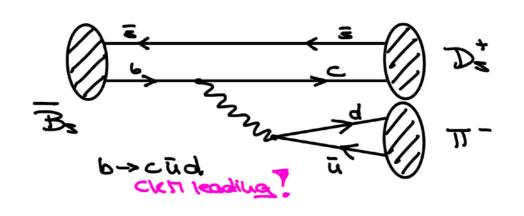
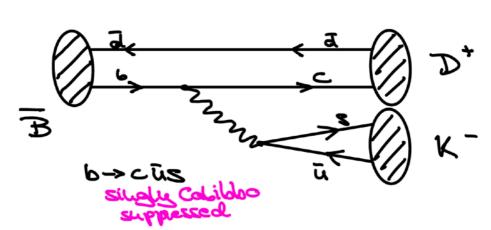


Outlook for theory and BSM investigations

Siegen 25.9.2025 Alexander Lenz

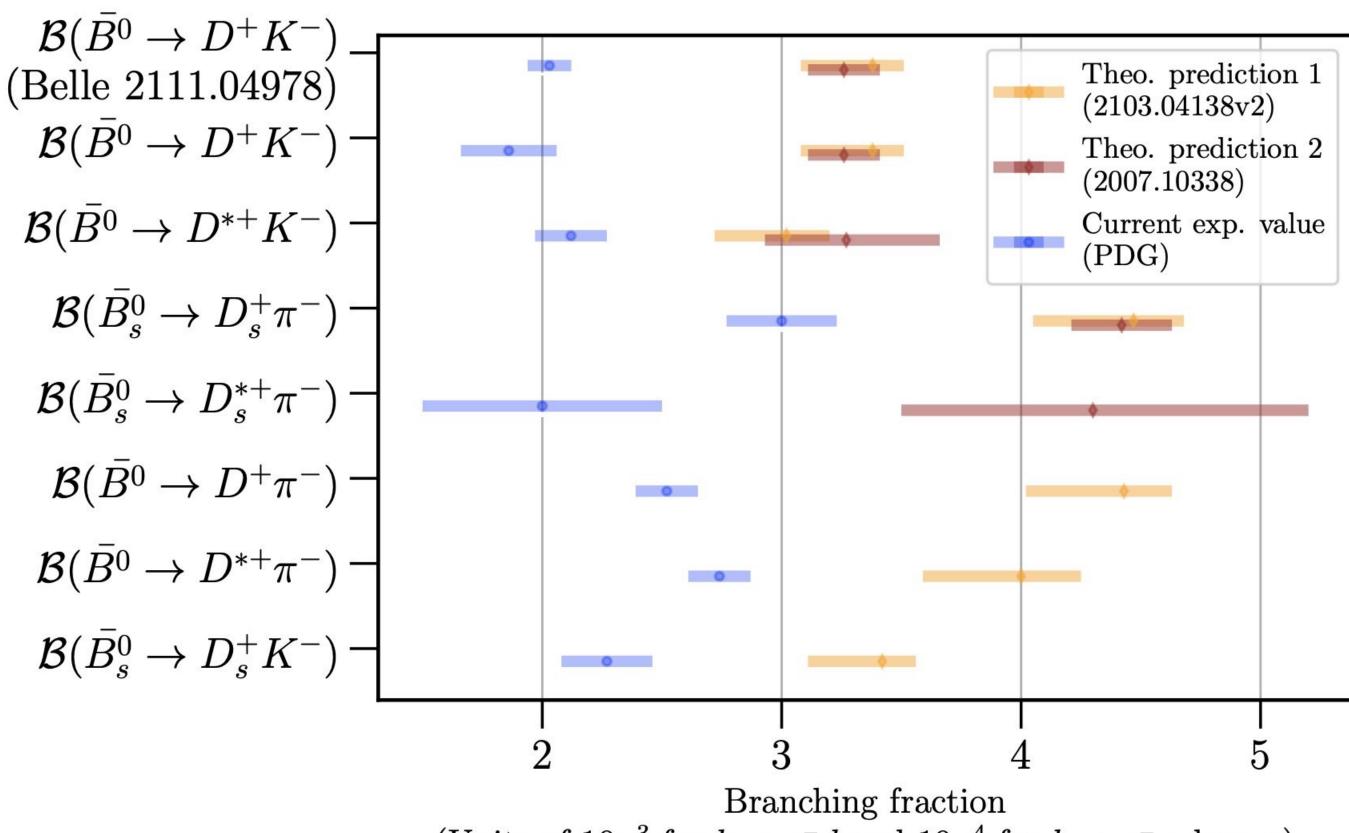
Outline


- 1) Why BSM effects in tree-level decays?
- 2) A decisive test of certain BSM effects in tree-level decays
- 3) Reminder: extraction of γ_{CKM} in BSM scenarios



3 σ to 7 σ deviation of experiment from leading power QCDf predictions with standard error estimates

Colour-allowed Tree-level Decays



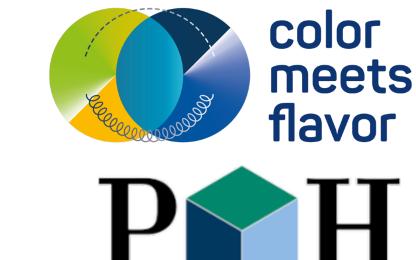
- CKM leading decays
- The are no annihilation, penguins,...
- QCDf should work at its best!

Beneke, Buchalla, Neubert, Sachrajda 1999

$$\langle D_q^{(*)+}L^-|Q_i|\bar{B}_q^0\rangle = \sum_j F_j^{\bar{B}_q \to D_q^{(*)}}(M_L^2)$$

$$\times \int_0^1 du \, T_{ij}(u)\phi_L(u) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)$$

(Units of 10^{-3} for $b \to c\bar{u}d$ and 10^{-4} for $b \to c\bar{u}s$ decays)


 $\bullet \bullet \bullet$

According to the new Belle measurement in 2111.04978, the decay barB_d to D+ K- is around 7 sigma of the QCD factorisation prediction in 2007.10338. Where is this discrepancy rooted?

QCD factorisation	90.9%
New Physics	9.1%
Experiment	0%
33 votes · Final results	
9:47 AM · Nov 10, 2021 · Twitter Web App	

3 σ to 7 σ deviation of experiment from leading power QCDf predictions with standard error estimates - confirmed by more recent measurements

PHYSICAL REVIEW D 107, 012003 (2023)

BELLE, 2207.00134v2

Measurements of the branching fractions $\mathcal{B}(\bar{B}^0 \to D^{*+}\pi^-)$ and $\mathcal{B}(\bar{B}^0 \to D^{*+}K^-)$ and tests of QCD factorization

$$Br(\bar{B} \to D^{*+}\pi^{-}) = (2.62 \pm 0.02 \pm 0.09) \cdot 10^{-3}$$

$$Br(\bar{B} \to D^{*+}K^{-}) = (2.22 \pm 0.06 \pm 0.08) \cdot 10^{-4}$$

$$\Gamma(\bar{B}^0 \to D^{*+}h^-) = 6\pi^2 \tau_B |V_{uq}|^2 f_h^2 X_h |a_1(q^2)|^2$$

$$\times d\Gamma(\bar{B}^0 \to D^{*+}\ell^-\bar{\nu})/dq^2|_{q^2 = m_h^2},$$

$$|a_1(\pi)| = 0.884 \pm 0.004 \pm 0.003 \pm 0.016$$

$$|a_1(K)| = 0.913 \pm 0.019 \pm 0.008 \pm 0.013$$

PHYSICAL REVIEW D 105, 012003 (2022)

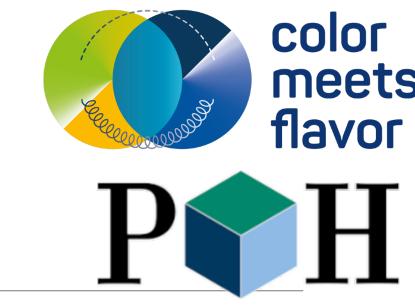
2111.04978

Study of $\bar{B}^0 \to D^+h^-(h=K/\pi)$ decays at Belle

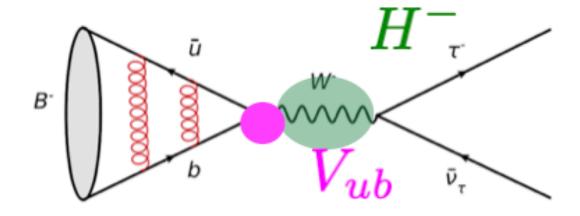
$$Br(\bar{B} \to D^+\pi^-) = (2.48 \pm 0.01 \pm 0.09 \pm 0.04) \cdot 10^{-3}$$

$$Br(\bar{B} \to D^+K^-) = (2.48 \pm 0.01 \pm 0.09 \pm 0.04) \cdot 10^{-3}$$

PHYSICAL REVIEW D 104, 032005 (2021)

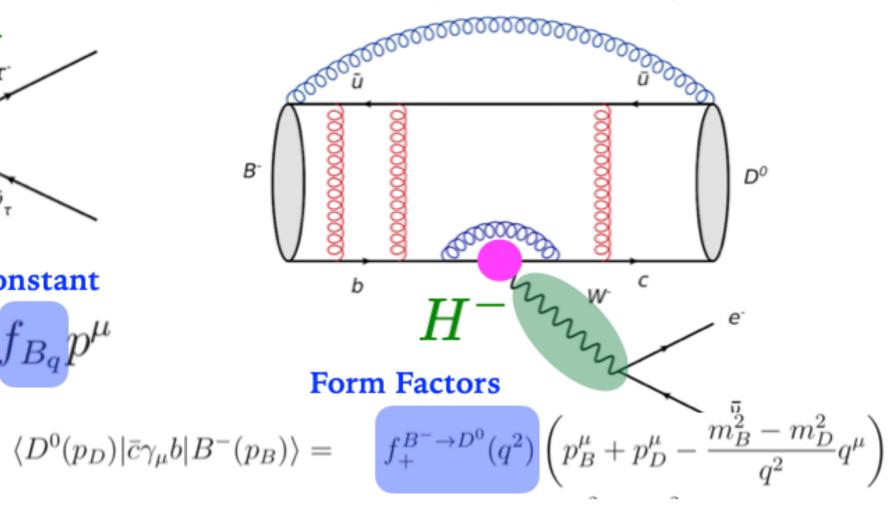

2103.06810

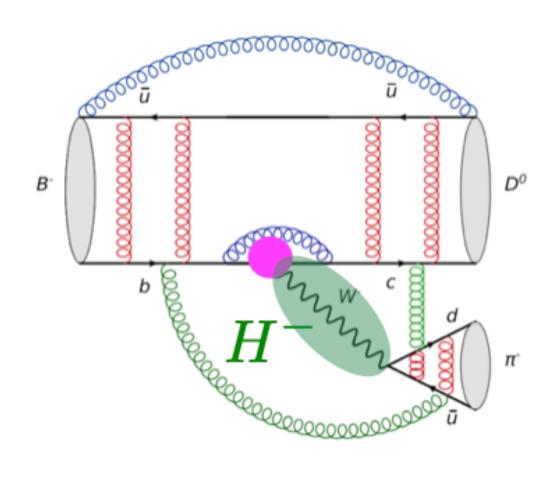
Precise measurement of the f_s/f_d ratio of fragmentation fractions and of B_s^0 decay branching fractions


R. Aaij *et al.**
(LHCb Collaboration)

$$Br(B_s \to D_s^- \pi^+) = (3.20 \pm 0.10 \pm 0.16) \cdot 10^{-3}$$

 $Br(B_s \to D_s^- K^+) = (2.41 \pm 0.05 \pm 0.06 \pm 0.14) \cdot 10^{-4}$

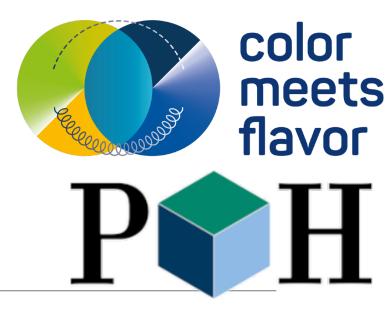



Decay constant

$$\langle 0|\bar{b}\gamma^{\mu}\gamma_5 u|B_q(p)\rangle = i f_{B_q} p^{\mu}$$

Semileptonic Decays

Non-leptonic Decays



Factorisation

$$\frac{\langle D^0 \pi^- | \bar{c} \gamma_\mu (1 - \gamma_5) b \cdot \bar{u} \gamma^\mu (1 - \gamma_5) d | B^- \rangle}{\approx \langle D^0 | \bar{c} \gamma_\mu (1 - \gamma_5) b | B^- \rangle} \cdot \langle \pi^- | \bar{u} \gamma^\mu (1 - \gamma_5) d | 0 \rangle$$

- I) Imaginary part of CKM-elements = CP Violation
- II) Instead of a W-Boson a charged Higgs particle could be exchanged
- III) QCD effects are crucial! Perturbative QCD corrections Non-perturbative: decay constants, form factors, factorisation
- IV) Determination of SM-Parameter

Two-body non-leptonic heavy-to-heavy decays at NNLO in QCD factorization

Tobias Huber (Siegen U.), Susanne Kränkl (Siegen U.), Xin-Qiang Li (CCNU, Wuhan, Inst. Part. Phys. and Hua-Zhong Normal U. and Hua-Zhong Normal U., LQLP) (Jun 9, 2016)

Published in: JHEP 09 (2016) 112 • e-Print: 1606.02888 [hep-ph]

reference search

49 citations

A puzzle in $ar{B}^0_{(s)} o D^{(*)+}_{(s)}\{\pi^-,K^-\}$ decays and extraction of the f_s/f_d fragmentation fraction

Marzia Bordone (Siegen U.), Nico Gubernari (Munich, Tech. U.), Tobias Huber (Siegen U.), Martin Jung (Turin U. and INFN, Turin), Danny van Dyk (Munich, Tech. U.) (Jul 20, 2020)

Published in: Eur. Phys. J.C 80 (2020) 10, 951 • e-Print: 2007.10338 [hep-ph]

reference search

29 citations

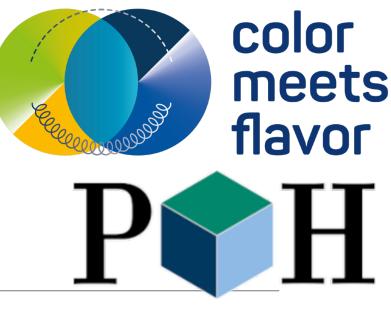
$$\langle D_q^{(*)+}L^-|\mathcal{Q}_i|\bar{B}_q^0\rangle = \sum_j F_j^{\bar{B}_q\to D_q^{(*)}}(M_L^2) \times \int_0^1 du \frac{T_{ij}(u)}{T_{ij}(u)} \phi_L(u) + \mathcal{O}\left(\frac{\Lambda_{\rm QCD}}{m_b}\right)$$

NNLO

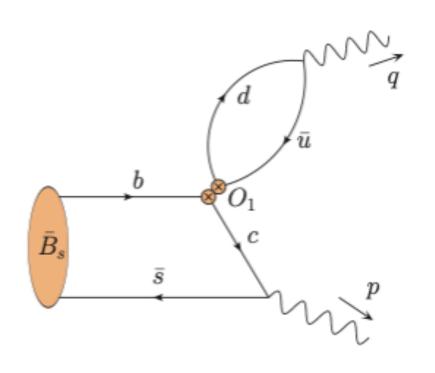
LO in

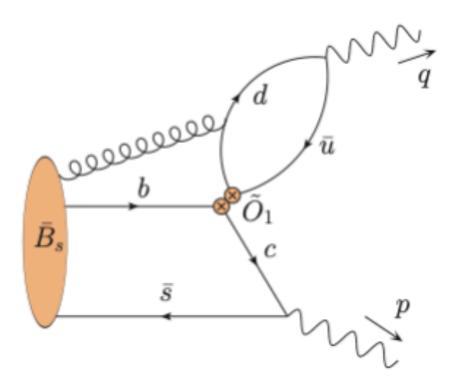
$$\varepsilon \sim \Lambda_{
m QCD}/E_L \sim \Lambda_{
m QCD}/m_b$$

$$\mathcal{A}(\bar{B}_{q}^{0} \to D_{q}^{+}L^{-}) = i\frac{G_{F}}{\sqrt{2}}V_{uq_{2}}^{*}V_{cb}^{*}a_{1}(D_{q}^{+}L^{-})f_{L} \times F_{0}^{\bar{B}_{q} \to D_{q}}(M_{L}^{2})(M_{B_{q}}^{2} - M_{D_{q}}^{2})$$


