Heavy Meson Lifetimes from Lattice QCD

Matthew Black

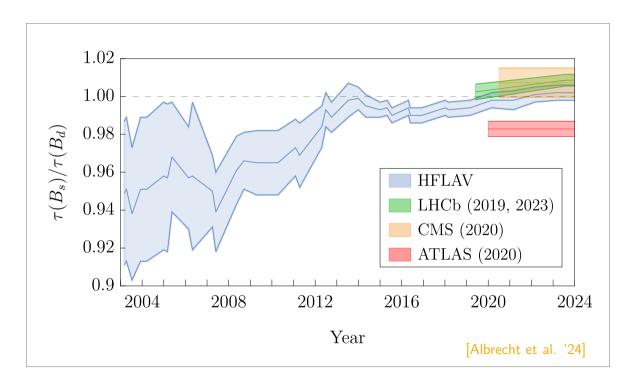
In collaboration with:

R. Harlander, J. Kohnen, F. Lange, A. Rago, A. Shindler, O. Witzel

24th September, 2025

Introduction

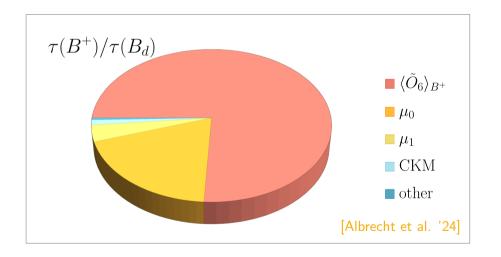
- ➤ B-meson lifetimes are measured experimentally to high precision
 - ► Key observables for probing New Physics → high precision in theory needed!



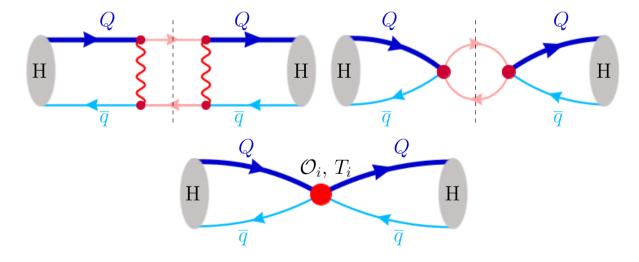
➤ For *B* lifetimes, we use the **Heavy Quark Expansion**

$$\Gamma(H_Q) = \Gamma_3 \langle \mathcal{O}_3 \rangle + \Gamma_5 \frac{\langle \mathcal{O}_5 \rangle}{m_Q^2} + \Gamma_6 \frac{\langle \mathcal{O}_6 \rangle}{m_Q^3} + \ldots + 16\pi^2 \left[\widetilde{\Gamma}_6 \frac{\langle \widetilde{\mathcal{O}}_6 \rangle}{m_Q^3} + \widetilde{\Gamma}_7 \frac{\langle \widetilde{\mathcal{O}}_7 \rangle}{m_Q^4} + \ldots \right]$$

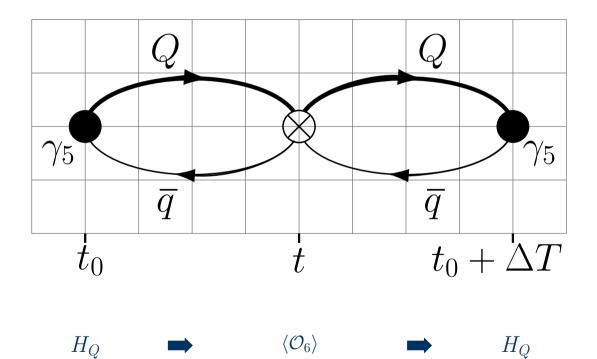
 \triangleright $\langle \overset{\sim}{\mathcal{O}}_6 \rangle$ are leading uncertainties for B lifetime differences



