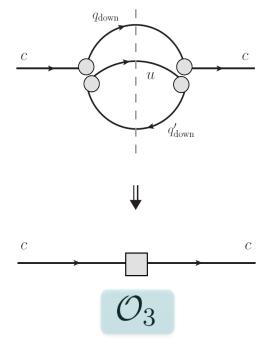
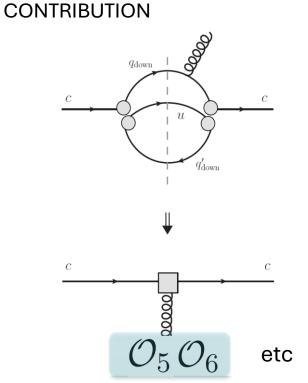

Theory improvement

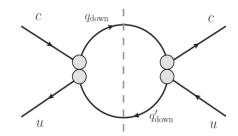
BEAUTY vs CHARM

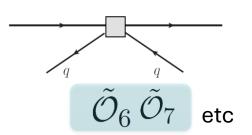

Discussion

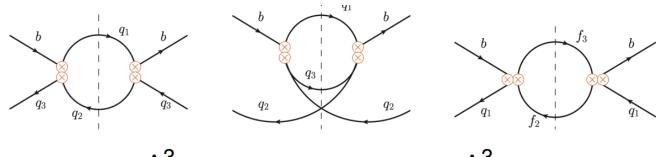
HEAVY QUARK EXPANSION (HQE) – systematic expansion in Λ_{QCD}/m_Q and α_S



TWO-QUARK LEADING NON-SPECTATOR


CONTRIBUTION


TWO-QUARK NON-LEADING NON-SPECTATOR



FOUR-QUARK SPECTATOR CONTRIBUTIONS – ENHANCED FOR c

light-quarks come into game

$$16\pi^2 \frac{\Lambda_{
m QCD}^3}{m_b^3} \sim 0.2$$
 but $16\pi^2 \frac{\Lambda_{
m QCD}^3}{m_c^3} \sim 6$

Th. Mannel

Gratrex, Melic, Nisandzic, 2204.11935

	decay	CE NL	SCS-s NL	SCS-d NL	DCS NL	CE SL	CS SL
	H_c	$c \to s \bar{d} u$	$c \to s \bar s u$	$c \to d\bar{d}u$	$c \to d\bar{s}u$	$c \to s \bar{l} \nu_l$	$c \to d\bar{l}\nu_l$
	$D^0(\bar{u}c)$	$ ilde{\Gamma}_{ m WE}$	$ ilde{\Gamma}_{ m WE}$	$ ilde{\Gamma}_{ m WE}$	$ ilde{\Gamma}_{ m WE}$	-	-
mesons	$D^+(\bar{d}c)$	$ ilde{\Gamma}_{ ext{PI}}$	-	$ ilde{\Gamma}_{\mathrm{PI}} + ilde{\Gamma}_{\mathrm{WA}}$	$ ilde{\Gamma}_{ ext{WA}}$	-	$ ilde{\Gamma}_{ ext{WA}}^{ ext{SL}}$
	$D_s^+(\bar{s}c)$	$ ilde{\Gamma}_{ ext{WA}}$	$ ilde{\Gamma}_{\mathrm{PI}} + ilde{\Gamma}_{\mathrm{WA}}$	-	$ ilde{\Gamma}_{ ext{PI}}$	$ ilde{\Gamma}_{ ext{WA}}^{ ext{SL}}$	-
	$\Lambda_c^+(udc)$	$\tilde{\Gamma}_{\rm exc} + \tilde{\Gamma}_{\rm int}$	$ ilde{\Gamma}_{ ext{int}^-}$	$\tilde{\Gamma}_{\rm exc} + \tilde{\Gamma}_{\rm int^-} + \tilde{\Gamma}_{\rm int^+}$	$\tilde{\Gamma}_{\mathrm{int}^-} + \tilde{\Gamma}_{\mathrm{int}^+}$	-	$ ilde{\Gamma}^{ m SL}_{ m int^+}$
baryons	$\Xi_c^+(usc)$	$\tilde{\Gamma}_{\mathrm{int}^-} + \tilde{\Gamma}_{\mathrm{int}^+}$	$\tilde{\Gamma}_{\rm exc} + \tilde{\Gamma}_{\rm int^-} + \tilde{\Gamma}_{\rm int^+}$	$ ilde{\Gamma}_{ ext{int}^-}$	$\tilde{\Gamma}_{\rm exc} + \tilde{\Gamma}_{\rm int^-}$	$ ilde{\Gamma}^{ m SL}_{ m int^+}$	-
baryons	$\Xi_c^0(dsc)$	$\tilde{\Gamma}_{\rm exc} + \tilde{\Gamma}_{\rm int^+}$	$\tilde{\Gamma}_{\mathrm{exc}} + \tilde{\Gamma}_{\mathrm{int}^+}$	$\tilde{\Gamma}_{ m exc} + \tilde{\Gamma}_{ m int}$	$\tilde{\Gamma}_{\rm exc} + \Gamma_{\rm int^+}$	$ ilde{\Gamma}^{ m SL}_{ m int^+}$	$ ilde{\Gamma}^{ m SL}_{ m int^+}$
	$\Omega_c^0(ssc)$	$ ilde{\Gamma}_{ ext{int}^+}$	$\tilde{\Gamma}_{ m exc} + \tilde{\Gamma}_{ m int}$	_	$ ilde{\Gamma}_{ m exc}$	$ ilde{\Gamma}^{ m SL}_{ m int^+}$	-