THE EUROPEAN Heavy-Quark expansion for $\bar{B}_s \rightarrow D_s^{(*)}$ form factors and unitarity bounds beyond the $SU(3)_F$ limit

$$\begin{array}{cccc} F_0^{\bar{B}\to D}(M_K^2) & - & 0.672 \pm 0.011 \\ F_0^{\bar{B}_s^0\to D_s}(M_\pi^2) & - & 0.673 \pm 0.011 \\ A_0^{\bar{B}\to D^*}(M_K^2) & - & 0.708 \pm 0.038 \\ A_0^{\bar{B}_s^0\to D_s^*}(M_\pi^2) & - & 0.689 \pm 0.064 \end{array}$$


- **NLO in** ϵ : ϵ^1 . Higher twist to light meson DA
 - Emission of hard-collinear gluon from spectator quark
 - Emission of hard-collinear gluon from heavy quark
 - Exchange of soft-gluon between B,D-system and light meson


Bordone, et al: first estimates of power corrections yield very small effect, overall uncertainties are also very small

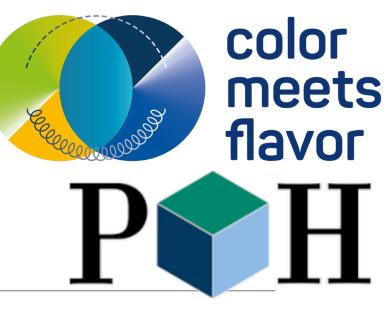
New estimates within QCD sum rules

$$F_{\mu}^{\tilde{O}_{1}}(p,q) = i^{2} \int d^{4}x \, e^{ip \cdot x} \int d^{4}y \, e^{iq \cdot y} \, \langle 0 | \mathcal{T} \Big\{ j_{5}^{D}(x), \tilde{O}_{1}(0), j_{\mu}^{\pi}(y) \Big\} \, |\bar{B}_{s}(p+q) \rangle$$

Non-factorisable effects in the decays $ar{B}^0_s o D_s^+\pi^-$ and $ar{B}^0 o D^+K^-$ from LCSR

Maria Laura Piscopo and Aleksey V. Rusov

Physik Department, Universität Siegen, Walter-Flex-Str. 3, 57068 Siegen, Germany


E-mail: maria.piscopo@uni-siegen.de, rusov@physik.uni-siegen.de

Abstract: In light of the current discrepancies between the recent predictions based on QCD factorisation (QCDF) and the experimental data for several non-leptonic colourallowed two-body B-meson decays, we obtain new determinations of the non-factorisable soft-gluon contribution to the decays $\bar{B}_s^0 \to D_s^+\pi^-$ and $\bar{B}^0 \to D^+K^-$, using the framework of light-cone sum rule (LCSR), with a suitable three-point correlation function and B-meson light-cone distribution amplitudes. In particular, we discuss the problem associated with a double light-cone (LC) expansion of the correlator, and motivate future determinations of the three-particle B-meson matrix element with the gluon and the spectator quark aligned along different light-cone directions. Performing a LC-local operator product expansion of the correlation function, we find, for both modes considered, the non-factorisable part of the amplitude to be sizeable and positive, however, with very large systematic uncertainties. Furthermore, we also determine for the first time, using LCSR, the factorisable amplitudes at LO-QCD, and thus the corresponding branching fractions. Our predictions are in agreement with the experimental data and consistent with the results based on QCDF, although again within very large uncertainties. In this respect, we provide a rich outlook for future improvements and investigations.

Indication: non-factorizable contribution larger - uncertainties larger - stay tuned and let's have fun first

The "fun" explanation?

PHYSICAL REVIEW D **102**, 071701(R) (2020)

2008.01086

Implications for new physics from a novel puzzl in $\bar{B}^0_{(s)} o D^{(*)}_{(s)} \{\pi^-, K^-\}$ decays

Syuhei Iguro 1,* and Teppei Kitahara 2,3,†

BSM in C_1 and C_2

to these processes. In spite of severe bounds from the other flavor observables and the LHC searches, we conclude that a -10% shift in the $b \to c\bar{u}q$ amplitude is possible by the left-handed W' model. Such a new physics contribution can reduce the tension in the $b \to c\bar{u}q$ processes.

Published for SISSA by 췶 Springer

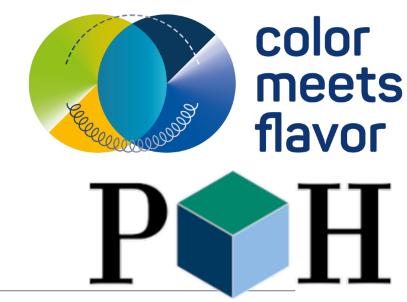
2103.04138

RECEIVED: March 15, 2021
REVISED: August 31, 2021
ACCEPTED: September 30, 2021
PUBLISHED: October 28, 2021

Probing new physics in class-I B-meson decays into heavy-light final states

Fang-Min Cai, 1 Wei-Jun Deng, 1 Xin-Qiang Li 2 and Ya-Dong Yang

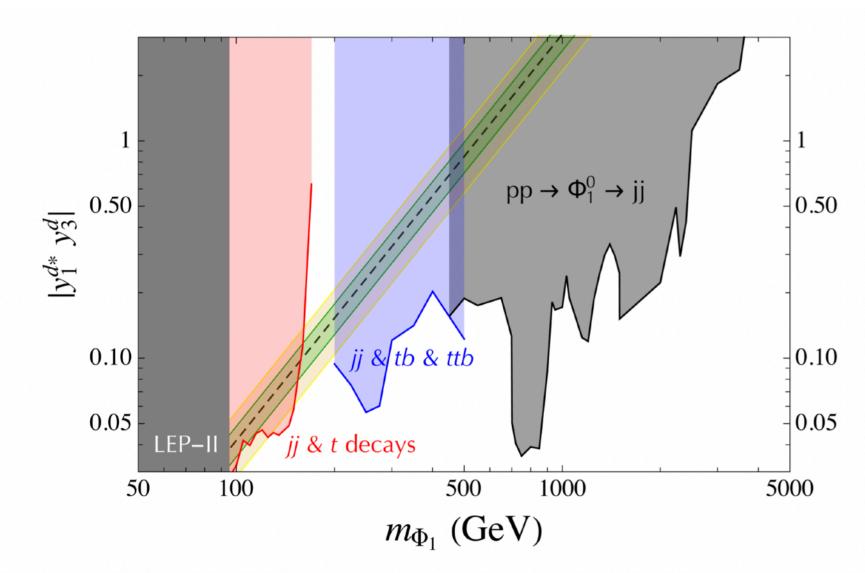
Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University, Wuhan, Hubei 430079, P.R. China


- Redo analysis of Bordone at al. + ratio with sl
- Extend to 20 BSM operators

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{cb} V_{uq}^* \left\{ \sum_i C_i(\mu) \mathcal{Q}_i(\mu) + \sum_{i,j} \left[C_i^{VLL}(\mu) \mathcal{Q}_i^{VLL}(\mu) + C_i^{VLR}(\mu) \mathcal{Q}_i^{VLR}(\mu) \right] \right\}$$

$$+C_j^{SLL}(\mu)\mathcal{Q}_j^{SLL}(\mu)+C_i^{SLR}(\mu)\mathcal{Q}_i^{SLR}(\mu)+(L\leftrightarrow R)\Big]\Bigg\}+\mathrm{h.c.}\,,$$

The "fun" explanation?


Published for SISSA by 🙋 Springer

RECEIVED: April 1, 2021 REVISED: July 10, 2021 ACCEPTED: July 22, 2021 PUBLISHED: August 9, 2021

2008.01086

Exploiting dijet resonance searches for flavor physics

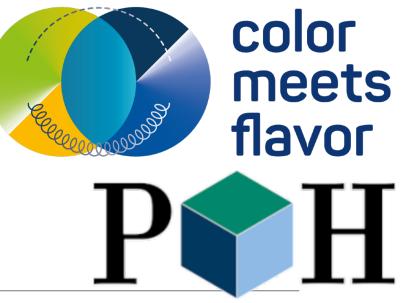
Marzia Bordone, a,b Admir Greljoc,d and David Marzoccae

Eur. Phys. J. C (2025) 85:258 https://doi.org/10.1140/epjc/s10052-024-13739-w THE EUROPEAN
PHYSICAL JOURNAL C

Regular Article - Theoretical Physics

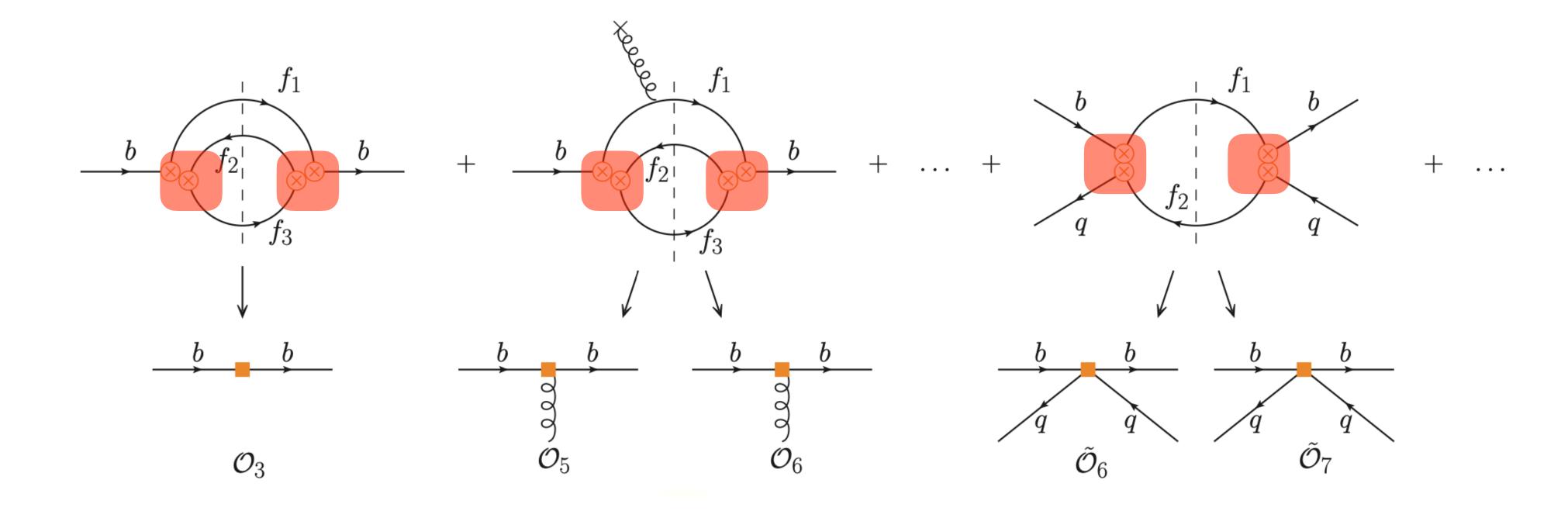
2411.00940

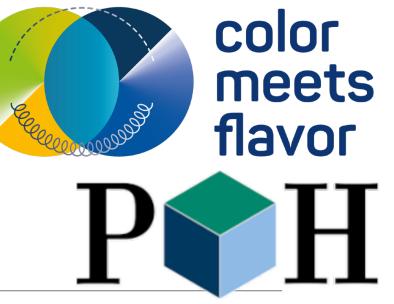
Collider-flavour complementarity from the bottom to the top


Oliver Atkinson 1, Christoph Englert 1, a, Matthew Kirk 2, b, Gilberto Tetlalmatzi-Xolocotzi 3, 4, c

- ¹ School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
- ² Institute for Particle Physics Phenomenology, Durham University, Durham DH1 3LE, UK
- ³ Physik Department, Universität Siegen, Walter-Flex-Str. 3, 57068 Siegen, Germany
- ⁴ Universitè Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

BSM effects in non-leptonic B decays cannot be arbitrarily large!


Figure 7. The compilation of the high- p_T collider constraints on the Φ_1 model (Benchmark I) together with the best-fit region from non-leptonic B decays. See section 4.2 for details.



New tree-level $\Delta B=1$ operators affect also liftetimes and Γ_{12}

$$\Gamma(B_q) = \Gamma_3 + \Gamma_5 \frac{\langle \mathcal{O}_5 \rangle}{m_b^2} + \Gamma_6 \frac{\langle \mathcal{O}_6 \rangle}{m_b^3} + \dots + 16\pi^2 \left(\tilde{\Gamma}_6 \frac{\langle \tilde{\mathcal{O}}_6 \rangle}{m_b^3} + \tilde{\Gamma}_7 \frac{\langle \tilde{\mathcal{O}}_7 \rangle}{m_b^4} + \dots \right)$$

Effect on total decay rates

$$\Gamma(\mathcal{B}_q) = \Gamma_3^{\text{SM}} + \Gamma_3^{\text{BSM}} + \delta\Gamma(\mathcal{B}_q)^{\text{SM}} + \delta\Gamma(\mathcal{B}_q)^{\text{BSM}}$$

Effect on lifetime ratios

$$\frac{\tau(B_1)}{\tau(B_2)} = 1 + \left[\Gamma(B_2) - \Gamma(B_1) \right] \tau(B_1)$$

$$\frac{\tau(B_1)}{\tau(B_2)} = 1 + \underbrace{\left(\Gamma_3 - \Gamma_3\right) + \Gamma_5 \left(\frac{\langle \mathcal{O}_5 \rangle_{B_2} - \langle \mathcal{O}_5 \rangle_{B_1}}{m_b^2}\right) + \Gamma_6 \left(\frac{\langle \mathcal{O}_6 \rangle_{B_2} - \langle \mathcal{O}_6 \rangle_{B_1}}{m_b^3}\right) + \dots}_{\text{isopin/SU(3)}_{\text{F}breaking}} + \Gamma_6 \underbrace{\left(\frac{\langle \mathcal{O}_6 \rangle_{B_2} - \langle \mathcal{O}_6 \rangle_{B_1}}{m_b^3}\right) + \dots}_{\text{isopin/SU(3)}_{\text{F}breaking}} + \Gamma_6 \underbrace{\left(\frac{\langle \mathcal{O}_6 \rangle_{B_2} - \langle \mathcal{O}_6 \rangle_{B_1}}{m_b^3}\right) + \dots}_{\text{isopin/SU(3)}_{\text{F}breaking}}$$

$$+16\pi^{2}\left[\left(\tilde{\Gamma}_{6}(B_{2})\frac{\langle\tilde{\mathcal{O}}_{6}\rangle_{B_{2}}}{m_{b}^{3}}-\tilde{\Gamma}_{6}(B_{1})\frac{\langle\tilde{\mathcal{O}}_{6}\rangle_{B_{1}})}{m_{b}^{3}}\right)+\left(\tilde{\Gamma}_{7}(B_{2})\frac{\langle\tilde{\mathcal{O}}_{7}\rangle_{B_{2}}}{m_{b}^{4}}-\tilde{\Gamma}_{7}(B_{1})\frac{\langle\tilde{\mathcal{O}}_{7}\rangle_{B_{1}})}{m_{b}^{4}}\right)+\ldots\right]\tau(B_{1})$$

Effect on total decay rates

$$\Gamma(\mathcal{B}_q) = \Gamma_3^{\text{SM}} + \Gamma_3^{\text{BSM}} + \delta\Gamma(\mathcal{B}_q)^{\text{SM}} + \delta\Gamma(\mathcal{B}_q)^{\text{BSM}}$$