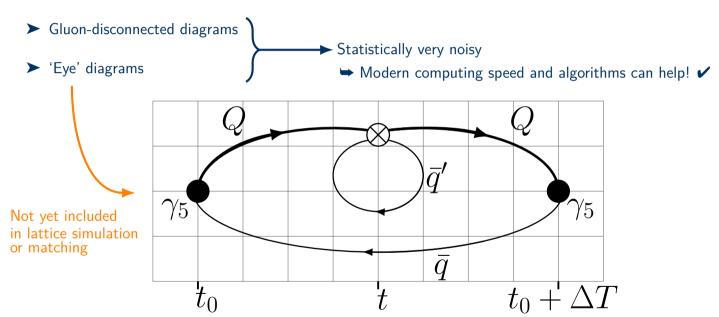
- ➤ Matrix elements of four-quark operators can be determined from lattice QCD simulations
- $ightharpoonup \Delta Q = 2$ well-studied by several groups ightharpoonup precision increasing
 - ightharpoonup Preliminary $\Delta K = 2$ for Kaon mixing with gradient flow [Suzuki et al. '20], [Taniguchi, Lattice '19]
- ► $\Delta Q = 0$ exploratory studies from \sim 20 years ago



- ➤ Start of calculation follows similar to operators for neutral meson mixing
 - **→** Well-established on lattice!



- ➤ Start of calculation follows similar to operators for neutral meson mixing
 - **→** Well-established on lattice!



- ➤ Start of calculation follows similar to operators for neutral meson mixing
 - **₩** Well-established on lattice!

But

➤ Gluon-disconnected diagrams
 ➤ Statistically very noisy
 ➤ Hodern computing speed and algorithms can help!

Not yet included in lattice simulation or matching

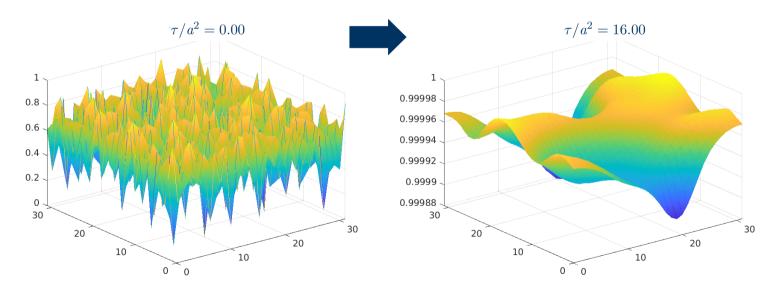


- ➤ Mixing with lower-dimensional operators in renormalisation
 - ➡ Power divergent ➡ Notoriously challenging

► How can we tackle this?

Gradient Flow

- ➤ Introduced by [Narayanan, Neuberger '06] [Lüscher '10] [Lüscher '13]
 - ightharpoonup Scale setting ($\sqrt{8t_0}$), RG β-function, Λ parameter
- \blacktriangleright Introduce auxiliary dimension, flow time τ as a way to regularise the UV
- ➤ Well-defined damping of UV fluctuations



- ➤ Introduced by [Narayanan, Neuberger '06] [Lüscher '10] [Lüscher '13]
 - ightharpoonup Scale setting ($\sqrt{8t_0}$), RG β-function, Λ parameter
- \blacktriangleright Introduce auxiliary dimension, flow time τ as a way to regularise the UV
- ➤ Well-defined damping of UV fluctuations
- ➤ Extend gauge and fermion fields in flow time and express dependence with first-order differential equations:

$$\partial_t B_{\mu}(\tau, x) = \mathcal{D}_{\nu}(\tau) G_{\nu\mu}(\tau, x), \quad B_{\mu}(0, x) = A_{\mu}(x),$$

$$\partial_t \chi(\tau, x) = \mathcal{D}^2(\tau) \chi(\tau, x), \quad \chi(0, x) = q(x).$$

- For use in renormalisation, there are two concepts:
 - ⇒ Gradient flow as an RG transformation [Carosso et al. '18] [Harlander et al. '20] [Hasenfratz et al. '22]
 - ➤ Short-flow-time expansion [Lüscher, Weisz '11] [Suzuki '13], [Lüscher '13]

- ➤ Well-studied for e.g. energy-momentum tensor [Makino, Suzuki '14] [Harlander, Kluth, Lange '18] quark masses [Takaura et al. '25] [Black et al. '25]
- ➤ Re-express effective Hamiltonian in terms of 'flowed' operators:

$$\mathcal{H}_{\mathrm{eff}} = \sum_{n} C_{n} \mathcal{O}_{n} = \sum_{n} \tilde{C}_{n}(\tau) \overset{\sim}{\mathcal{O}}_{n}(\tau).$$