- \diamond The HQE is a double expansion in $\alpha_s(m_Q)$ and Λ_{QCD}/m_Q
- \diamond In the beauty system ($m_b \sim 4.5 \text{GeV}$):

$$\alpha_s(m_b) \sim 0.22$$

$$\frac{\Lambda_{QCD}}{m_b} \sim 0.10$$

- * Applicability of the HQE is well justified
- \diamond In the charm system ($m_c \sim 1 \text{GeV}$):

$$\alpha_s(m_c) \sim 0.33$$

$$\frac{\Lambda_{QCD}}{m_c} \sim 0.30$$

* Can we still *reliably* apply the HQE?

Must compare HQE predictions with measurements

Maria Laura Piscopo

Theory overview of lifetimes

♦ Compute total widths

$$\Gamma(B) = \Gamma_3 + \Gamma_5 \frac{\langle \mathcal{O}_5 \rangle}{m_b^2} + \Gamma_6 \frac{\langle \mathcal{O}_6 \rangle}{m_b^3} + \dots + 16\pi^2 \left[\tilde{\Gamma}_6 \frac{\langle \tilde{\mathcal{O}}_6 \rangle}{m_b^3} + \tilde{\Gamma}_7 \frac{\langle \tilde{\mathcal{O}}_7 \rangle}{m_b^4} + \dots \right]$$

- * Strong dependence on value of b-quark mass in Γ_3
- ♦ And lifetime ratios

7

$$\tau(B_{(s)}^+)/\tau(B_d) = 1 + \left[\delta\Gamma(B_d)^{\text{HQE}} - \delta\Gamma(B_{(s)}^+)^{\text{HQE}}\right]\tau(B_{(s)}^+)^{\text{exp}}$$

THIS IS NOT HELPING MUCH FOR c-HADRONS SINCE 4-q NON_SPECTATOR CONTRIBUTIONS DOMINATE!

$$\mu_{\pi}^{2}(H) = \frac{-1}{2m_{H}} \langle H | \bar{c}_{v}(iD)^{2} c_{v} | H \rangle ,$$

$$\mu_{G}^{2}(H) = \frac{1}{2m_{H}} \langle H | \bar{c}_{v} \frac{1}{2} \sigma \cdot (g_{s}G) c_{v} | H \rangle ,$$

$$\rho_{D}^{3}(H) = \frac{1}{2m_{H}} \langle H | \bar{c}_{v}(iD_{\mu})(iv \cdot D)(iD^{\mu}) c_{v} | H \rangle$$