Effect on lifetime ratios

$$\frac{\tau(B_1)}{\tau(B_2)} = 1 + \left[\Gamma(B_2) - \Gamma(B_1) \right] \tau(B_1)$$

$$\frac{\tau(B_1)}{\tau(B_2)} = 1 + \underbrace{\left[\underbrace{(\Gamma_3 - \Gamma_3)}_{=0} + \Gamma_5 \underbrace{\left(\frac{\langle \mathcal{O}_5 \rangle_{B_2} - \langle \mathcal{O}_5 \rangle_{B_1}}{m_b^2}\right)}_{\text{isopin/SU(3)}_{\text{F}breaking}} + \Gamma_6 \underbrace{\left(\frac{\langle \mathcal{O}_6 \rangle_{B_2} - \langle \mathcal{O}_6 \rangle_{B_1}}{m_b^3}\right)}_{\text{isopin/SU(3)}_{\text{F}breaking}} + \dots \right]}_{\text{isopin/SU(3)}_{\text{F}breaking}} + \dots$$

$$= 1 + \underbrace{\left(\frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \Gamma_5 \underbrace{\left(\frac{\langle \mathcal{O}_5 \rangle_{B_2} - \langle \mathcal{O}_5 \rangle_{B_1}}{m_b^3}\right)}_{\text{isopin/SU(3)}_{\text{F}breaking}} + \dots \right]}_{\text{isopin/SU(3)}_{\text{F}breaking}} + \dots$$

$$= \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \dots$$

$$= \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \dots$$

$$= \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \dots$$

$$= \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \dots$$

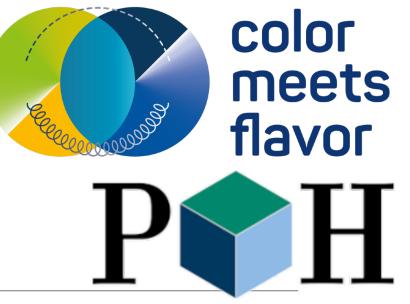
$$= \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \dots$$

$$= \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \dots$$

$$= \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \dots$$

$$= \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \dots$$

$$= \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \dots$$


$$= \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \dots$$

$$= \frac{(\Gamma_3 - \Gamma_3)}{\sigma(B_1)} + \dots$$

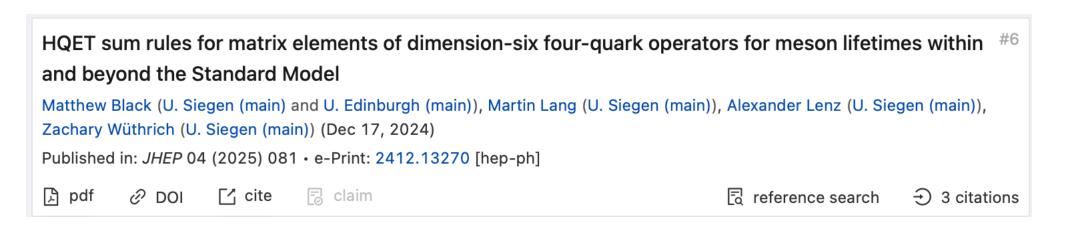
BSM effects modify

$$+16\pi^{2}\left[\left(\tilde{\Gamma}_{6}(B_{2})\frac{\langle\tilde{\mathcal{O}}_{6}\rangle_{B_{2}}}{m_{b}^{3}}-\tilde{\Gamma}_{6}(B_{1})\frac{\langle\tilde{\mathcal{O}}_{6}\rangle_{B_{1}})}{m_{b}^{3}}\right)+\left(\tilde{\Gamma}_{7}(B_{2})\frac{\langle\tilde{\mathcal{O}}_{7}\rangle_{B_{2}}}{m_{b}^{4}}-\tilde{\Gamma}_{7}(B_{1})\frac{\langle\tilde{\mathcal{O}}_{7}\rangle_{B_{1}})}{m_{b}^{4}}\right)+\dots\right]\tau(B_{1})$$



New tree-level $\Delta B=1$ operators affect also liftetimes and Γ_{12}

$$\Gamma(B_q) = \Gamma_3 + \Gamma_5 \frac{\langle \mathcal{O}_5 \rangle}{m_b^2} + \Gamma_6 \frac{\langle \mathcal{O}_6 \rangle}{m_b^3} + \dots + 16\pi^2 \left(\tilde{\Gamma}_6 \frac{\langle \tilde{\mathcal{O}}_6 \rangle}{m_b^3} + \tilde{\Gamma}_7 \frac{\langle \tilde{\mathcal{O}}_7 \rangle}{m_b^4} + \dots \right)$$



New tree-level $\Delta B=1$ operators affect also liftetimes and Γ_{12}

$$\Gamma(B_q) = \Gamma_3 + \Gamma_5 \frac{\langle \mathcal{O}_5 \rangle}{m_b^2} + \Gamma_6 \frac{\langle \mathcal{O}_6 \rangle}{m_b^3} + \dots + 16\pi^2 \left(\tilde{\Gamma}_6 \frac{\langle \tilde{\mathcal{O}}_6 \rangle}{m_b^3} + \tilde{\Gamma}_7 \frac{\langle \tilde{\mathcal{O}}_7 \rangle}{m_b^4} + \dots \right)$$

$$\Delta B = 0$$
 - new Dirac Structures

New tree-level $\Delta B=1$ operators affect also liftetimes and Γ_{12}

Charming new physics in rare B-decays and mixing Jaeger, Kirk, Lenz, Leslie

arXiv: 1701.09183; 1902.10.12924

$$\Gamma(B_q) = \Gamma_3 + \Gamma_5 \frac{\langle \mathcal{O}_5 \rangle}{m_b^2} + \Gamma_6 \frac{\langle \mathcal{O}_6 \rangle}{m_b^3} + \dots + 16\pi^2 \left(\frac{\tilde{\Gamma}_6}{m_b^3} + \frac{\tilde{\Gamma}_7}{m_b^4} + \frac{\tilde{\Gamma}_7}{m_b^4} + \dots \right)$$

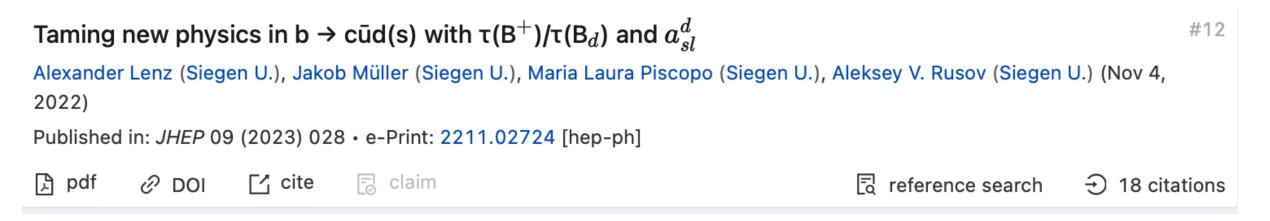
$\Delta B = 0$ - new Dirac Structures

HQET sum rules for matrix elements of dimension-six four-quark operators for meson lifetimes within #6 and beyond the Standard Model

Matthew Black (U. Siegen (main) and U. Edinburgh (main)), Martin Lang (U. Siegen (main)), Alexander Lenz (U. Siegen (main)), Zachary Wüthrich (U. Siegen (main)) (Dec 17, 2024)

Published in: JHEP 04 (2025) 081 ⋅ e-Print: 2412.13270 [hep-ph]

□ pdf ② DOI □ cite □ claim □ reference search → 3 citations


New tree-level $\Delta B=1$ operators affect also liftetimes and Γ_{12}

Charming new physics in rare B-decays and mixing Jaeger, Kirk, Lenz, Leslie arXiv: 1701.09183; 1902.10.12924


$$\Gamma(B_q) = \Gamma_3 + \Gamma_5 \frac{\langle \mathcal{O}_5 \rangle}{m_b^2} + \Gamma_6 \frac{\langle \mathcal{O}_6 \rangle}{m_b^3} + \dots + 16\pi^2 \left(\frac{\tilde{\mathcal{O}}_6 \rangle}{m_b^3} + \tilde{\Gamma}_7 \frac{\langle \tilde{\mathcal{O}}_7 \rangle}{m_b^4} + \dots \right)$$

$\Delta B=0$ - new Dirac Structures

$\Delta B=0$ - new Wilson coefficients

→ 3 citations

New tree-level $\Delta B=1$ operators affect also liftetimes and Γ_{12}

Charming new physics in rare B-decays and mixing Jaeger, Kirk, Lenz, Leslie arXiv: 1701.09183; 1902.10.12924

$$\Gamma(B_q) = \Gamma_3 + \frac{\langle \mathcal{O}_5 \rangle}{m_b^2} + \frac{\langle \mathcal{O}_6 \rangle}{m_b^3} + \dots + 16\pi^2 \left(\frac{\tilde{\mathcal{O}}_6 \rangle}{m_b^3} + \tilde{\Gamma}_7 \frac{\langle \tilde{\mathcal{O}}_7 \rangle}{m_b^4} + \dots \right)$$

 $\Delta B=0$ - new Wilson coefficients BSM and SM penguins

Subleading power corrections to the decay rate of B-mesons within and beyond the Standard Movier

HQET sum rules for matrix elements of dimension-six four-quark operators for meson lifetimes within #6 and beyond the Standard Model

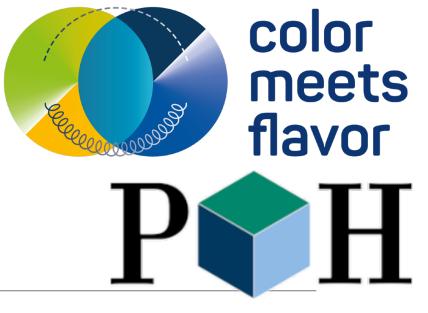
Matthew Black (U. Siegen (main) and U. Edinburgh (main)), Martin Lang (U. Siegen (main)), Alexander Lenz (U. Siegen (main)), Zachary Wüthrich (U. Siegen (main)) (Dec 17, 2024)

Published in: JHEP 04 (2025) 081 • e-Print: 2412.13270 [hep-ph]

 $\Delta B = 0$ - new Dirac Structures

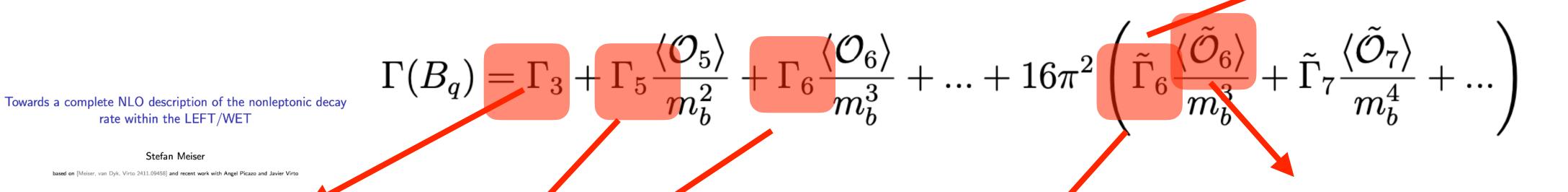
 $\Delta B=0$ - new Wilson coefficients

Taming new physics in b \rightarrow cūd(s) with $\tau(B^+)/\tau(B_d)$ and a^d_{sl} Alexander Lenz (Siegen U.), Jakob Müller (Siegen U.), Maria Laura Piscopo (Siegen U.), Aleksey V. Rusov (Siegen U.) (Nov 4, 2022)


Published in: JHEP 09 (2023) 028 · e-Print: 2211.02724 [hep-ph] $\square \text{ pdf } \mathcal{O} \text{ DOI } \square \text{ cite } \square \text{ claim}$ #12

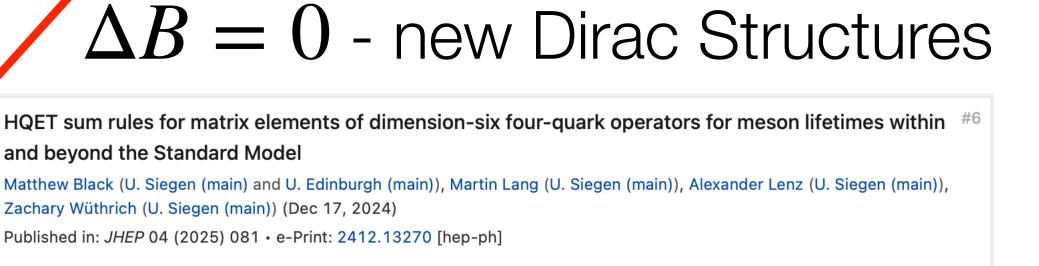
#12

Universität Siegen, 25 September 2025


Why BSM effects in tree-level decays?

→ 3 citations

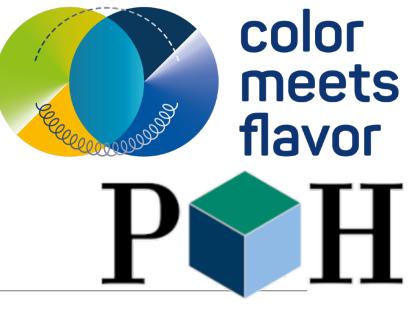
New tree-level $\Delta B=1$ operators affect also liftetimes and Γ_{12}


Charming new physics in rare B-decays and mixing Jaeger, Kirk, Lenz, Leslie arXiv: 1701.09183; 1902.10.12924

 $\Delta B = 0$ - new Wilson coefficients BSM and SM penguins

Subleading power corrections to the decay rate of B-mesons within and beyond the Standard Model

Martin Lang,^a Alexander Lenz,^a Ali Mohamed,^a Maria Laura Piscopo,^{b,c} Aleksey V. Rusov,^d


 $\Delta B=0$ - new Wilson coefficients

Taming new physics in b \rightarrow cūd(s) with $\tau(B^+)/\tau(B_d)$ and a^d_{sl} Alexander Lenz (Siegen U.), Jakob Müller (Siegen U.), Maria Laura Piscopo (Siegen U.), Aleksey V. Rusov (Siegen U.) (Nov 4, 2022)

Published in: JHEP 09 (2023) 028 · e-Print: 2211.02724 [hep-ph]

Pdf \mathcal{O} DOI Γ cite Γ claim

Is there a connection between mixing and rare decays (anomalies)?

Charming new physics in rare B-decays and mixing Jaeger, Kirk, Lenz, Leslie

arXiv: 1701.09183; 1902.10.12924

Consider NP in tree-level $b \to c\bar{c}s$ transitions with general Dirac structures

$$\mathcal{H}_{\text{eff}}^{c\bar{c}} = \frac{4G_F}{\sqrt{2}} V_{cs}^* V_{cb} \sum_{i=1}^{10} (C_i^c Q_i^c + C_i^{c\prime} Q_i^{c\prime})$$

$$Q_1^c = (\bar{c}_L^i \gamma_\mu b_L^j)(\bar{s}_L^j \gamma^\mu c_L^i), \qquad Q_1^c = (\bar{c}_L^i \gamma_\mu b_L^j)(\bar{s}_L^j \gamma^\mu c_L^i),$$

$$Q_2^c = (\bar{c}_L^i \gamma_\mu b_L^i)(\bar{s}_L^j \gamma^\mu c_L^j),$$

$$Q_3^c = (\bar{c}_R^i b_L^j)(\bar{s}_L^j c_R^i)$$

$$Q_3^c = (\bar{c}_R^i b_L^j)(\bar{s}_L^j c_R^i), \qquad Q_4^c = (\bar{c}_R^i b_L^i)(\bar{s}_L^j c_R^j). \tag{2}$$

This affects both rare decays and lifetimes:

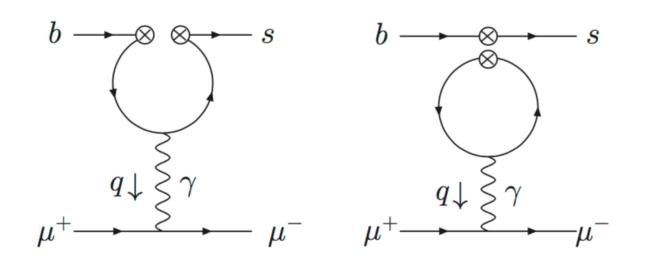
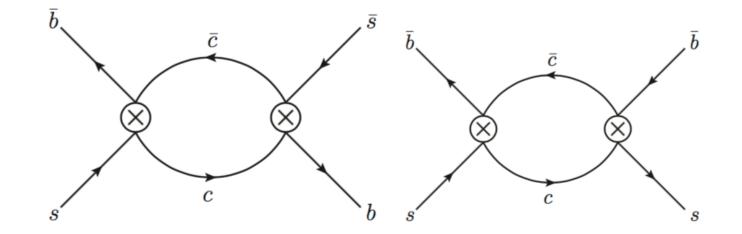
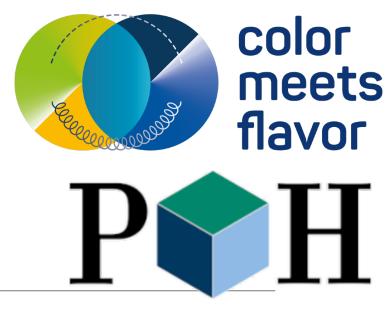



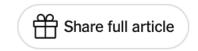
FIG. 1. Leading Feynman diagrams for CBSM contributions to rare and semileptonic decays. With our choice of Fierzordering, only the diagram on the left is relevant.



Leading Feynman diagrams for CBSM contributions to the width difference $\Delta\Gamma_s$ (left) and the lifetime ratio $\tau(B_s)/\tau(B_d)$ (right).

These ideas were disfavoured for quite some time, since they predicted $R_K \approx 1$

 q^2 -dependent BSM contributions to rare decays possible!