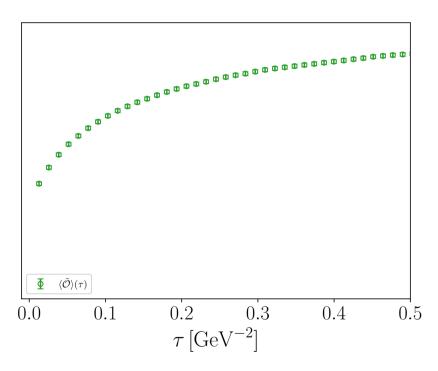
➤ Relate to regular operators in 'short-flow-time expansion':

$$\widetilde{\mathcal{O}}_n(\tau) = \sum_m \zeta_{nm}(\tau) \mathcal{O}_m + O(\tau)$$

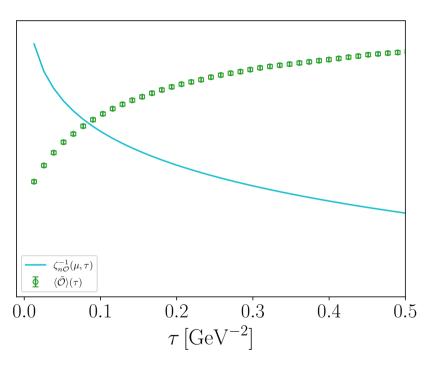
'flowed' MEs calculated on lattice renormalised along flow time

matching matrix calculated perturbatively

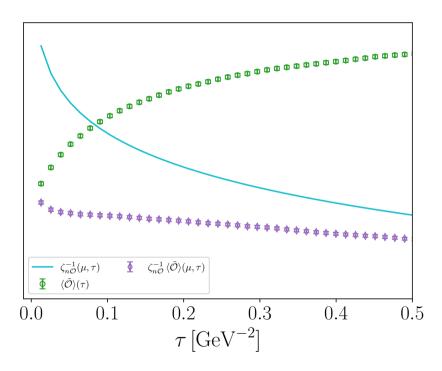
$$\sum_{n} \zeta_{nm}^{-1}(\mu, \tau) \langle \overset{\sim}{\mathcal{O}}_{n} \rangle (\tau) = \langle \mathcal{O}_{m} \rangle (\mu)$$



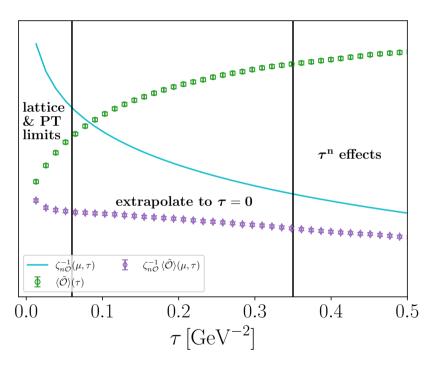
 \blacktriangleright Measure flowed matrix element $\langle \mathcal{O} \rangle (\tau)$ on the lattice



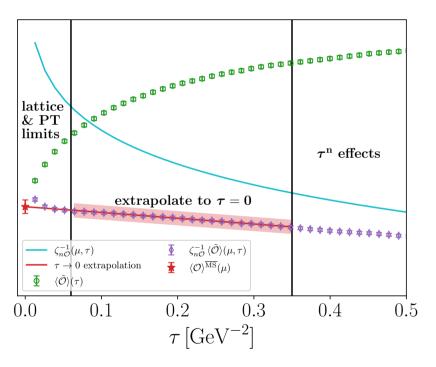
ightharpoonup Calculate perturbative matching coefficients $\zeta_{n\mathcal{O}}^{-1}(\mu,\tau)$



 \blacktriangleright Combine for 'matched' operator dependent on flow time τ and renormalisation scale μ



➤ Larger systematic effects at extremities



ightharpoonup Take au o 0 result $ightharpoonup \langle \mathcal{O}
angle^{\overline{\mathrm{MS}}}(\mu)$