FOUR_QUARK Dim-6 operators:

$$Q_{1}^{(qq')} = (\bar{c}^{i}\gamma_{\mu}(1-\gamma_{5})q^{j})(\bar{q}'^{j}\gamma^{\mu}(1-\gamma_{5})u^{i}),$$

$$Q_{2}^{(qq')} = (\bar{c}^{i}\gamma_{\mu}(1-\gamma_{5})q^{i})(\bar{q}'^{j}\gamma^{\mu}(1-\gamma_{5})u^{j}),$$

$$Q_{\text{SL}}^{(q\ell)} = (\bar{c}\gamma_{\mu}(1-\gamma_{5})q)(\bar{\ell}\gamma^{\mu}(1-\gamma_{5})\nu_{\ell}),$$

 $P_1^q = m_q(\bar{c}_i(1-\gamma_5)q_i)(\bar{q}_i(1-\gamma_5)c_i),$

- + color-octet operators
- + μ-running and mixing

FOUR_QUARK Dim-7 operators:

$$P_{2}^{q} = \frac{1}{m_{Q}} (\bar{c}_{i} \stackrel{\leftarrow}{D}_{\rho} \gamma_{\mu} (1 - \gamma_{5}) D^{\rho} q_{i}) (\bar{q}_{j} \gamma^{\mu} (1 - \gamma_{5}) c_{j}) ,$$

$$P_{3}^{q} = \frac{1}{m_{Q}} (\bar{c}_{i} \stackrel{\leftarrow}{D}_{\rho} (1 - \gamma_{5}) D^{\rho} q_{i}) (\bar{q}_{j} (1 + \gamma_{5}) c_{j}) ,$$

$$S_{1}^{q} = m_{q} (\bar{c}_{i} (1 - \gamma_{5}) t_{ij}^{a} q_{j}) (\bar{q}_{k} (1 - \gamma_{5}) t_{kl}^{a} c_{l}) ,$$

$$S_{2}^{q} = \frac{1}{m_{Q}} (\bar{c}_{i} \stackrel{\leftarrow}{D}_{\rho} \gamma_{\mu} (1 - \gamma_{5}) t_{ij}^{a} D^{\rho} q_{j}) (\bar{q}_{k} \gamma^{\mu} (1 - \gamma_{5}) t_{kl}^{a} c_{l}) ,$$

$$S_{3}^{q} = \frac{1}{m_{Q}} (\bar{c}_{i} \stackrel{\leftarrow}{D}_{\rho} (1 - \gamma_{5}) t_{ij}^{a} D^{\rho} q_{j}) (\bar{q}_{k} (1 + \gamma_{5}) t_{kl}^{a} c_{l}) .$$

- + color-octet operators
- + non-local operators reabsorbed into dim6 matrix elements (proved for mesons)

King, Lenz, Piscopo, Rauh, Rusov, Vlahos, 2109.13219 (c-mesons) Gratrex, Melic, Nisandzic, 2204.11935 (c-mesons & c-baryons)

D-MESONS

Mass scheme	$\Gamma_3^{(0)}$	$\Gamma_3^{(1)}$	$\Gamma_{\pi}^{(0)}$	$\Gamma_G^{(0)}$ L($\Gamma^{(0)}_{ m Darwin}$
Pole	$1.49^{+0.17}_{-0.14}$	$1.62^{+0.26}_{-0.22}$	$(-0.17^{+0.02}_{-0.02})\frac{\mu_{\pi}^2}{0.5\text{GeV}^2}$	$(0.01^{+0.07}_{-0.07})\frac{\mu_G^2}{0.25\text{GeV}^2}$	$(0.44^{+0.09}_{-0.09}) \frac{\rho_D^3}{0.1 \text{GeV}^3}$
$\overline{ m MS}$	$0.69^{+0.08}_{-0.07}$	$1.28^{+0.37}_{-0.29}$	$(-0.10^{+0.01}_{-0.01}) \frac{\mu_{\pi}^2}{0.5 \text{GeV}^2}$	$(0.00^{+0.05}_{-0.05})\frac{\mu_G^2}{0.25\text{GeV}^2}$	$(0.43^{+0.08}_{-0.08}) \frac{\rho_D^3}{0.1 \text{GeV}^3}$
Kinetic	$1.10^{+0.13}_{-0.11}$	$1.65^{+0.41}_{-0.32}$	$(-0.14^{+0.01}_{-0.02}) \frac{\mu_{\pi}^2}{0.5 \text{GeV}^2}$	$(0.01^{+0.06}_{-0.06})\frac{\mu_G^2}{0.25\text{GeV}^2}$	$(0.44^{+0.09}_{-0.08}) \frac{\rho_D^3}{0.1 \text{GeV}^3}$
MSR	$0.93^{+0.11}_{-0.09}$	$1.54_{-0.32}^{+0.41}$	$(-0.13^{+0.01}_{-0.01}) \frac{\mu_{\pi}^2}{0.5 \text{GeV}^2}$	$(0.01^{+0.06}_{-0.06})\frac{\mu_G^2}{0.25\text{GeV}^2}$	$(0.44^{+0.09}_{-0.08}) \frac{\rho_D^3}{0.1 \text{GeV}^3}$