- Decay rate difference of B_d Mesons $\Delta\Gamma_d$, can be enhanced by more than 100% due to BSM effects in tree-level decays
- inspired by D0 Dimuon asymmetry

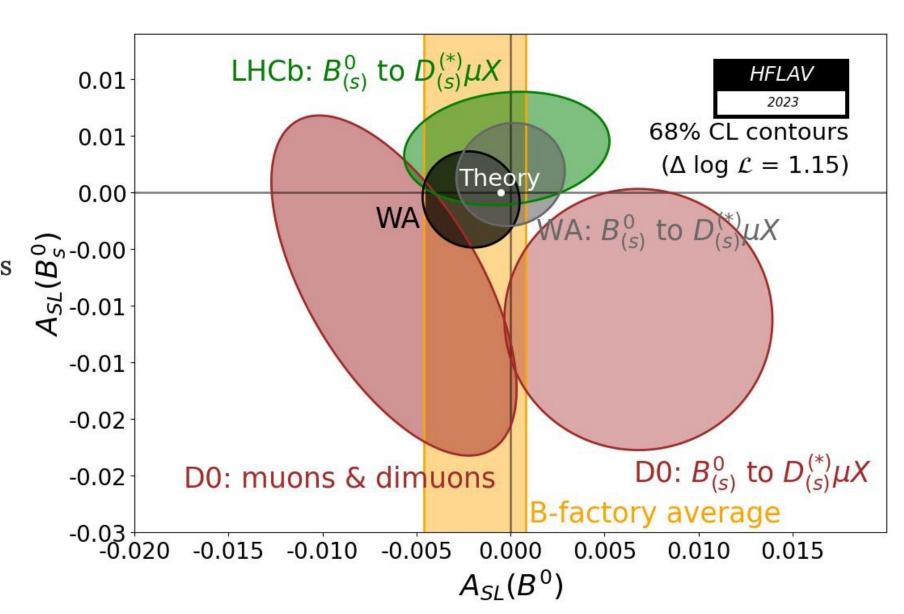
$$A_{\mu\mu} = C_d a_{sl}^d + C_s a_{sl}^s + C_{\Gamma} \Delta \Gamma_d$$

inspired the ATLAS measurement of $\Delta\Gamma_d$

The New Hork Times

A New Clue to Explain Existence

May 17, 2010

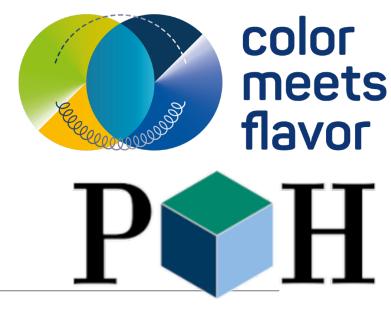

Physicists at the Fermi National Accelerator Laboratory are reporting that they have discovered a new clue that could help unravel one of the biggest mysteries of cosmology: why the universe is composed of matter and not its evil-twin opposite, antimatter. If confirmed, the finding portends fundamental discoveries at the new Large Hadron Collider outside Geneva, as well as a possible explanation for our own existence.

In a mathematically perfect universe, we would be less than dead; we would never have existed. According to the basic precepts of Einsteinian relativity and quantum mechanics, equal amounts of matter and antimatter should have been created in the Big Bang and then immediately annihilated each other in a blaze of lethal energy, leaving a big fat goose egg with which to make stars, galaxies and us. And yet we exist, and physicists (among others) would dearly like to know why.

Sifting data from collisions of protons and antiprotons at Fermilab's Tevatron, which until last winter was the most powerful particle accelerator in the world, the team, known as the DZero collaboration, found that the fireballs produced pairs of the particles known as muons, which are sort of fat electrons, slightly more often than they produced pairs of anti-muons. So the miniature universe inside the accelerator went from being neutral to being about 1 percent more matter than antimatter.

On new physics in Bobeth, Haisch, AL, Pecjak, Tetlalmatzi-Xolocotzi JHEP 1406 (2014) 040

"This result may provide an important input for explaining the matter dominance in our universe," Guennadi Borissov, a co-leader of the study from Lancaster University, in England, said in a talk Friday at Fermilab, in Batavia, Ill. Over the weekend, word spread quickly among physicists. Maria Spiropulu of CERN and the California Institute of Technology called the results "very impressive and inexplicable."


Outline

- 1) Why BSM effects in tree-level decays?
- 2) A decisive test of certain BSM effects in tree-level decays
- 3) Reminder: extraction of γ_{CKM} in BSM scenarios

A decisive test

PHYSICAL REVIEW D 105, 115023 (2022)

2111.04478

Testing the Standard Model with CP asymmetries in flavor-specific nonleptonic decays

Tim Gershon®

Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

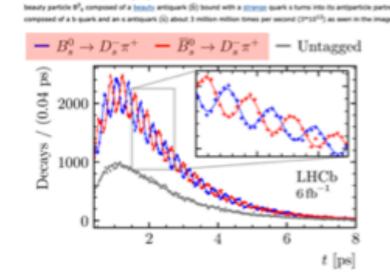
Alexander Lenzo and Aleksey V. Rusov

Physik Department, Universität Siegen, Walter-Flex-Strasse 3, 57068 Siegen, Germany

University of Manchester, Schuster Building, Manchester M13 9PL, United Kingdom

ullet a_{fs}^q is typically measured with semi-leptonic B_q decays

 $a_{sl}^{s,{
m Exp}} = \left(60 \pm 280\right) \cdot 10^{-5}, \ a_{sl}^{d,{
m Exp}} = \left(-21 \pm 17\right) \cdot 10^{-4}.$


ullet One could also use the flavour specific $ar{B}_s o D_s^+ \pi^-$ decay

12 April 2021: Fascinating quantum mechanics.

Precise determination of the B₃⁰-B̄₃⁰ oscillation frequency.

"A phenomenon in which quantum mechanics gives a most remarkable prediction" - Richard Feynman

Total, the UKG Calaboration submitted a paper for publication that reports a precise determination of the B₃⁰-B₃⁰ oscillation.

 $\begin{array}{c} \mathcal{B}(\bar{B}^0 \to D^+K^-) \\ \text{(Belle 2111.04978)} \\ \mathcal{B}(\bar{B}^0 \to D^+K^-) \\ \mathcal{B}(\bar{B}^0 \to D^*K^-) \\ \mathcal{B}(\bar{B}^0 \to D^*K^-) \\ \mathcal{B}(\bar{B}^0 \to D^*\pi^-) \\ \mathcal{B}(\bar{B}^0 \to D^*\pi^-) \\ \mathcal{B}(\bar{B}^0 \to D^*\pi^-) \\ \mathcal{B}(\bar{B}^0 \to D^*\pi^-) \\ \mathcal{B}(\bar{B}^0 \to D^*K^-) \\ \mathcal{B}(\bar{B}^0 \to D^*\pi^-) \\$

HFLAV 1970?

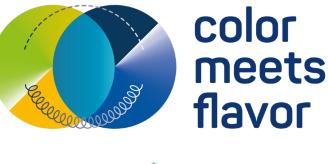
• Assume: there is new physics in these decays, potentially CP violating

$$\mathcal{A}_{f} = \left| \mathcal{A}_{f}^{\text{SM}} \right| e^{i\phi^{\text{SM}}} e^{i\varphi^{\text{SM}}} + \left| \mathcal{A}_{f}^{\text{BSM}} \right| e^{i\phi^{\text{BSM}}} e^{i\varphi^{\text{BSM}}}$$

$$=: \left| \mathcal{A}_{f}^{\text{SM}} \right| e^{i\phi^{\text{SM}}} e^{i\varphi^{\text{SM}}} \left(1 + re^{i\phi} e^{i\varphi} \right) ,$$

Discrepancy QCDf vs Exp. suggests $r \approx 0.1-0.2$

Derive CP asymmetry


$$A_{\rm fs}^q \ = \ \frac{a_{\rm fs}^q - 2r\sin\phi\sin\varphi + 2a_{\rm fs}^q r\cos\phi\cos\varphi + a_{\rm fs}^q r^2}{1 + 2r\cos\phi\cos\varphi + r^2 - 2a_{\rm fs}^q r\sin\phi\sin\varphi} \ \approx \ a_{\rm fs}^q - A_{\rm dir}^q \ .$$

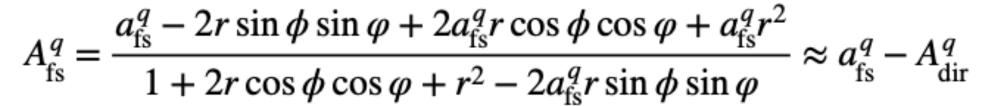
Significant exp. deviation of A_{fs}^q from a_{sl}^q = unambiguous and theory independent signal for BSM

Constrained by semi-leptonic Measurements $a_{sl}^{s, \text{Exp}} = \left(60 \pm 280\right) \cdot 10^{-5}, \\ a_{sl}^{d, \text{Exp}} = \left(-21 \pm 17\right) \cdot 10^{-4}.$

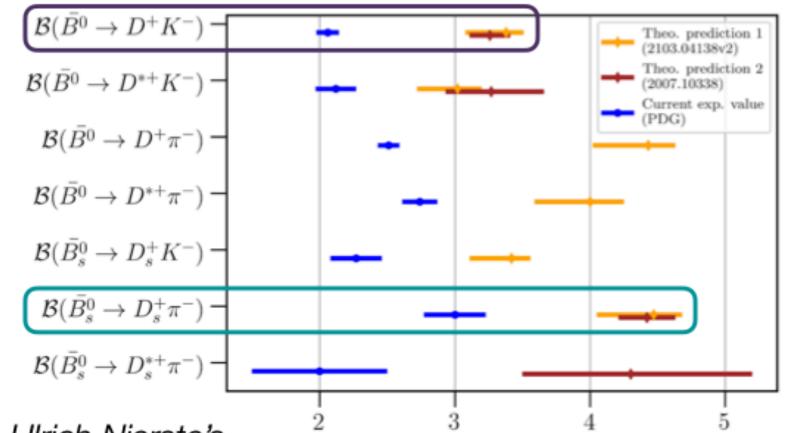
UNIVERSITÄT A decisive test

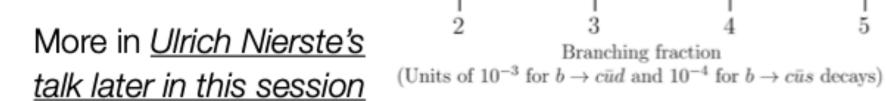
The $b \rightarrow c \overline{u} q$ anomaly

Departi


Physik D

Univers

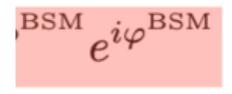

- a_{fs}^q is typically m
- One could also

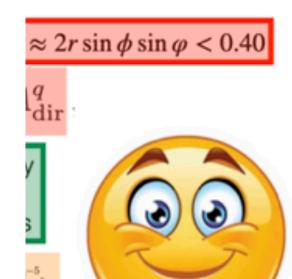

2000 Say 1000

- Tensions between BF measurements/predictions (see right), dubbed the $b \to c \overline{u}q$ anomaly [arXiv:2007.10338]
- Could arise from unaccounted for QCD effects; could also arise from New Physics (NP)
- Test by considering CP asymmetry: generic NP amplitude could contribute a direct asymmetry in the flavour specific modes $(B^0 \to D^- K^+, B_s^0 \to D_s^- \pi^+)$

Plot courtesy of N. Skidmore

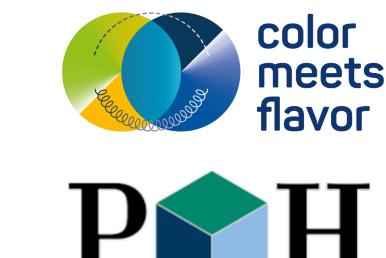
• To increase statistical power: measure untagged, time-integrated CP asymmetry: More to come? See Phillip Böer's talk from Monday


• Compare against measurements in semi-leptonic decays:
$$a_{\rm fs}^q = a_{\rm sl}^q = \begin{cases} -21 \pm 17 \\ -21 \pm 17 \\ -21 \pm 17 \end{cases}$$
 where $a_{\rm sl}^q = a_{\rm fs}^q = a_{\rm sl}^q = \begin{cases} -21 \pm 17 \\ -21 \pm 17 \\ -21 \pm 17 \end{cases}$ where $a_{\rm sl}^q = a_{\rm sl}^q = a_{\rm$

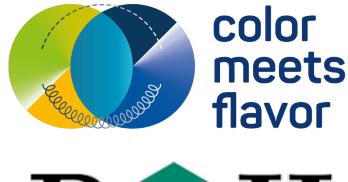

- Compare against measurements in semi-leptonic decays: $a_{\rm fs}^q = a_{\rm sl}^q = \left. \left. \left. \right. \right| \right.$ $(-6 \pm 28) \times 10^{-4} \text{ for } a_{s1}^s \quad (2021) 81: 226$
- Measure in $B_s^0 \to D_s^- \pi^+$ as BF is significantly larger and $\rho_s \ll \rho_d$

Testing the Standard Model with CP-asymmetries in flavour-specific non-leptonic decays, PRD 105 (2022), 115023

CP violating


Outline

- 1) Why BSM effects in tree-level decays?
- 2) A decisive test of certain BSM effects in tree-level decays
- 3) Reminder: extraction of $\gamma_{\rm CKM}$ in BSM scenarios



extraction of γ_{CKM} in BSM scenarios

The amazing cleanliness of gamma is based on assuming no BSM effects in non-leptonic tree-level decays In view of an ever increasing experimental precision, how well is this assumption justified?

extraction of γ_{CKM} in BSM scenarios

The amazing cleanliness of gamma is based on assuming no BSM effects in non-leptonic tree-level decays In view of an ever increasing experimental precision, how well is this assumption justified?

Look at observables, that are reasonably well known in theory and experiment and try to identify the potential space for BSM effects in the Wilson coefficients C_1 and C_2 for non-leptonic tree-level decays

color meets flavor

extraction of γ_{CKM} in BSM scenarios

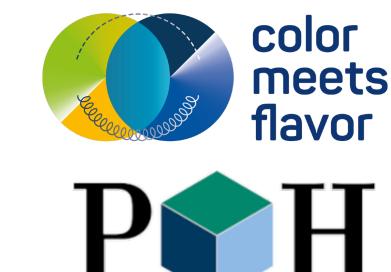
The amazing cleanliness of gamma is based on assuming no BSM effects in non-leptonic tree-level decays In view of an ever increasing experimental precision, how well is this assumption justified?

Look at observables, that are reasonably well known in theory and experiment and try to identify the potential space for BSM effects in the Wilson coefficients C_1 and C_2 for non-leptonic tree-level decays

Simplest, non-trivial approach

$$C_i = C_i^{Str} + \Delta C_i$$

$$\Delta C_i \in \mathbb{C}$$


Model-independent bounds on new physics effects in non-leptonic tree-level decays of B-mesons

Alexander Lenz (Durham U., IPPP), Gilberto Tetlalmatzi-Xolocotzi (Siegen U. and Nikhef, Amsterdam) (Dec 16, 2019)

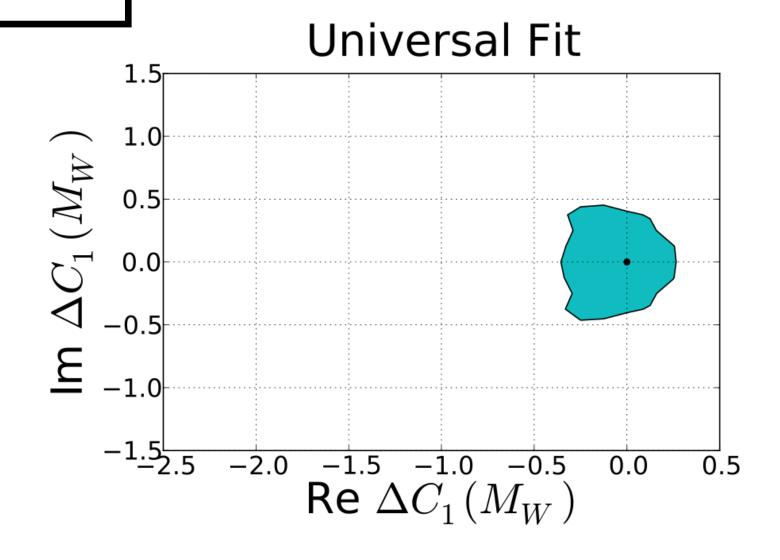
e-Print: 1912.07621 [hep-ph]

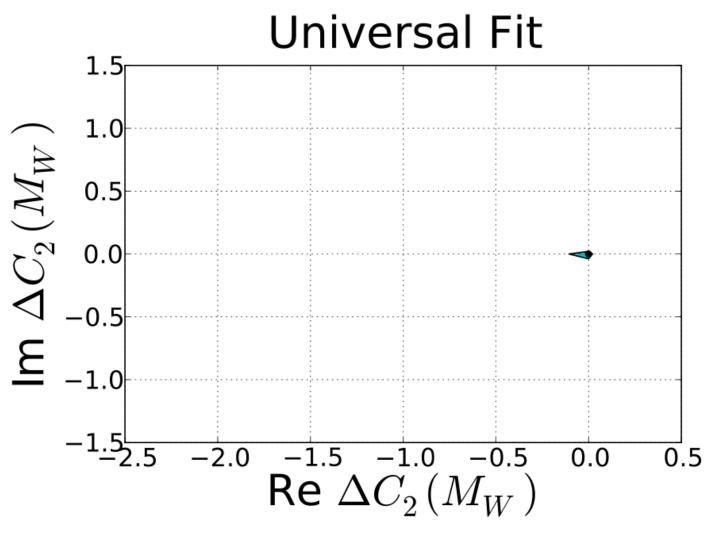
extraction of $\gamma_{\rm CKM}$ in BSM scenarios

The amazing cleanliness of gamma is based on assuming no BSM effects in non-leptonic tree-level decays In view of an ever increasing experimental precision, how well is this assumption justified?