Lattice Details

- ➤ Exploratory setup using physical charm and strange quarks
 - $ightharpoonup \Delta B = 0, 2 \Rightarrow \Delta Q = 0, 2$, for generic heavy quark Q
- ➤ Exploratory study to test method → neglect expensive+noisy eye diagrams
- ➤ We use RBC/UKQCD's 2+1 flavour DWF + Iwasaki gauge action ensembles

	L	T	a^{-1} /GeV	am_l^{sea}	am_s^{sea}	$M_\pi/{ m MeV}$	$srcs \times N_conf$
C1	24	64	1.7848	0.005	0.040	340	32×101
C2	24	64	1.7848	0.010	0.040	433	32×101
M1	32	64	2.3833	0.004	0.030	302	32×79
M2	32	64	2.3833	0.006	0.030	362	32×89
M3	32	64	2.3833	0.008	0.030	411	32×68
F1S	48	96	2.785	0.002144	0.02144	267	24 × 98

[Allton et al. '08] [Aoki et al. '10] [Blum et al. '14] [Boyle et al. '17]

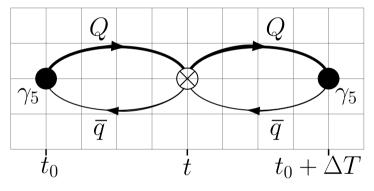
- ightharpoonup For strange quarks tuned to physical value, $am_q \ll 1$ \checkmark
- ➤ For heavy b quarks, $am_q > 1$ ➡ large discretisation effects X
 - manageable for physical c quarks using stout-smeared Möbius DWF [Cho et. al '15]

Analysis and Results

➤ In the Standard Model, four operators contribute:

$$\mathcal{O}_1 \rightarrow B_1 \sim 1$$
 $\mathcal{O}_2 \rightarrow B_2 \sim 1$ $T_1 \rightarrow \epsilon_1 \sim 0$ $T_2 \rightarrow \epsilon_2 \sim 0$

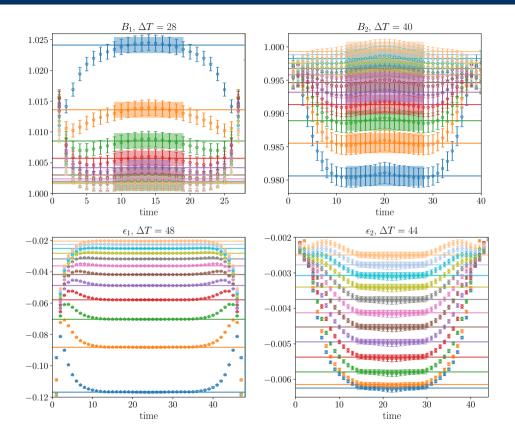
➤ Four-quark operators inserted in three-point correlation functions:

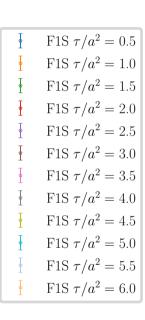


$$C_{\mathcal{O}_i}^{3\mathrm{pt}}(t,\Delta T, \boldsymbol{\tau}) = \sum_{n,n'} \frac{\langle P_n | \mathcal{O}_i | P_{n'} \rangle(\boldsymbol{\tau})}{4M_n M_{n'}} e^{-(\Delta T - t)M_n} e^{-tM_{n'}} \underset{t_0 \ll t \ll t_0 + \Delta T}{\Longrightarrow} \frac{\langle P \rangle^2}{4M^2} \langle \mathcal{O}_i \rangle(\boldsymbol{\tau}) e^{-\Delta T M}$$