$$D^{0}$$
WE $-(0.01 + 0.22 x)B_{1}^{q} + (0.01 + 0.21 x)B_{2}^{q} - (2.27 + 0.93 x)\epsilon_{1}^{q} + (2.30 + 0.68 x)\epsilon_{2}^{q}$

$$D^{+}$$
PI $-(1.25 + 1.02 x)B_{1}^{q} - 0.17 x B_{2}^{q} + (7.46 + 5.24 x)\epsilon_{1}^{q} - 0.28 x \epsilon_{2}^{q}$
WA $-(0.13 + 0.05 x)B_{1}^{q} + (0.13 + 0.05 x)B_{2}^{q} - (0.02 + 0.06 x)\epsilon_{1}^{q} + (0.02 + 0.06 x)\epsilon_{2}^{q}$
SL $-(0.08 + 0.01 x)B_{1}^{q} + (0.08 + 0.01 x)B_{2}^{q} - 0.03 x \epsilon_{1}^{q} + 0.02 x \epsilon_{2}^{q}$
PI $-(0.09 + 0.08 x)B_{1}^{s} - 0.01 x B_{2}^{s} + (0.55 + 0.39 x)\epsilon_{1}^{s} - 0.02 x \epsilon_{2}^{s}$
WA $(-3.66 - 1.38 x)B_{1}^{s} + (3.66 + 1.38 x)B_{2}^{s} - (0.47 + 1.74 x)\epsilon_{1}^{s} + (0.47 + 1.60 x)\epsilon_{2}^{s}$
SL $-(2.08 + 0.26 x)B_{1}^{s} + (2.09 + 0.27 x)B_{2}^{s} - 0.72 x \epsilon_{1}^{s} + 0.67 x \epsilon_{2}^{s}$

Table 12: Contributions of valence dimension-six spectator operators to the decay widths of charmed mesons, in units ps⁻¹, in the $\overline{\rm MS}$ scheme. The different contributions are separated by the topologies defined in figure 2. The HQET bag parameters have been left unevaluated, but are assumed to be renormalized at the scale $\mu_0 \sim 1.5\,{\rm GeV}$. Their coefficients correspond to the scale $\mu=1.5\,{\rm GeV}$. The factor x=1 denotes the $\mathcal{O}(\alpha_s)$ contributions. Semileptonic contributions involve both e and μ channels.

	Observable	Pole	$\overline{ ext{MS}}$	Kinetic	MSR
	$\Gamma(D^0)$	$1.71^{+0.41}_{-0.47}{}^{+0.39}_{-0.36}$	$1.43^{+0.36+0.48}_{-0.40-0.40}$	$1.77^{+0.40+0.53}_{-0.45-0.45}$	$1.68^{+0.38+0.53}_{-0.43-0.44}$
1	$\Gamma(D^+)$	$-0.07^{+0.76+0.31}_{-0.68-0.20}$	$-0.27^{+0.66+0.03}_{-0.88-0.04}$	$-0.07^{+0.73+0.20}_{-0.66-0.14}$	$-0.13^{+0.71+0.13}_{-0.64-0.11}$
	$\tilde{\Gamma}(D_s^+)$	$1.71^{+0.49+0.44}_{-0.60-0.40}$	$1.43^{+0.42+0.49}_{-0.52-0.41}$	$1.77^{+0.47+0.55}_{-0.58-0.47}$	$1.67^{+0.46+0.55}_{-0.56-0.46}$