Look at observables, that are reasonably well known in theory and experiment and try to identify the potential space for BSM effects in the Wilson coefficients C_1 and C_2 for non-leptonic tree-level decays

Simplest, non-trivial approach


$$C; = C;^{SH} + \Delta C;$$


 $\Delta C_i \in \mathbb{C}$

Model-independent bounds on new physics effects in non-leptonic tree-level decays of B-mesons

Alexander Lenz (Durham U., IPPP), Gilberto Tetlalmatzi-Xolocotzi (Siegen U. and Nikhef, Amsterdam) (Dec 16, 2019)

e-Print: 1912.07621 [hep-ph]

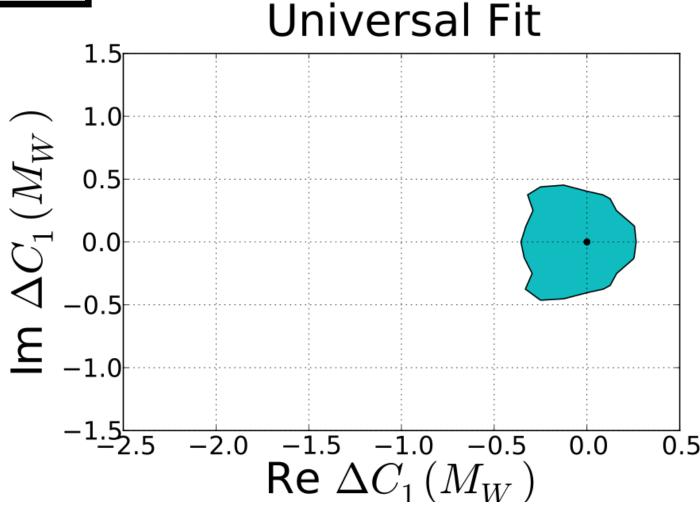
color meets flavor

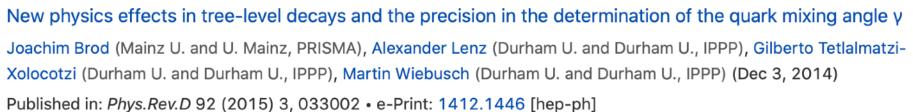
extraction of $\gamma_{\rm CKM}$ in BSM scenarios

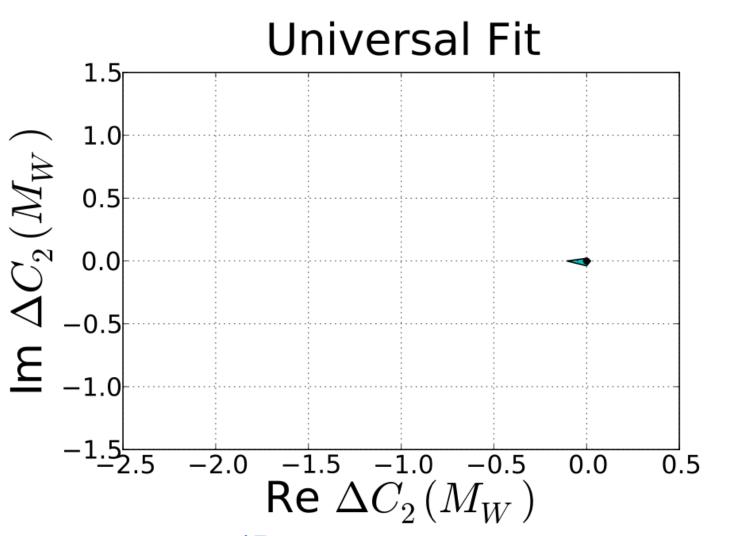
The amazing cleanliness of gamma is based on assuming no BSM effects in non-leptonic tree-level decays In view of an ever increasing experimental precision, how well is this assumption justified?

Look at observables, that are reasonably well known in theory and experiment and try to identify the potential space for BSM effects in the Wilson coefficients C_1 and C_2 for non-leptonic tree-level decays

Simplest, non-trivial approach

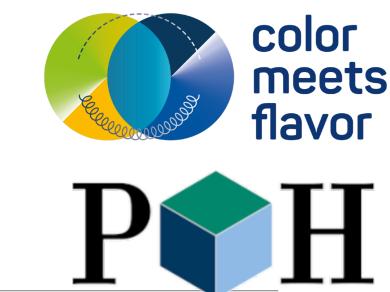

 $C; = C;^{SM} + \Delta C;$


 $\Delta C_i \in \mathbb{C}$

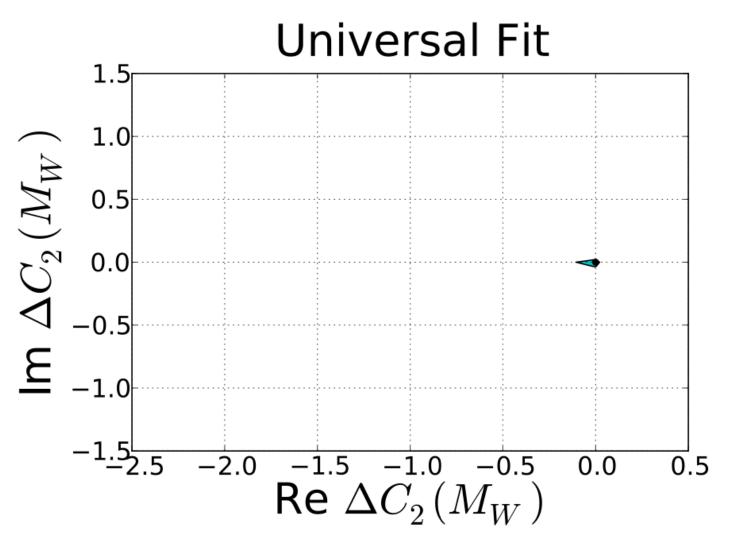

Model-independent bounds on new physics effects in non-leptonic tree-level decays of B-mesons

Alexander Lenz (Durham U., IPPP), Gilberto Tetlalmatzi-Xolocotzi (Siegen U. and Nikhef, Amsterdam) (Dec 16, 2019)

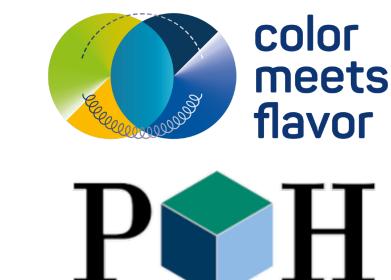
e-Print: 1912.07621 [hep-ph]

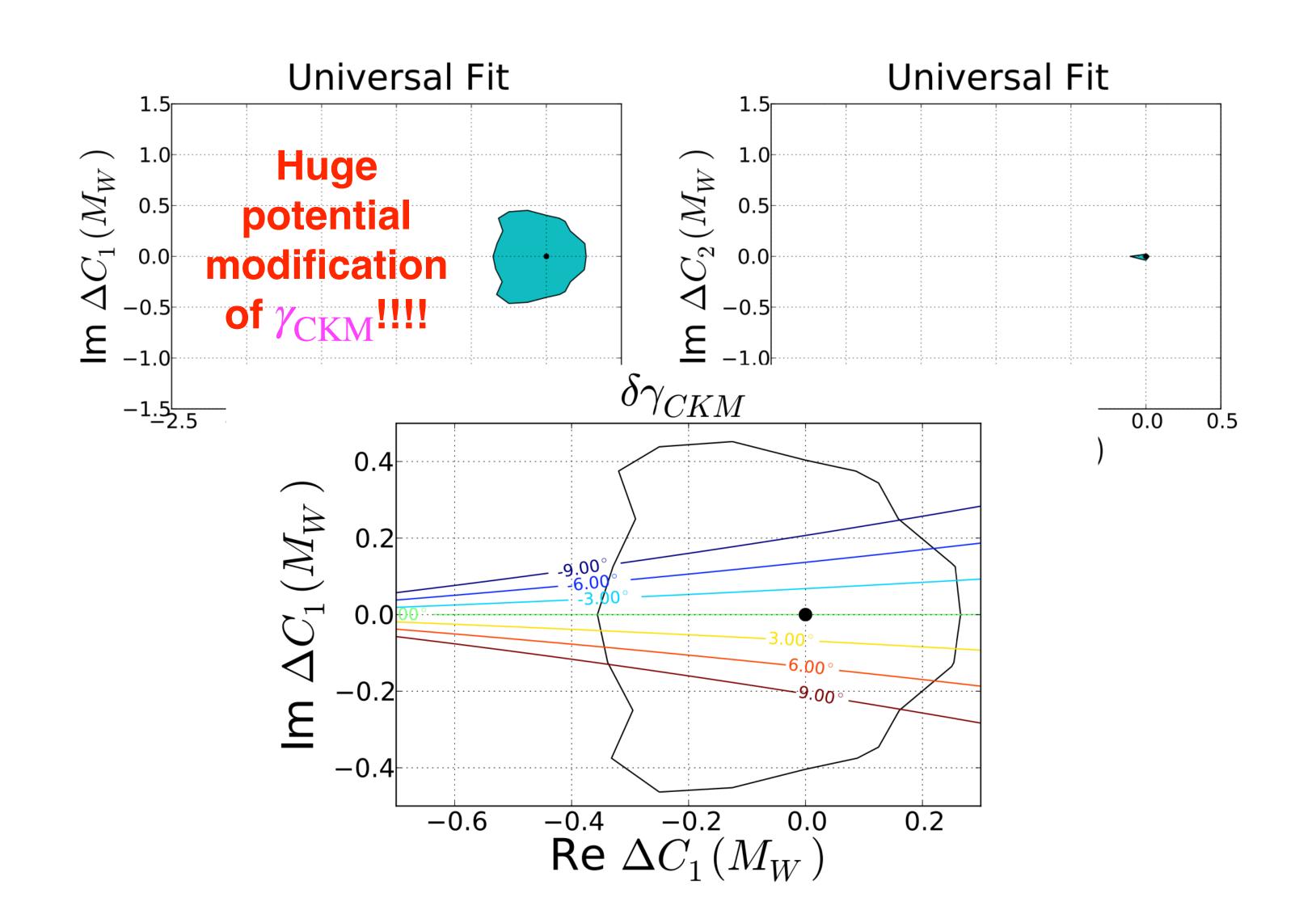

Published in: JHEP 06 (2014) 040 • e-Print: 1404.2531 [hep-ph]

On new physics in $\Delta\Gamma_d$


#14

extraction of $\gamma_{\rm CKM}$ in BSM scenarios



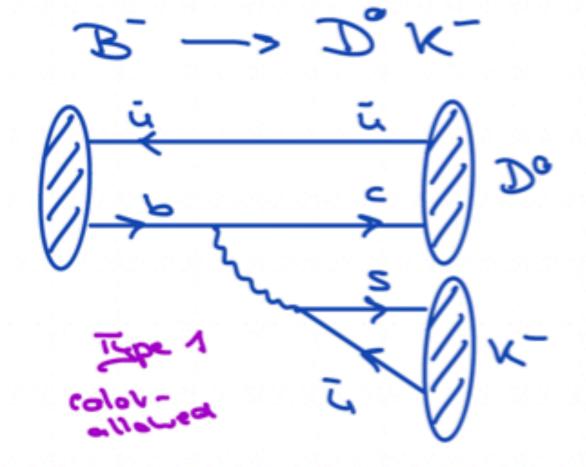


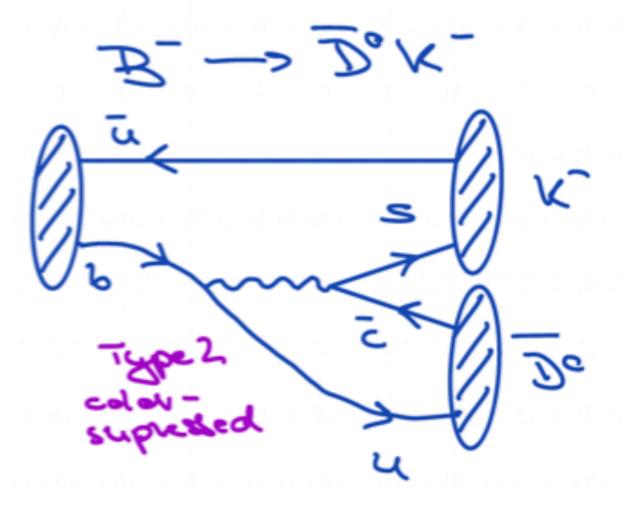
extraction of $\gamma_{\rm CKM}$ in BSM scenarios

color meets flavor

extraction of $\gamma_{\rm CKM}$ in BSM scenarios

Notation for the case of BSM effects




color meets flavor

extraction of γ_{CKM} in BSM scenarios

Notation for the case of BSM effects

Remember:

This implies:

Reminder:

color meets flavor

extraction of $\gamma_{\rm CKM}$ in BSM scenarios

Notation for the case of BSM effects

$$A (B_{-} > D_{0}K_{-}) = \langle D_{0}K_{-} | \mathcal{K}_{CG} | B_{-} > D_{0}K_{-} \rangle$$

$$A (B_{-} > D_{0}K_{-}) = \langle D_{0}K_{-} | \mathcal{K}_{CG} | B_{-} > D_{0}K_{-} \rangle$$

$$A (B_{-} > D_{0}K_{-}) = \langle D_{0}K_{-} | \mathcal{K}_{CG} | B_{-} > D_{0}K_{-} \rangle$$

$$A (B_{-} > D_{0}K_{-}) = \langle D_{0}K_{-} | \mathcal{K}_{CG} | B_{-} > D_{0}K_{-} \rangle$$

$$A (B_{-} > D_{0}K_{-}) = \langle D_{0}K_{-} | \mathcal{K}_{CG} | B_{-} > D_{0}K_{-} \rangle$$

$$A (B_{-} > D_{0}K_{-}) = \langle D_{0}K_{-} | \mathcal{K}_{CG} | B_{-} > D_{0}K_{-} \rangle$$

color meets flavor

extraction of $\gamma_{\rm CKM}$ in BSM scenarios

Notation for the case of BSM effects

$$A(B \rightarrow D^{\circ}K) = \langle D^{\circ}K - | \mathcal{K}_{eff} | B \rangle_{1} \text{ and } \mathcal{L}_{eff}$$

$$A(B \rightarrow D^{\circ}K) = \langle D^{\circ}K - | \mathcal{K}_{eff} | B \rangle_{2} \text{ and } \mathcal{L}_{eff}$$

$$A(B \rightarrow D^{\circ}K) = \langle D^{\circ}K - | \mathcal{K}_{eff} | B \rangle_{2} \text{ and } \mathcal{L}_{eff}$$
This implies:
$$= > r_{\mathcal{B}} e^{i(\delta_{\mathcal{B}} - \mathcal{B})} = \frac{A(B \rightarrow D^{\circ}K)}{A(B \rightarrow D^{\circ}K)}$$

Inserting the effective Hamiltonian:

color meets flavor

extraction of $\gamma_{\rm CKM}$ in BSM scenarios

Notation for the case of BSM effects

$$A(B \rightarrow D^{\circ}K) = \langle D^{\circ}K - | \mathcal{K}_{eff}^{\overline{cus}} | B \rangle_{1} \text{ and } \underline{L}_{eff}^{\overline{cus}} | B \rangle_{2} \text{ and } \underline{L}_{eff}^{\overline{cus}} | B \rangle_$$

