γ	AP 5				А	P 5.1					AP	5.2	

5PM UMa)

Current state:

- Data availability: case I and case II, data available
- Ground truth: simulation of transparent objects in microscopes is available
- Classical methods: case I and case II have partial results

AP2	Anwendung Mikroskopie, Koordination: USi2	Insgesamt 41PM							
PM/Partner	M/Partner 36PM USi2, 5PM UMa								
AP2.1 Datenaufbereitung jeweils für Fall I),II) und III), AP2.1.(I-III) klassische Methoden und An-									
notation (6PM USi2)									
AP2.2 Datensimulation für Fall I),II) und III), Wellenoptische Simulationen mit entsprechenden Rand-									
bedingungen (6PM USi2)									
AP2.3 Constr	AP2.3 Constraintmodellierung für Fall I), II) und III), AP2.3.I: 3D Festkörpertransformation + TIE,								
AP2.3.II: Loo	AP2.3.II: Loop Closure + Schichtmodell, AP2.3.III Brownsche Bewegung + Holografie (24PM USi2,								

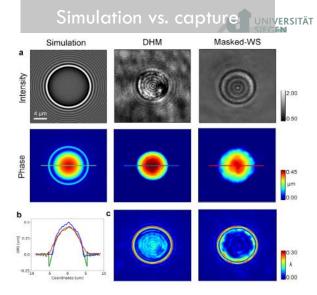


Fig. 1. Accuracy validation measurements using a 10 µm spherical silica bead. (a) The first and second rows show intensities and phases (in OPD) method-wise, respectively (b) OPD of a cross-section profile of the bead relative to the immersion. (c) The RMSE of the DHM (left) and Masked-WS (right) OPDs from the phase of the simulated bead in (a), normalized by the wavelength λ_{ill} .

Zukunft menschlich gestalten

Thank you!

CHAIR FOR COMPUTATIONAL SENSING & COMMUNICATIONS ENGINEERING SIEGEN UNIVERSITY

CONTACT: <u>IVO.IHRKE@UNI-SIEGEN.DE</u>

Chair for Computational Sensing / Communications Engineering, Siegen University

9