Lenz, Piscopo, Rusov, 2208.02643 (b-mesons)
Gratrex, Lenz, Melic, Nisandzic, Piscopo, Rusov 2301.07698 (b-baryons)

$$\begin{split} \Gamma(B_d^0) &= \Gamma_0 \Bigg[\big(\underbrace{5.97}_{\text{LO}} - \underbrace{0.44}_{\text{DNLO}}\big) - 0.14 \, \frac{\mu_\pi^2(B)}{\text{GeV}^2} - 0.24 \, \frac{\mu_G^2(B)}{\text{GeV}^2} - \underbrace{1.35}_{\text{GeV}^3} \frac{\rho_D^3(B)}{\text{GeV}^3} \\ &- \big(\underbrace{0.012}_{\text{LO}} + \underbrace{0.022}_{\text{DNLO}}\big) \, \tilde{B}_1^q + \big(\underbrace{0.012}_{\text{LO}} + \underbrace{0.020}_{\text{DNLO}}\big) \, \tilde{B}_2^q - \big(\underbrace{0.74}_{\text{LO}} + \underbrace{0.03}_{\text{DNLO}}\big) \, \tilde{B}_3^q \\ &+ \big(\underbrace{0.78}_{\text{LO}} - \underbrace{0.01}_{\text{DNLO}}\big) \, \tilde{B}_4^q - 0.14 \, \tilde{\delta}_1^{qq'} + 0.02 \, \tilde{\delta}_2^{qq'} - 2.29 \, \tilde{\delta}_3^{qq'} + 0.00 \, \tilde{\delta}_4^{qq'} \\ &- 0.01 \, \tilde{\delta}_1^{sq} + 0.01 \, \tilde{\delta}_2^{sq} - 0.69 \, \tilde{\delta}_3^{sq} + 0.78 \, \tilde{\delta}_4^{sq} \, \Bigg] \,, \end{split}$$

SMALL coeff. In front of dim-6 , dim-7 $B_i \sim 1$, $\epsilon_i \sim 0$ and $\delta_i \sim 10$ ^(-3)

King, Lenz, Piscopo, Rauh, Rusov, Vlahos, 2109.13219 (c-mesons) Gratrex, Melic, Nisandzic, 2204.11935 (c-mesons & c-baryons)