Inserting the effective Hamiltonian:

$$V_{\mathcal{B}} = \frac{V_{\mathcal{A}}V_{\mathcal{C}}}{V_{\mathcal{C}}V_{\mathcal{C}}} = \frac{V_{\mathcal{A}}V_{\mathcal{C}}V_{\mathcal{C}}}{V_{\mathcal{C}}V_{\mathcal{C}}} = \frac{V_{\mathcal{A}}V_{\mathcal{C}}V_{\mathcal{C}}}{V_{\mathcal{C}}V_{\mathcal{C}}} = \frac{V_{\mathcal{A}}V_{\mathcal{C}}V_{\mathcal{C}}}{V_{\mathcal{C}}V_{\mathcal{C}}V_{\mathcal{C}}} = \frac{V_{\mathcal{A}}V_{\mathcal{C}}V_{\mathcal{C}}}{V_{\mathcal{C}}V_{\mathcal{C}}} = \frac{V_{\mathcal{A}}V_{\mathcal{C}}V_{\mathcal{C}}}{V_{\mathcal{C}}V_{\mathcal{C}}V_{\mathcal{C}}} = \frac{V_{\mathcal{A}}V_{\mathcal{C}}V_{\mathcal{C}}}{V_{\mathcal{C}}V_{\mathcal{C}}} = \frac{V_{\mathcal{A}}V_{\mathcal{C}}V_{\mathcal{C}}}{V_{\mathcal{C}}V_{\mathcal{C}}} = \frac{V_{\mathcal{C}}V_{\mathcal{C}}V_{\mathcal{C}}}{V_{\mathcal{C}}V_{\mathcal{C}}} = \frac{V_{\mathcal{C}}V_{\mathcal{C}}V_{\mathcal{C}}}{V_{\mathcal{C}}V_{\mathcal{C}}} = \frac{V_{\mathcal{C}}V_{\mathcal{C}}V_{\mathcal{C}}}{V_{\mathcal{C}}V_{\mathcal{C}}} = \frac{V_{\mathcal{C}}V_{\mathcal{C}}V_{\mathcal{C}}}{V_{\mathcal{C}}V_{\mathcal{C}}} = \frac{V_{\mathcal{C}}V_{\mathcal{C}}V_{\mathcal{C}}}{V_{\mathcal{C}}V_{\mathcal{C}}} = \frac{V_{\mathcal{C}}V_{\mathcal{C}}V_{\mathcal{C}}}{V_{\mathcal{C}}V_{\mathcal{C}}} = \frac{V_{\mathcal{C}}V_{\mathcal{C}}V_{\mathcal{C}}V_{\mathcal{C}}}{V_{\mathcal{C}}V_{\mathcal{C}}} = \frac{V_{\mathcal{C}}V_{\mathcal{C}}V_{\mathcal{C}}V_{\mathcal{C}}}{V_{\mathcal{C}}V_{\mathcal{C}}} = \frac{V_{\mathcal{C}}V_{\mathcal{C}}V_{\mathcal{C}}V_{\mathcal{C}}}{V_{\mathcal{C}}V_{\mathcal{C}}} = \frac{V_{\mathcal{C}}V_{\mathcal{C}}V_{\mathcal{C}}V_{\mathcal{C}}V_{\mathcal{C}}}{V_{\mathcal{C}}V_{\mathcal{C}}} = \frac{V_{\mathcal{C}}V_{\mathcal{C}}V_{\mathcal{C}}V_{\mathcal{C}}V_{\mathcal{C}}}{V_{\mathcal{C}}V_{\mathcal{C}}V_{\mathcal{C}}} = \frac{V_{\mathcal{C}}V_{\mathcal{C}$$

with
$$A_{3}^{2} = \frac{\langle D_{0}K_{-} | G_{ycs} | B_{-} \rangle^{2}}{\langle D_{0}K_{-} | G_{ycs} | B_{-} \rangle^{2}}$$

$$\lambda^{V} = \frac{\langle \underline{D} \circ K_{-} / \underline{G} | \underline{S} \rangle^{V}}{\langle \underline{D} \circ K_{-} / \underline{G} | \underline{S} \rangle^{V}}$$

extraction of γ_{CKM} in BSM scenarios

Notation for the case of BSM effects

=>
$$R = (Q_B - 8) = \frac{A(B_- - 3D_0 K_-)}{A(B_- - 3D_0 K_-)}$$

 $A(B_- - 3D_0 K_-) = (D_0 K_- | A (B_- - 3D_0 K_-))$
 $A(B_- - 3D_0 K_-) = (D_0 K_- | A (B_- - 3D_0 K_-))$
 $A(B_- - 3D_0 K_-) = (D_0 K_- | A (B_- - 3D_0 K_-))$

This implies:

Inserting the

effective

Hamiltonian:

In the SM:

only weak phase $=> \gamma$

In the SM: no weak phase=> r_B , δ_B

with
$$A'_{5} = \frac{\langle D_{0}K_{-} / G_{ycs} / B_{-} \rangle_{5}}{\langle D_{0}K_{-} / G_{ycs} / B_{-} \rangle_{5}}$$

$$A^{V} = \frac{\langle D_0 K_- / G_{SAR} / B_- \rangle^{V}}{\langle D_0 K_- / G_{SAR} / B_- \rangle^{V}}$$

extraction of γ_{CKM} in BSM scenarios

Notation for the case of BSM effects

This implies:

BSM: additional weak & strong phases possible

 $\Rightarrow \Delta r_B, \Delta \delta_B, \Delta \gamma$

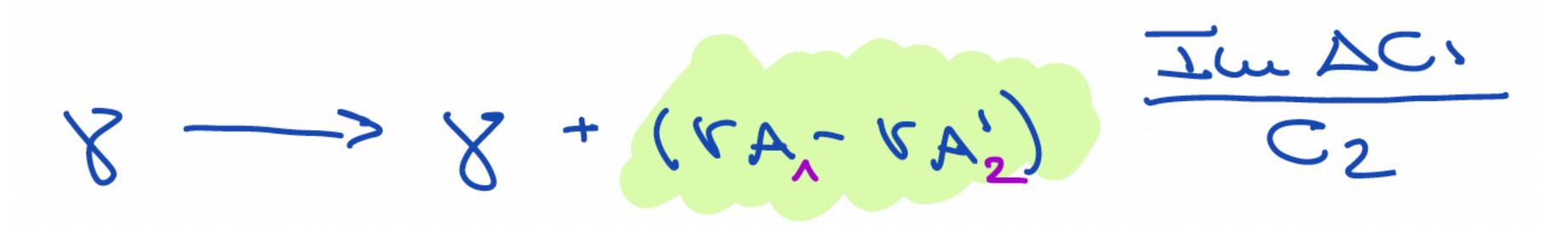
weak phase $\Rightarrow \gamma$

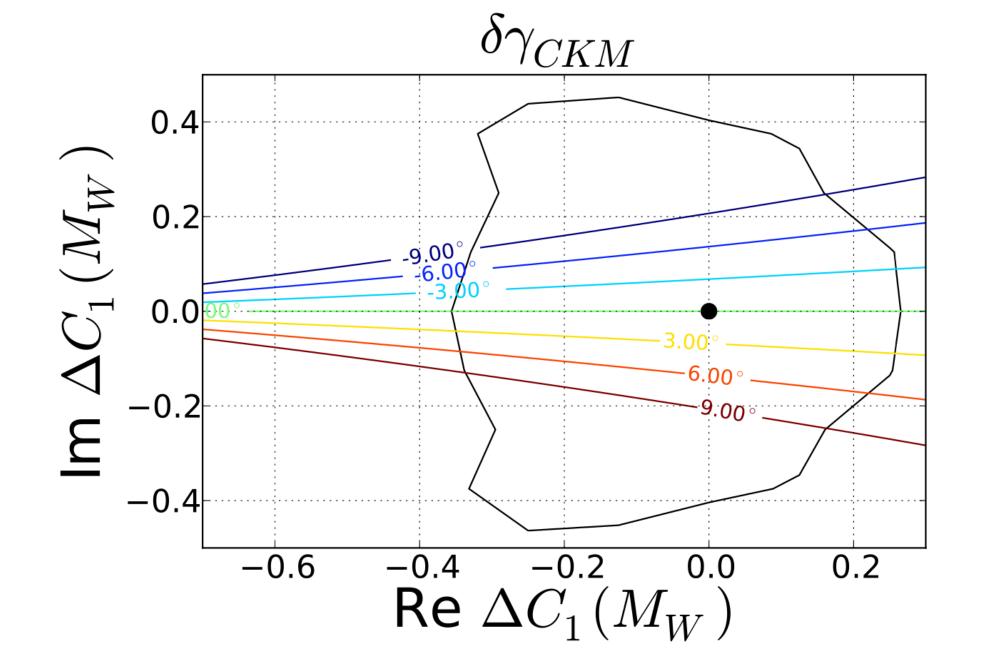
Inserting the effective Hamiltonian:

BSM:

with
$$A'_{5} = \frac{\langle D_{0}K_{-} / G_{CS} / B_{-} \rangle_{5}}{\langle D_{0}K_{-} / G_{CS} / B_{-} \rangle_{5}}$$

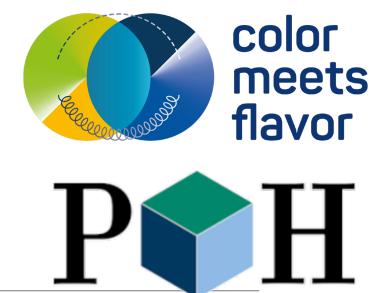
$$\lambda^{V} = \frac{\langle \underline{D} \circ K_{-} / \underline{G} \rangle^{2} \wedge \underline{B} / \underline{B} \rangle^{V}}{\langle \underline{D} \circ K_{-} / \underline{G} \rangle^{2} \wedge \underline{B} / \underline{B} \rangle^{V}}$$




color meets flavor

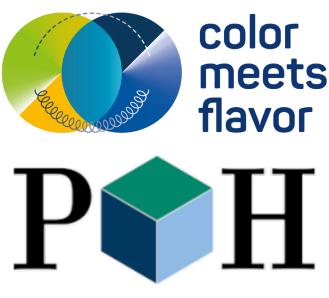
extraction of $\gamma_{\rm CKM}$ in BSM scenarios

If C_1 and C_2 can get new weak BSM phases, then the extracted of $\gamma_{
m CKM}$ changes as



$$\lambda^{V} = \frac{\langle \underline{D} \circ K_{-} / \underline{G} | \underline{S} \wedge \underline{B} \rangle^{V}}{\langle \underline{D} \circ K_{-} / \underline{G} | \underline{S} \wedge \underline{B} \rangle^{V}}$$

extraction of $\gamma_{\rm CKM}$ in BSM scenarios



Status so far:

• Only very, very naive estimates for r_{A_1} and r'_{A_2} (colour counting $r_{A_1} \approx \mathcal{O}(1)$, $r'_{A_2} \approx \mathcal{O}(N_c)$, naive factorisation $r_{A_1} \approx \mathcal{O}(0.4)$, annihilation reduces r'_{A_2} we used $r_{A_1} - r'_{A_2} \approx 0.6$)

extraction of $\gamma_{\rm CKM}$ in BSM scenarios

New estimates within QCD sum rules

 \overline{B}_s \overline{S} \overline{S}

 $\int d^4y \, e^{iq \cdot y} \, \langle 0 | \mathrm{T} \Big\{ j_5^D(x), \tilde{O}_1(0), j_\mu^\pi(y) \Big\} \, |\bar{B}_s(p+q) \rangle$

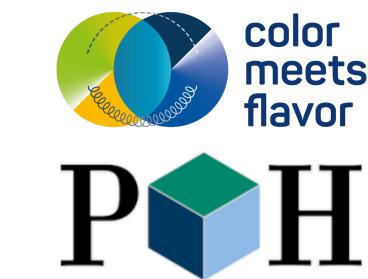
Non-factorisable effects in the decays $ar B^0_s o D^+_s\pi^-$ and $ar B^0 o D^+K^-$ from LCSR

Maria Laura Piscopo and Aleksey V. Rusov

Physik Department, Universität Siegen,
Walter-Flex-Str. 3, 57068 Siegen, Germany

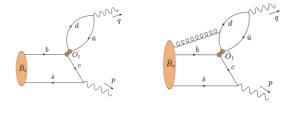
E-mail: maria.piscopo@uni-miegen.de, rusov

ABSTRACT: In light of the current discrepancies between the recent predictions based on QCD factorisation (QCDF) and the experimental data for several non-leptonic colourallowed two-body B-meson decays, we obtain new determinations of the non-factorisable soft-gluon contribution to the decays $B_s^0 \rightarrow D_s^+ \pi^-$ and $B^0 \rightarrow D^+ K^-$. using the framework of light-cone sum rule (LCSR), with a suitable three-point correlation function and B-meson light-cone distribution amplitudes. In particular, we discuss the problem associated with a double light-cone (LC) expansion of the correlator, and motivate future determinations of the three-particle B-meson matrix element with the gluon and the spectator quark aligned along different light-cone directions. Performing a LC-local operator product expansion of the correlation function, we find, for both modes considered, the non-factorisable part of the amplitude to be sizeable and positive, however, with very large systematic uncertainties. Furthermore, we also determine for the first time, using LCSR, the factorisable amplitudes at LO-QCD, and thus the corresponding branching fractions. Our predictions are in agreement with the experimental data and consistent with the results based on QCDF, although again within very large uncertainties. In this respect, we provide a rich outlook for future improvements and investigations.

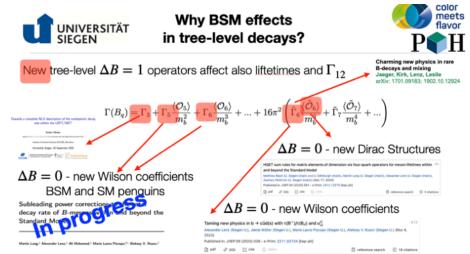

• Only very, very naive estimates for r_{A_1} and r_{A_2} \longrightarrow missing

ndication: non-factorizable contribution larger - uncertainties larger - stay tuned

(colour counting $r_{A_1} \approx \mathcal{O}(1)$, $r_{A_2}' \approx \mathcal{O}(N_c)$, naive factorisation $r_{A_1} \approx \mathcal{O}(0.4)$, annihilation reduces r_{A_2}' we used $r_{A_1} - r_{A_2}' \approx 0.6$)



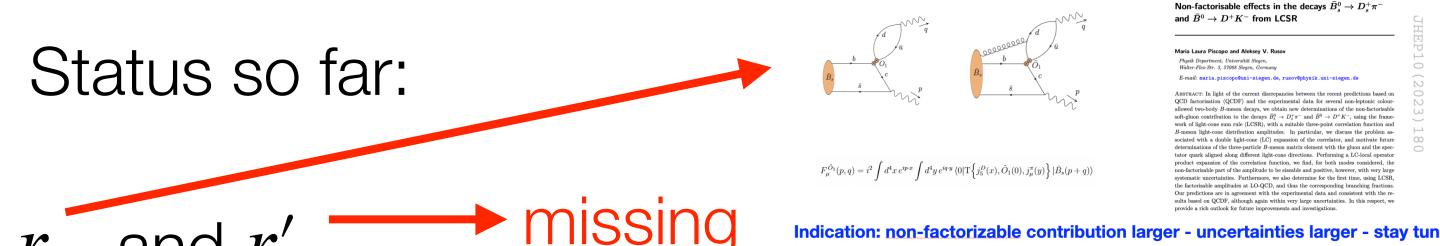
extraction of γ_{CKM} in BSM scenarios



• Only very, very naive estimates for r_{A_1} and $r_{A_2}^{\prime}$ (colour counting $r_{A_1} \approx \mathcal{O}(1)$, $r_{A_2}' \approx \mathcal{O}(N_c)$, naive factorisation $r_{A_1} \approx \mathcal{O}(0.4)$, annihilation reduces r_{A_2}' we used $r_{A_1} - r_{A_2}' \approx 0.6$)

Only systematic studies of BSM effects in C_1 and C_2 , but only partly for new Dirac

structures

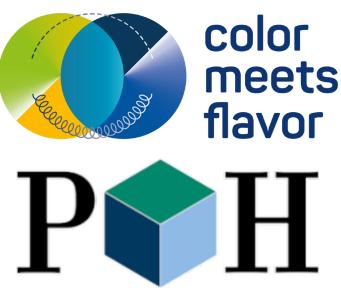


extraction of γ_{CKM} in BSM scenarios

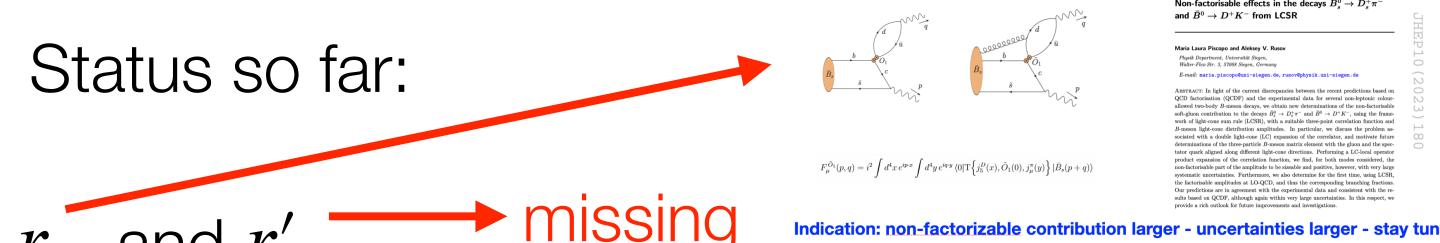
New estimates within QCD sum rules

- Only very, very naive estimates for r_{A_1} and r'_{A_2} (colour counting $r_{A_1} \approx \mathcal{O}(1)$, $r'_{A_2} \approx \mathcal{O}(N_c)$, naive factorisation $r_{A_1} \approx \mathcal{O}(0.4)$, annihilation reduces r'_{A_2} we used $r_{A_1} r'_{A_2} \approx 0.6$)
- Only systematic studies of BSM effects in C_1 and C_2 , but only partly for new Dirac

