Bag Parameters Discussion

K. Keri Vos

Maastricht University & Nikhef

= More than a lifetime =

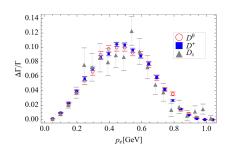
More than the lifetime calculation

Inclusive *B* Decays:

- $B \to X_c \ell \nu$ extract $\mu_G^2, \mu_\pi^2, \rho_D^3 \to$ lifetimes
- $B o X_u \ell \nu$ and $B o X_s \ell \ell$ depend on weak annihilation operators \leftarrow Bag parameters
- Currently: input from charm studies Huber, Hurth, Qin, Lunghi, Jenkins, KKV
- Challenge: consistent treatment of masses, scales, perturbative corrections

Keri Vos (Maastricht) #beautifulpuzzles! 2025 1 / 7

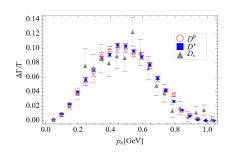
More than the lifetime calculation


Inclusive *B* Decays:

- $B \to X_c \ell \nu$ extract $\mu_G^2, \mu_\pi^2, \rho_D^3 \to$ lifetimes
- $B o X_u \ell \nu$ and $B o X_s \ell \ell$ depend on weak annihilation operators \leftarrow Bag parameters
- Currently: input from charm studies Huber, Hurth, Qin, Lunghi, Jenkins, KKV
- Challenge: consistent treatment of masses, scales, perturbative corrections

Inclusive D Decays:

- ullet HQE parameters less suppressed o larger sensitivity
- Inclusive $D \to X \ell \nu \to \text{Bag parameters}$?
- Challenge: what mass to use for the charm?
- Challenge: perturbative corrections more important
- Currently: kinetic mass, 1S mass, MSbar..


CLEO data, Gambino, Kamenik [1004.0114]

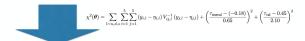
- Lepton energy moments extracted from spectrum
- \bullet Kinetic mass for charm at $\mu=$ 0.5 GeV threshold, HQE parameters as input
- scaling $B_{
 m WA}^b=rac{m_Bf_B^2}{m_Df_D^2}B_{
 m WA}^c$ gives rough estimate
- Max 2% weak annihilation (WA) contribution to $B o X_u \ell
 u$

Keri Vos (Maastricht) #beautifulpuzzles! 2025 2 / 7

CLEO data, Gambino, Kamenik [1004.0114]

- Lepton energy moments extracted from spectrum
- $\bullet\,$ Kinetic mass for charm at $\mu=$ 0.5 GeV threshold, HQE parameters as input
- scaling $B_{\mathrm{WA}}^b = \frac{m_B f_B^2}{m_D f_D^2} B_{\mathrm{WA}}^c$ gives rough estimate
- Max 2% weak annihilation (WA) contribution to $B o X_u \ell \nu$
- Feasibility study to measure q^2 moments at BESIII Bernlochner, Gilman, Malde, Prim, KKV, Wilkinson

Keri Vos (Maastricht) #beautifulpuzzles! 2025 2 / 7


Recent extractions from charm

Qin Qin; slide from CKM 2025

Weak-annihilation Uncertainty

* Redo the fits, adopting the HQET SR calculation for the weak annihilation contributions

$$\begin{split} \tau_0(D_d \to X_d) &= \tau_0(D_s \to X_s) = \tau_{\rm val} = (-0.18 \pm 0.65) \; \text{GeV}^3 \\ \tau_0(D_u \to X_d s) &= \tau_0(D_d \to X_s) = \tau_0(D_s \to X_d) = \tau_{\rm nonval} = (0.45 \pm 2.10) \; \text{GeV}^3 \end{split}$$
 [King, Lenz, Piscopo, Rauh, '19]

$$\begin{split} &\mu_{\pi}^2(D^{0,+}) = 0.08 \text{GeV}^2 \ , \ \mu_{G}^2(D^{0,+}) = 0.33 \text{GeV}^2 \ , \ \rho_{D}^3(D^{0,+}) = -0.003 \text{GeV}^3 \ , \ \rho_{LS}^3(D^{0,+}) = 0.004 \text{GeV}^3 \\ &\mu_{\pi}^2(D_s) = 0.15 \text{GeV}^2 \ , \ \mu_{G}^2(D_s) = 0.38 \text{GeV}^2 \ , \ \rho_{D}^3(D_s) = -0.005 \text{GeV}^3 \ , \ \rho_{LS}^3(D_s) = 0.006 \text{GeV}^3 \ , \\ &\tau_{\text{val}} = -0.11 \text{GeV}^3, \ \tau_{\text{nonval}} = 0.002 \text{GeV}^3 \ . \end{split}$$

The best-fit values only slightly change.

27

Keri Vos (Maastricht) #beautifulpuzzles!

Quick estimate of weak annihilation in B

Piscopo, Fael, Lenz, Rusov et al. [2412.14035]

- $B_{\mathrm{WA}}^{b} = (-0.0004 \pm 0.0030) \mathrm{GeV}^{3}$ valence (uncertainty 2x smaller for non-valence)
- At 1σ level this is a 1% contribution to $B \to X_u \ell \nu$ rate
- in agreement with extracted values from D decays
- one of the dominant uncertainties in $B \to X_s \ell \ell$ at high q^2

Quick estimate of weak annihilation in B

Piscopo, Fael, Lenz, Rusov et al. [2412.14035]

- $B_{\mathrm{WA}}^{b} = (-0.0004 \pm 0.0030) \mathrm{GeV}^{3}$ valence (uncertainty 2x smaller for non-valence)
- At 1σ level this is a 1% contribution to $B \to X_u \ell \nu$ rate
- in agreement with extracted values from D decays
- one of the dominant uncertainties in $B \to X_s \ell \ell$ at high q^2
- Challenge: mixing with the ρ_D^3 parameter

How to proceed?

Input from Fabian, Zach, Matthew, Martin

- Which precision is needed?
- What is the timeline?
- What are the advantages and disadvantages of using QCD or HQET?
- Should we focus on lifetimes or lifetime differences?
- Should we focus on charm or bottom systems?

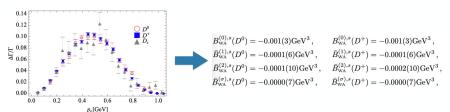
How to proceed?

Input from Fabian, Zach, Matthew, Martin

- Which precision is needed?
- What is the timeline?
- What are the advantages and disadvantages of using QCD or HQET?
- Should we focus on lifetimes or lifetime differences?
- Should we focus on charm or bottom systems?
- Can we obtain correlations?

Backup

#beautifulpuzzles!


Recent extractions from charm

Qin Qin: slide from CKM 2025

Phenomenological Progress

4-guark operator matrix elements were extracted from electron energy spectrum

[Gambino, Kamenik, '10; Ligeti, Luke, Manohar, '10]

2-quark operator matrix elements were assumed to be identical to the B meson ones, which is questionable.