$$\Gamma(D^0) = \Gamma_0 \left[\underbrace{\frac{6.15}{c_3^{\text{LO}}} + \underbrace{2.95}_{\Delta c_3^{\text{NLO}}} - 1.66 \frac{\mu_\pi^2(D)}{\text{GeV}^2}}_{\text{GeV}^2} + 0.13 \frac{\mu_G^2(D)}{\text{GeV}^2} + \underbrace{23.6} \frac{\rho_D^3(D)}{\text{GeV}^3} \right] \\ - \frac{1.60 \, \tilde{B}_1^q + 1.53 \, \tilde{B}_2^q}{\text{Coeff in front of two-quark matrix elem.}} \\ - \frac{1.7 \, \tilde{\delta}_1^{qq} + 1.53 \, \tilde{\delta}_2^{qq}}{\text{Coeff in front of dim-6, dim-7, VIA}} \right] \\ - \frac{1.60 \, \tilde{B}_1^q + 1.53 \, \tilde{\delta}_2^{qq}}{\text{Coeff in front of dim-6, dim-7, VIA}} \\ - \frac{1.60 \, \tilde{\delta}_1^{qq} + 1.53 \, \tilde{\delta}_2^{qq}}{\text{Coeff in front of dim-6, dim-7, VIA}} \\ - \frac{1.60 \, \tilde{\delta}_1^{qq} + 1.53 \, \tilde{\delta}_2^{qq}}{\text{Coeff in front of dim-6, dim-7, VIA}} \\ - \frac{1.60 \, \tilde{\delta}_1^{qq} + 1.53 \, \tilde{\delta}_2^{qq}}{\text{Coeff in front of dim-6, dim-7, VIA}} \\ - \frac{1.60 \, \tilde{\delta}_1^{qq} + 1.53 \, \tilde{\delta}_2^{qq}}{\text{Coeff in front of dim-6, dim-7, VIA}} \\ - \frac{1.60 \, \tilde{\delta}_1^{qq} + 1.53 \, \tilde{\delta}_2^{qq}}{\text{Coeff in front of dim-6, dim-7, VIA}} \\ - \frac{1.60 \, \tilde{\delta}_1^{qq} + 1.53 \, \tilde{\delta}_2^{qq}}{\text{Coeff in front of dim-6, dim-7, VIA}} \\ - \frac{1.60 \, \tilde{\delta}_1^{qq} + 1.53 \, \tilde{\delta}_2^{qq}}{\text{Coeff in front of dim-6, dim-7, VIA}} \\ - \frac{1.60 \, \tilde{\delta}_1^{qq} + 1.53 \, \tilde{\delta}_2^{qq}}{\text{Coeff in front of dim-6, dim-7, VIA}} \\ - \frac{1.60 \, \tilde{\delta}_1^{qq} + 1.53 \, \tilde{\delta}_2^{qq}}{\text{Coeff in front of dim-6, dim-7, VIA}} \\ - \frac{1.60 \, \tilde{\delta}_1^{qq} + 1.53 \, \tilde{\delta}_2^{qq}}{\text{Coeff in front of dim-6, dim-7, VIA}} \\ - \frac{1.60 \, \tilde{\delta}_1^{qq} + 1.53 \, \tilde{\delta}_2^{qq}}{\text{Coeff in front of dim-6, dim-7, VIA}} \\ - \frac{1.60 \, \tilde{\delta}_1^{qq} + 1.53 \, \tilde{\delta}_2^{qq}}{\text{Coeff in front of dim-6, dim-7, VIA}} \\ - \frac{1.60 \, \tilde{\delta}_1^{qq} + 1.53 \, \tilde{\delta}_2^{qq}}{\text{Coeff in front of dim-6, dim-7, VIA}} \\ - \frac{1.60 \, \tilde{\delta}_1^{qq} + 1.53 \, \tilde{\delta}_2^{qq}}{\text{Coeff in front of dim-6, dim-7, VIA}} \\ - \frac{1.60 \, \tilde{\delta}_1^{qq} + 1.53 \, \tilde{\delta}_2^{qq}}{\text{Coeff in front of dim-6, dim-7, VIA}} \\ - \frac{1.60 \, \tilde{\delta}_1^{qq} + 1.53 \, \tilde{\delta}_2^{qq}}{\text{Coeff in front of dim-6, dim-7, VIA}} \\ - \frac{1.60 \, \tilde{\delta}_1^{qq} + 1.53 \, \tilde{\delta}_2^{qq}}{\text{Coeff in front of dim-6, dim-7, VIA}} \\ - \frac{1.60 \, \tilde{\delta}_1^{qq} + 1.53 \, \tilde{\delta}_2^{qq}}{\text{Coeff in front of dim-6, dim-7, VIA}} \\ - \frac{1.60 \, \tilde{\delta}_1^{qq} + 1.53 \, \tilde{\delta}_2^{qq}}{\text{$$

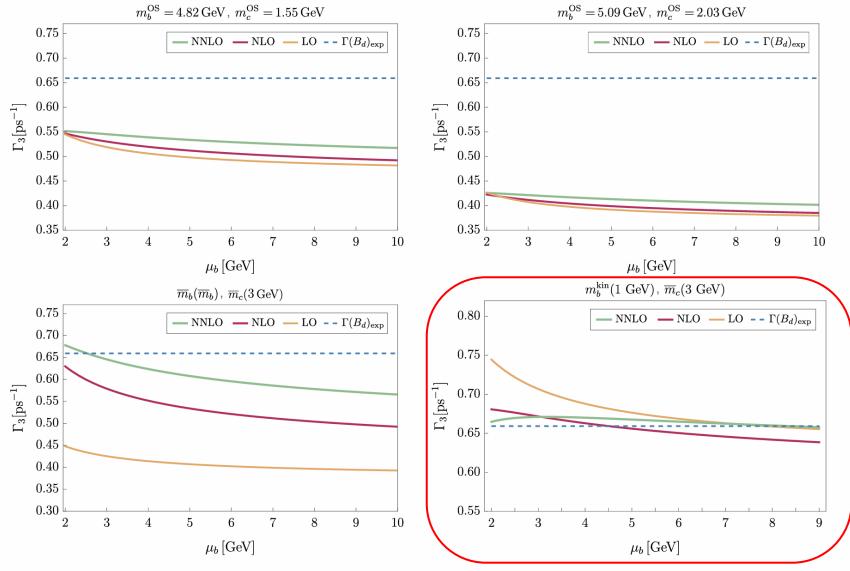
$$\Gamma(D^{+}) = \Gamma_{0} \left[\underbrace{6.15}_{c_{3}^{\text{LO}}} + \underbrace{2.95}_{\Delta c_{3}^{\text{NLO}}} - 1.66 \frac{\mu_{\pi}^{2}(D)}{\text{GeV}^{2}} + 0.13 \frac{\mu_{G}^{2}(D)}{\text{GeV}^{2}} + 23.6 \frac{\rho_{D}^{3}(D)}{\text{GeV}^{3}} \right]$$