Structures


Structures

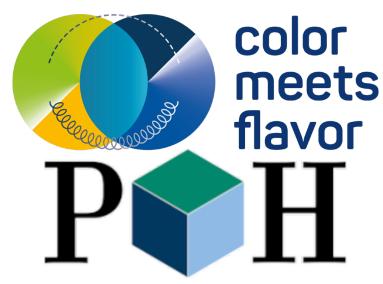
Now tree-level $\Delta B = 1$ operators affect also liftetimes and Γ_{12} Now tree-level $\Delta B = 1$ operators affect also liftetimes and Γ_{12} $\Delta B = 0$ - new Wison coefficients and ΔB


• SM and experimental precision for observables to constrain BSM effects in tree-level decays has improved considerably $\Gamma_d = 0.63^{+0.11}_{-0.07} \, \mathrm{ps^{-1}}$ Lenz, et al. 2023 \checkmark

extraction of $\gamma_{\rm CKM}$ in BSM scenarios

New estimates within QCD sum rules

- Only very, very naive estimates for r_{A_1} and r'_{A_2} (colour counting $r_{A_1} \approx \mathcal{O}(1)$, $r'_{A_2} \approx \mathcal{O}(N_c)$, naive factorisation $r_{A_1} \approx \mathcal{O}(0.4)$, annihilation reduces r'_{A_2} we used $r_{A_1} r'_{A_2} \approx 0.6$)
- · Only systematic studies of BSM effects in C_1 and C_2 , but only partly for new Dirac


structures

• SM and experimental precision for observables to constrain BSM effects in tree-level decays has improved considerably $\Gamma_d = 0.63^{+0.11}_{-0.07} \, \mathrm{ps}^{-1}$ Lenz, et al. 2023 \square

Most ignored theory result of our workshop

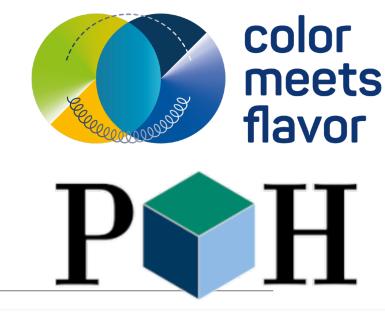
extraction of γ_{CKM} in BSM scenarios

New estimates within QCD sum rules

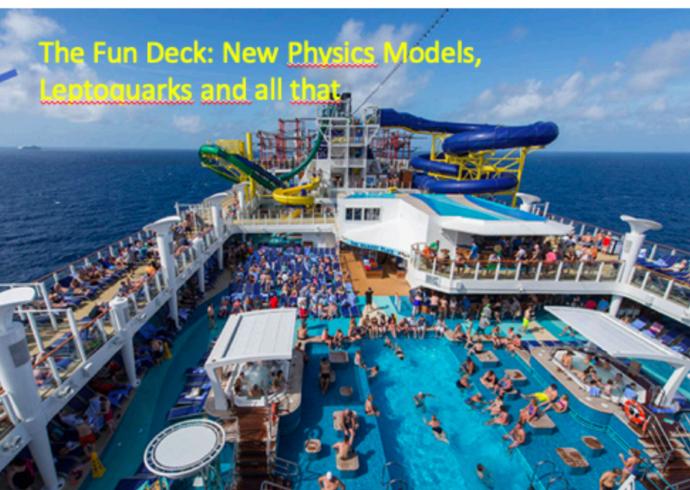
- Only very, very naive estimates for r_{A_1} and r'_{A_2} (colour counting $r_{A_1} \approx \mathcal{O}(1)$, $r'_{A_2} \approx \mathcal{O}(N_c)$, naive factorisation $r_{A_1} \approx \mathcal{O}(0.4)$, annihilation reduces r'_{A_2} we used $r_{A_1} r'_{A_2} \approx 0.6$)
- Only systematic studies of BSM effects in C_1 and C_2 , but only partly for new Dirac

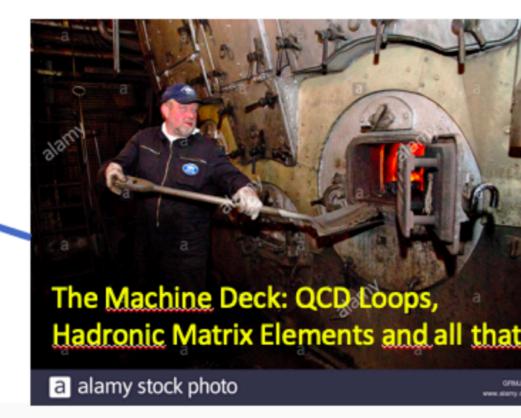
Structures

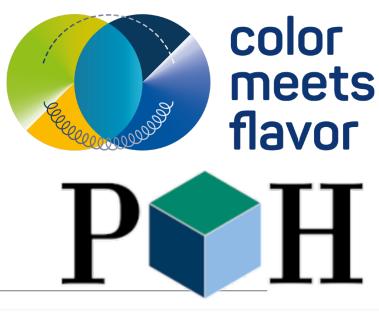
New tree-level $\Delta B = 1$ operators affect also liftetimes and Γ_{12} $\Gamma(B) = \Gamma(A) + \Gamma(B) = \Gamma(A) + \Gamma(B) + \Gamma(A) + \Gamma(B) +$

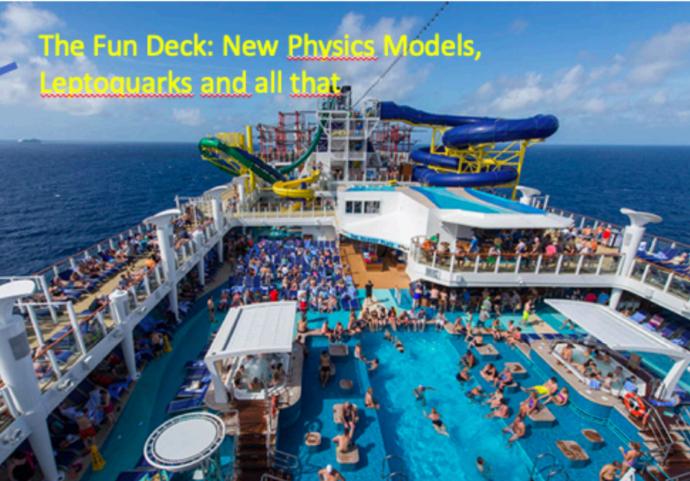

• SM and experimental precision for observables to constrain BSM effects in tree-level decays has improved considerably $\Gamma_d = 0.63^{+0.11}_{-0.07} \, \mathrm{ps}^{-1}$ Lenz, et al. 2023 C

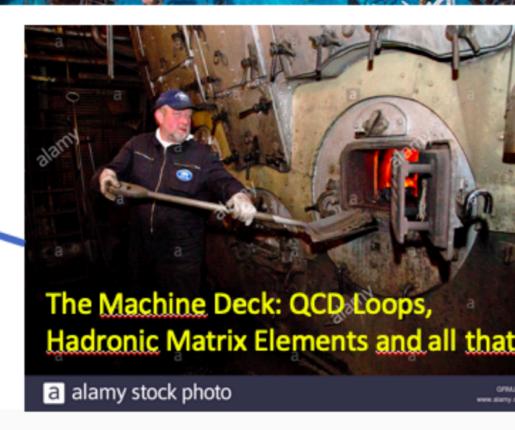
#5

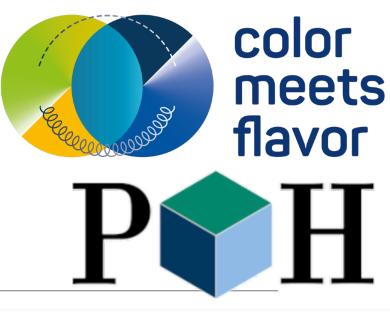

Total decay rates of B mesons at NNLO-QCD

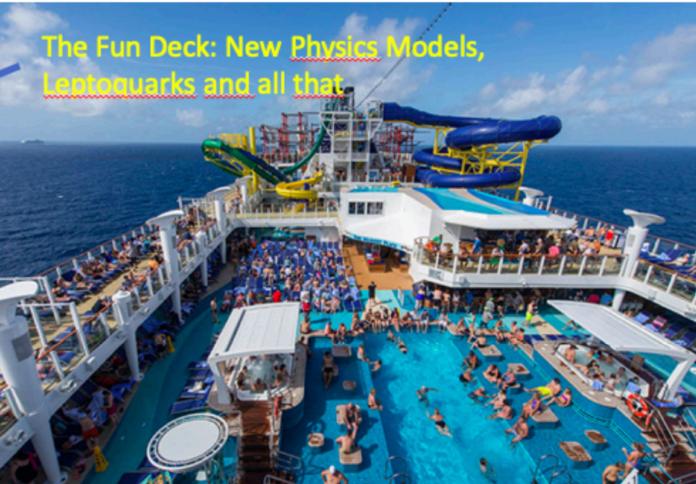

 $\Gamma(B^+) = 0.587^{+0.025}_{-0.035} \text{ ps}^{-1}, \ \Gamma(B_d) = 0.636^{+0.028}_{-0.037} \text{ ps}^{-1}, \ \Gamma(B_s) = 0.628^{+0.027}_{-0.035} \text{ ps}^{-1}$

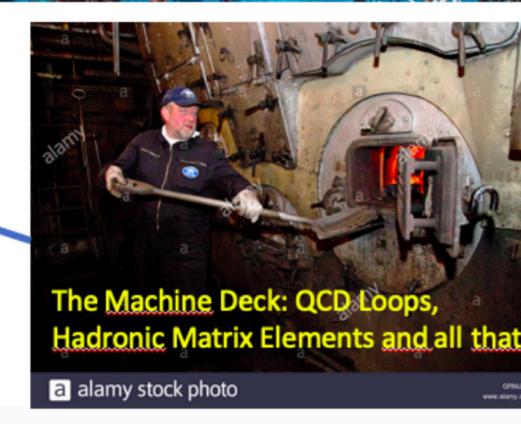


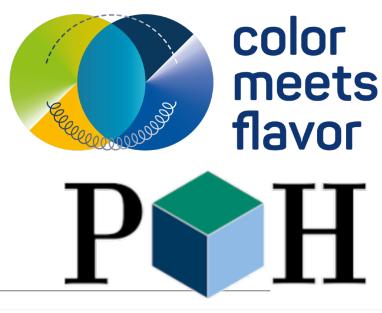


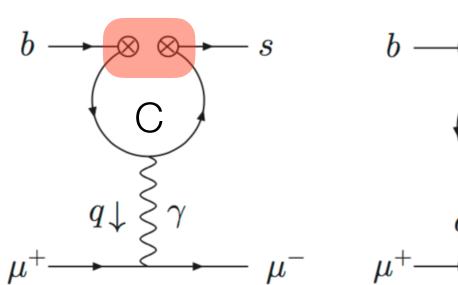


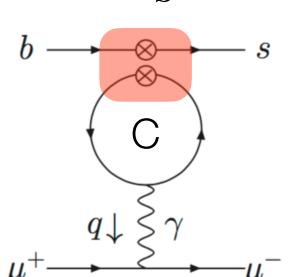

We must still understand QCD better - also for the fun deck
 => put more efforts into the machine deck or the ship will get stuck or drift away!



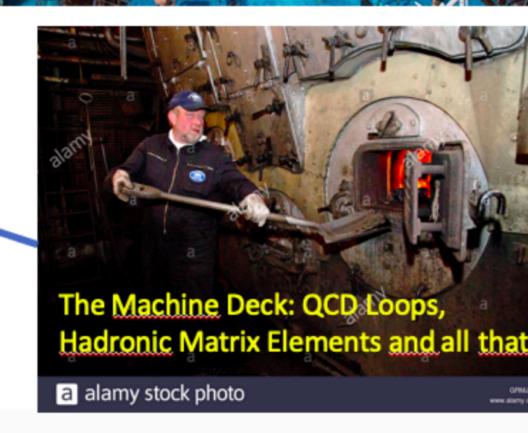



- We must still understand QCD better also for the fun deck
 => put more efforts into the machine deck or the ship will get stuck or drift away!
- Still room for BSM effects in non-leptonic tree-level decays with interesting opportunities
 => Enjoy the f(s)un deck

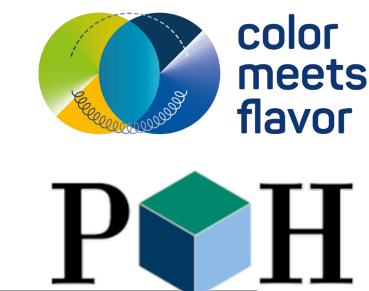

- We must still understand QCD better also for the fun deck => put more efforts into the machine deck or the ship will get stuck or drift away!
- Still room for BSM effects in non-leptonic tree-level decays with interesting opportunities
 - => Enjoy the f(s)un deck



• Since R_K is gone, a b o c ar c s BSM explanation of e.g. $B_s o \phi ll$


might be more interesting again

Charming new physics in rare B-decays and mixing Jaeger, Kirk, Lenz, Leslie arXiv: 1701.09183; 1902.10.12924



Outline

- 1) Why BSM effects in tree-level decays?
- 2) A decisive test of certain BSM effects in tree-level decays
- 3) Reminder: extraction of γ_{CKM} in the SM
- 4) Reminder: extraction of γ_{CKM} in BSM scenarios

Amazing cleanliness of the extraction of $\gamma_{\rm CKM}$ within the SM: 1 part per million

The ultimate theoretical error on γ from B o DK decays

Joachim Brod (Cincinnati U.), Jure Zupan (Cincinnati U.) (Aug 26, 2013)

Published in: JHEP 01 (2014) 051 • e-Print: 1308.5663 [hep-ph]

extraction of γ_{CKM} in the SM

Amazing cleanliness of the extraction of γ_{CKM} within the SM: 1 part per million

The ultimate theoretical error on γ from B o DK decays

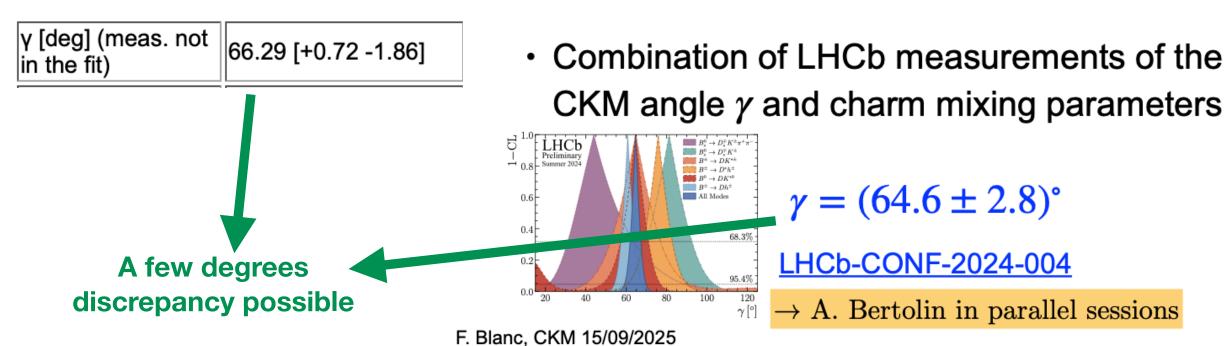
Joachim Brod (Cincinnati U.), Jure Zupan (Cincinnati U.) (Aug 26, 2013)

Published in: JHEP 01 (2014) 051 • e-Print: 1308.5663 [hep-ph]

CKM angle γ

 \rightarrow A. Lupato in parallel sessions

 \rightarrow S. Zhang in parallel sessions

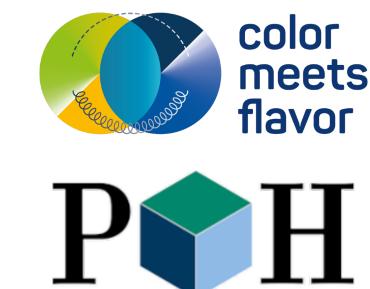

- CKM angle γ from interferences between $b \to c$ and $b \to u$ transitions
- Benefit from large statistics using tree-dominated processes
- Complementary methods, dependent on combinations of favoured and suppressed

B and D decays

 Multi-body D decays are used in combination with input on strong phases from independent measurements (BESIII, CLEO3)

HFLAV $C\Gamma$ **HFLAV** PDG 2025 0.80.60.468.3%0.295.4%0.0150 100 γ [°] $\gamma = \phi_3 = (66.4^{+2.7}_{-2.8})^{\circ}$

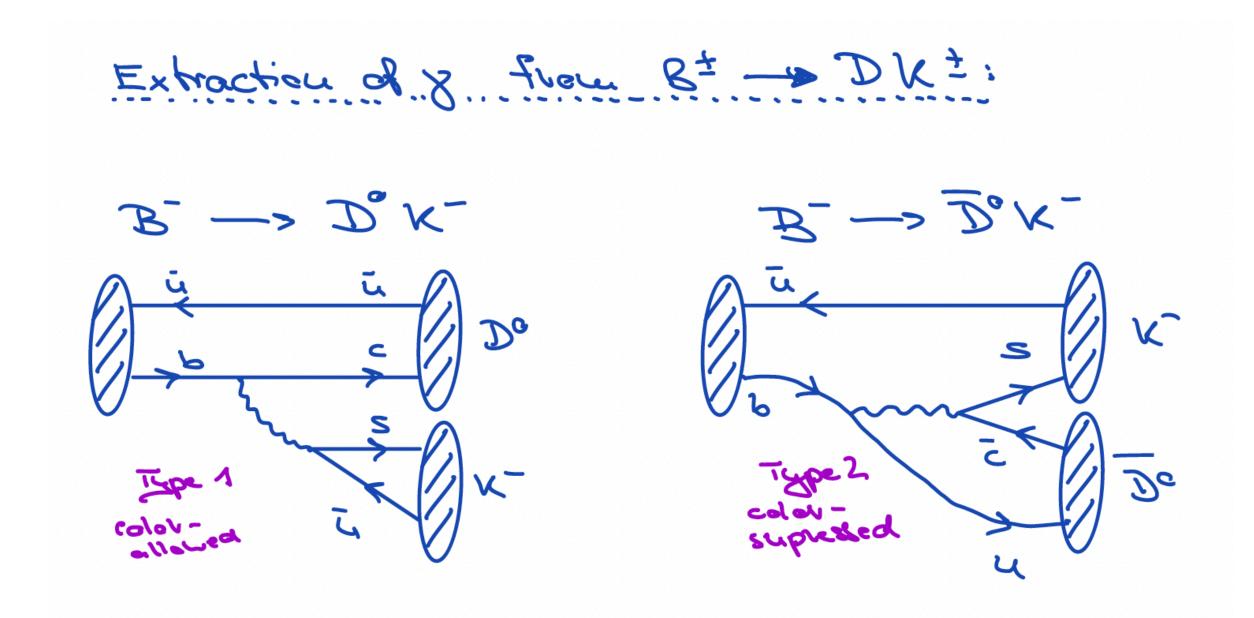
CKMfitter (similar results UTfit)


CKM angle γ and charm mixing parameters

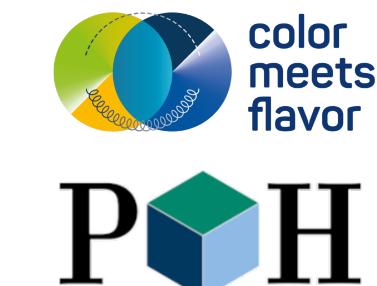
LHCb-CONF-2024-004

 $\gamma = (64.6 \pm 2.8)^{\circ}$

 \rightarrow A. Bertolin in parallel sessions

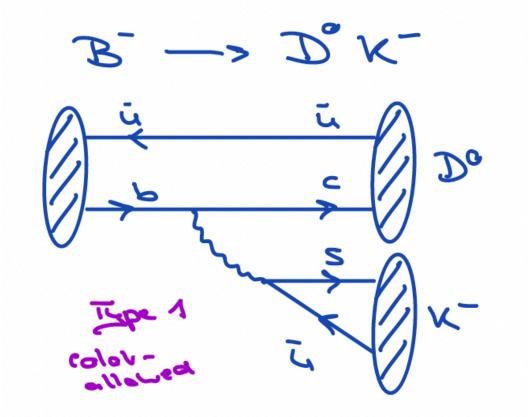


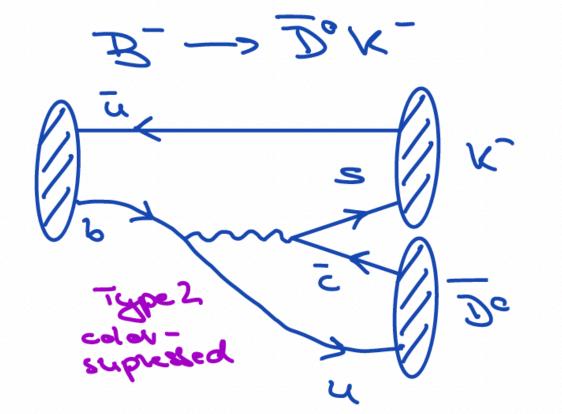
Amazing cleanliness of the extraction of $\gamma_{\rm CKM}$ within the SM: 1 part per million


The ultimate theoretical error on $m{\gamma}$ from B o DK decays

Joachim Brod (Cincinnati U.), Jure Zupan (Cincinnati U.) (Aug 26, 2013)

Published in: *JHEP* 01 (2014) 051 • e-Print: 1308.5663 [hep-ph]

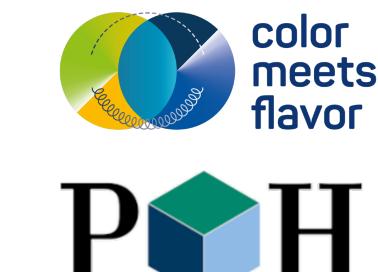

Amazing cleanliness of the extraction of $\gamma_{\rm CKM}$ within the SM: 1 part per million


The ultimate theoretical error on γ from B o DK decays

Joachim Brod (Cincinnati U.), Jure Zupan (Cincinnati U.) (Aug 26, 2013)

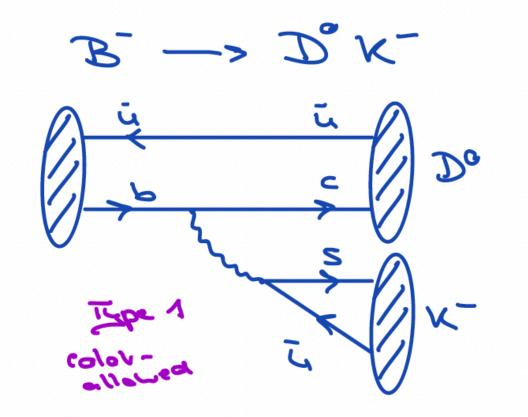
Published in: *JHEP* 01 (2014) 051 • e-Print: 1308.5663 [hep-ph]

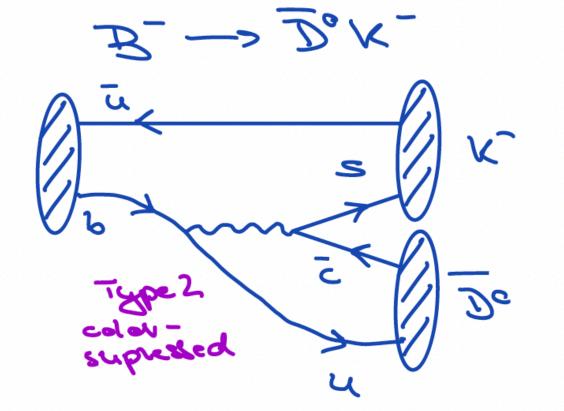
Extraction of 8 from B= DK=;



Note:

- A B^- can both decay into a D^0 and a $ar{D}^0$ meson
- The first possibility is colour-allowed, the second colour-suppressed

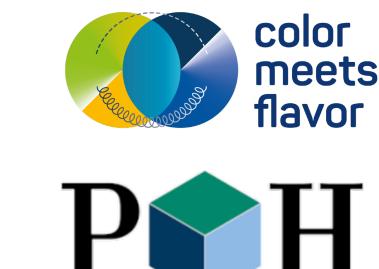

Amazing cleanliness of the extraction of γ_{CKM} within the SM: 1 part per million


The ultimate theoretical error on γ from B o DK decays

Joachim Brod (Cincinnati U.), Jure Zupan (Cincinnati U.) (Aug 26, 2013)

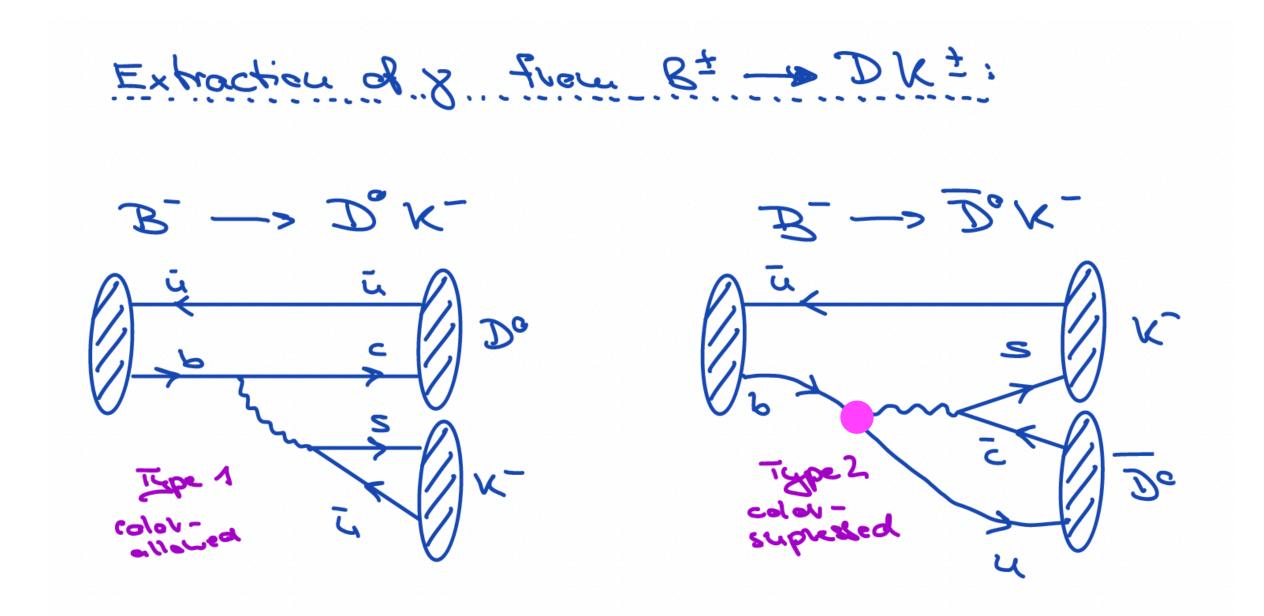
Published in: JHEP 01 (2014) 051 • e-Print: 1308.5663 [hep-ph]

Extraction of 8 from B= DK=;



Note:

- · A B^- can both decay into a D^0 and a $ar{D}^0$ meson
- The first possibility is colour-allowed, the second colour-suppressed
- there are "no penguins" possible



Amazing cleanliness of the extraction of $\gamma_{\rm CKM}$ within the SM: 1 part per million

The ultimate theoretical error on γ from B o DK decays

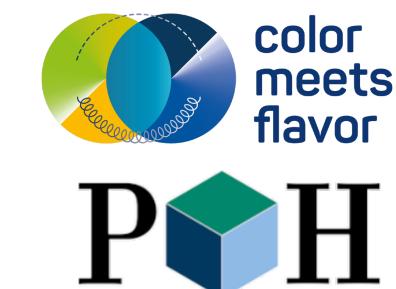
Joachim Brod (Cincinnati U.), Jure Zupan (Cincinnati U.) (Aug 26, 2013)

Published in: *JHEP* 01 (2014) 051 • e-Print: 1308.5663 [hep-ph]

Note:

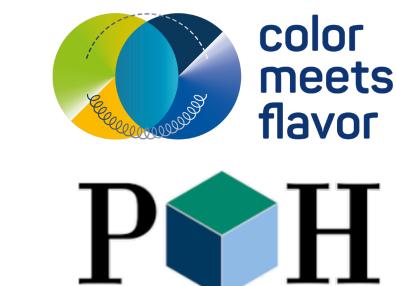
- A B^- can both decay into a D^0 and a $ar{D}^0$ meson
- The first possibility is colour-allowed, the second colour-suppressed
- there are no penguins possible
- The only significant weak phase in these diagrams is $\gamma_{\rm CKM}$ in the suppressed decay stemming from V_{ub}

Within the SM $B^-\to D^0K^-$ and $B^-\to \bar{D}^0K^-$ decays (as well as $B^+\to \bar{D}^0K^+$ and $B^+\to D^0K^+$) are described with the effective Hamiltonian:



Within the SM $B^- \to D^0 K^-$ and $B^- \to D^0 K^-$ decays (as well as $B^+ \to \bar{D}^0 K^+$ and $B^+ \to D^0 K^+$) are described with the effective Hamiltonian:

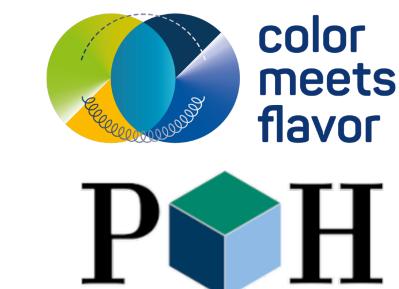
With the colour re-arranged and the colour-allowed tree-level operators



Within the SM $B^- \to D^0 K^-$ and $B^- \to D^0 K^-$ decays (as well as $B^+ \to \bar{D}^0 K^+$ and $B^+ \to D^0 K^+$) are described with the effective Hamiltonian:

With the colour re-arranged and the colour-allowed tree-level operators

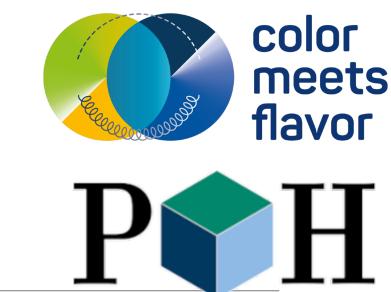
Consider: final states f_D into which both the D^0 and the $\bar D^0$ can decay, e.g. $\pi^+\pi^-$ and K^+K^-


Within the SM $B^- \to D^0 K^-$ and $B^- \to D^0 K^-$ decays (as well as $B^+ \to \bar{D}^0 K^+$ and $B^+ \to D^0 K^+$) are described with the effective Hamiltonian:

With the colour re-arranged and the colour-allowed tree-level operators

Consider: final states f_D into which both the D^0 and the $ar D^0$ can decay, e.g. $\pi^+\pi^-$ and K^+K^-

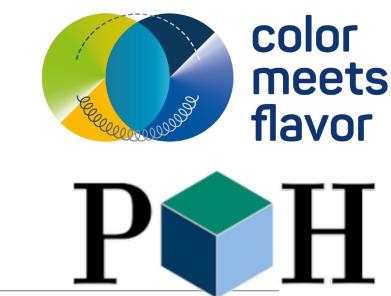
We can write generally - without knowing the values of $A_1, \delta_1, A_2, \delta_2$



Therefore we get for the amplitude $B^- \to f_D K^-$ two contributions (one from intermediate D^0 and one from $\bar D^0$)

$$A(B - 3f_D K) = A_1 e^{i\delta_1} + A_2 e^{i(\delta_2 - \delta_1 - \delta_1)}$$

= $A_1 e^{i\delta_1} \left[1 + \frac{A_2}{A_1} e^{i(\delta_2 - \delta_1 - \delta_1)} \right]$
= $A_1 e^{i\delta_1} \left[1 + \frac{A_2}{A_1} e^{i(\delta_2 - \delta_1 - \delta_1)} \right]$



Therefore we get for the amplitude $B^- \to f_D K^-$ two contributions (one from intermediate D^0 and one from $\bar D^0$)

$$A(B - 3f_D K) = A_1 e^{i\delta_1} + A_2 e^{i(\delta_2 - \delta_1 - \delta_1 - \delta_1)}$$

= $A_1 e^{i\delta_1} \left[1 + \frac{A_2}{A_1} e^{i(\delta_2 - \delta_1 - \delta_1 - \delta_1)} \right]$
= $A_1 e^{i\delta_1} \left[1 + \frac{A_2}{A_1} e^{i(\delta_2 - \delta_1 - \delta_1 - \delta_1)} \right]$

Similarly we get for the amplitude $B^+ \to f_D K^+$

Therefore we get for the amplitude $B^- \to f_D K^-$ two contributions (one from intermediate D^0 and one from $\bar D^0$)

$$A(B - 3f_D K) = A_1 e^{i\delta_1} + A_2 e^{i(\delta_2 - \delta_1 - \delta_1 - \delta_1)}$$

= $A_1 e^{i\delta_1} \left[1 + \frac{A_2}{A_1} e^{i(\delta_2 - \delta_1 - \delta_1 - \delta_1)} \right]$
= igg

Similarly we get for the amplitude $B^+ \to f_D K^+$

These two expressions allow the precise extraction of $\gamma_{\rm CKM}$ from experimental data