$$-16.9\,\tilde{B}_{1}^{q} + 0.56\,\tilde{B}_{2}^{q} + 84.0\,\tilde{\epsilon}_{1}^{q} - 1.34\,\tilde{\epsilon}_{2}^{q} + \underbrace{6.76}_{\text{dim}-7}$$

$$-0.06\,\tilde{\delta}_{1}^{qq} + 0.06\,\tilde{\delta}_{2}^{qq} - 16.8\,\tilde{\delta}_{3}^{qq} + 16.9\,\tilde{\delta}_{4}^{qq} - 29.3\,\tilde{\delta}_{1}^{sq} + 28.8\,\tilde{\delta}_{2}^{sq} + 0.56\,\tilde{\delta}_{3}^{sq} + 2.36\,\tilde{\delta}_{4}^{sq}$$

COMPARISON OF PARAMETERS

Parameter	$B^{+,0}$	$D^{+,0}$	
f_{B_q} [GeV]	0.1900 ± 0.0013	0.2120 ± 0.0007	
$\bar{\Lambda}_q [{ m GeV}]$	0.5 ± 0.1		
$\mu_{\pi}^2(B_q) [\text{GeV}^2]$	0.477 ± 0.056	0.465 ± 0.198	
$\mu_{\pi}(D_q)$ [GeV]	0.43 ± 0.24		
$\mu_G^2(B_q) [\text{GeV}^2]$	0.294 ± 0.054	0.34 ± 0.10	
$\mu_G(D_q)$ [GeV]	0.38 ± 0.07	0.01 ± 0.10	
$\rho_D^3(B_q) [\text{GeV}^3]$	0.185 ± 0.031	0.075 ± 0.034	
$\rho_D(D_q)$ [GeV]	0.03 ± 0.02	_	


HQET, $\mu_0 = 1.5 \mathrm{GeV}$	$ ilde{B}_1$	$ ilde{B}_2$	$ ilde{\epsilon}_1$	$ ilde{\epsilon}_2$	
$B^{+,0}$	$1.0026^{+0.0198}_{-0.0106}$	$0.9982^{+0.0052}_{-0.0066}$	$-0.0165^{+0.0209}_{-0.0346}$	$-0.0004^{+0.0200}_{-0.0326}$	
$D^{+,0}$	$1.0026^{+0.0198}_{-0.0106}$	$0.9982^{+0.0052}_{-0.0066}$	$-0.0165^{+0.0209}_{-0.0346}$	$-0.0004^{+0.0200}_{-0.0326}$	

$$2m_{H}\rho_{D}^{3} = \langle H|\bar{h}_{v}(iD_{\mu})(iv\cdot D)(iD^{\mu})h_{v}|H\rangle + \mathcal{O}(1/m_{c})$$
$$=g_{s}^{2}\langle H|\left(-\frac{1}{9}\mathcal{O}_{1}^{q} + \frac{2}{9}\mathcal{O}_{2}^{q} + \frac{1}{12}\mathcal{T}_{1}^{q} - \frac{1}{6}\mathcal{T}_{2}^{q}\right)|H\rangle + \mathcal{O}(1/m_{c}),$$

HQET, $\mu_0 = 1.5 \mathrm{GeV}$	$ ilde{\delta}_1$	$ ilde{\delta}_2$	$ ilde{\delta}_3$	$ ilde{\delta}_4$
$\langle B_q \tilde{O}^q B_q \rangle$	$0.0026^{+0.0142}_{-0.0092}$	$-0.0018^{+0.0047}_{-0.0072}$	$-0.0004^{+0.0015}_{-0.0024}$	$0.0003^{+0.0012}_{-0.0008}$
$\langle B_s \tilde{O}^q B_s \rangle$	$0.0025^{+0.0144}_{-0.0093}$	$-0.0018^{+0.0047}_{-0.0072}$	$-0.0004^{+0.0015}_{-0.0024}$	$0.0003^{+0.0012}_{-0.0008}$
$\langle B_q \tilde{O}^s B_q \rangle$	$0.0023^{+0.0140}_{-0.0091}$	$-0.0017^{+0.0046}_{-0.0070}$	$-0.0004^{+0.0015}_{-0.0023}$	$0.0003^{+0.0012}_{-0.0008}$

$\langle D_q \tilde{O}^q D_q \rangle$	$0.0026^{+0.0142}_{-0.0092}$	$-0.0018^{+0.0047}_{-0.0072}$	$-0.0004^{+0.0015}_{-0.0024}$	$0.0003^{+0.0012}_{-0.0008}$
$\langle D_s \tilde{O}^q D_s \rangle$	$0.0025^{+0.0144}_{-0.0093}$	$-0.0018^{+0.0047}_{-0.0072}$	$-0.0004^{+0.0015}_{-0.0024}$	$0.0003^{+0.0012}_{-0.0008}$
$\langle D_q \tilde{O}^s D_q \rangle$	$0.0023^{+0.0140}_{-0.0091}$	$-0.0017^{+0.0046}_{-0.0070}$	$-0.0004^{+0.0015}_{-0.0023}$	$0.0003^{+0.0012}_{-0.0008}$

Mass-scheme dependence

For b- hadrons:

kinetic mass scheme for m_b and MS scheme for m_c

For c- hadrons?

kinetic mass scheme for m_c , and MS scheme for m_s ??

[Egner, Fael, Lenz, MLP, Rusov, Schönwald, Steinhauser '24]

Possible improvements??

- resummations?
- ratios/combinations of results?
- better determination of parameters and combination with experiments?
- another scheme for m_c? (doubly-heavy baryon lifetimes?)

Dulibic, Gratrex, Melic, Nisandzic, 2305.02243

Beneke, 2108.04861

charm	\overline{m}_c	1-loop	2-loop	3-loop	4-loop	Sum
m_c	1.280	0.211	0.202	0.282	0.510	$2.486^{+0.126}_{-0.109}$
$m_{c, m RS}$	1.280	-0.017	0.037	0.026	0.005	$1.331^{+0.006}_{-0.005}$
$m_{c,\mathrm{MSR}}$	1.280	0.046	0.022	0.010	-0.002	$1.356^{+0.004}_{-0.004}$
$m_{c,\mathrm{PS}}$	1.280	0.046	0.052	0.034	-0.019	$1.393^{+0.006}_{-0.006}$
m_{c,PS^*}	1.280	0.046	0.052	0.034	0.002	$1.414^{+0.009}_{-0.008}$
$m_{c,\mathrm{kin}}$	1.280	-0.073	-0.062	-0.017		$1.128^{+0.008}_{-0.009}$

RS, MRS = renormalon-subtracted masses

$$\delta m_{\rm RS}(\mu_f) = \mu_f N \sum_{n=1}^{\infty} \tilde{c}_n^{\rm (as)} \, \alpha_s^n(\mu_f)$$

PS, PS* = potential-subtracted masses

$$m_{\mathrm{PS}}(\mu_f) = m + \frac{1}{2} \int_{|\boldsymbol{q}| < \mu_f} \frac{d^3 \boldsymbol{q}}{(2\pi)^3} \, \tilde{V}(\boldsymbol{q})$$

kin = kinetic mass

$$m_{\rm kin}(\mu_f) = m - [\bar{\Lambda}(\mu_f)]_{\rm pert} - \left[\frac{\mu_\pi^2(\mu_f)}{2m_{\rm kin}(\mu_f)}\right]_{\rm pert} + \dots$$