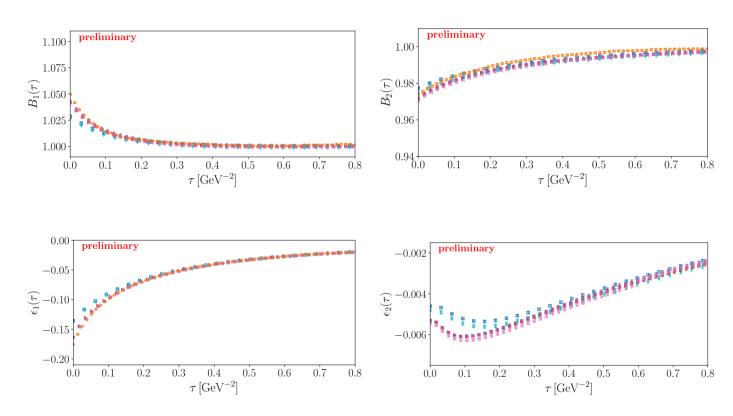
➤ To extract bag parameters, normalise with two-point correlation functions → $B_i \propto \frac{\langle \mathcal{O}_i \rangle}{m^2 f_H^2}$

Bag Parameter Extraction — Correlator Fitting

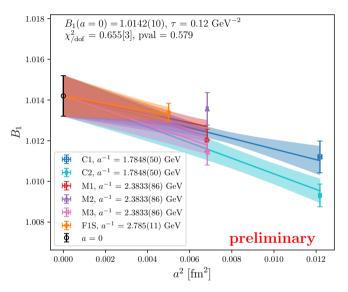


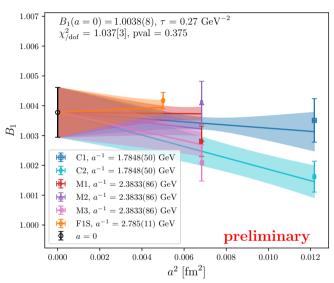


➤ Matrix elements extracted for each flow time ✔

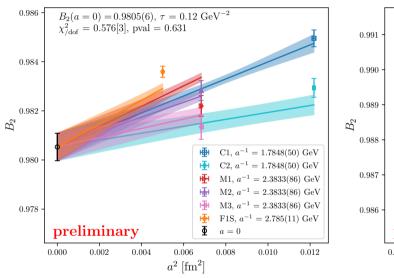


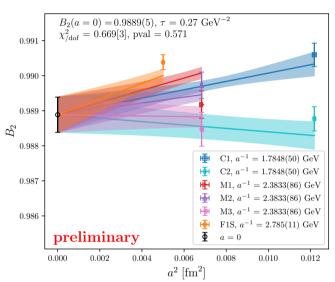
➤ Take continuum limit!



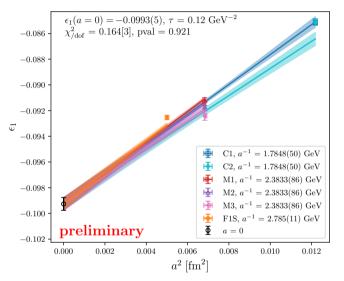


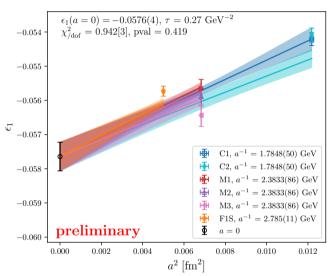
$$B_i^{\text{GF}}(a, M_{\pi}^{\text{latt}}, \tau) = B_i^{\text{GF,cont}}(\tau) + C a^2 + D a^2 \left[(M_{\pi}^{\text{latt}})^2 - (M_{\pi}^{\text{phys}})^2 \right]$$



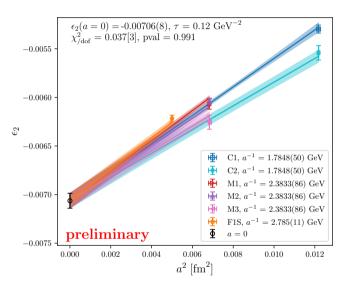


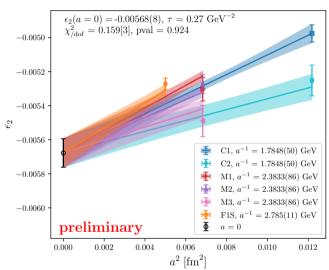
$$B_i^{\text{GF}}(a, M_{\pi}^{\text{latt}}, \tau) = B_i^{\text{GF,cont}}(\tau) + C a^2 + D a^2 \left[(M_{\pi}^{\text{latt}})^2 - (M_{\pi}^{\text{phys}})^2 \right]$$



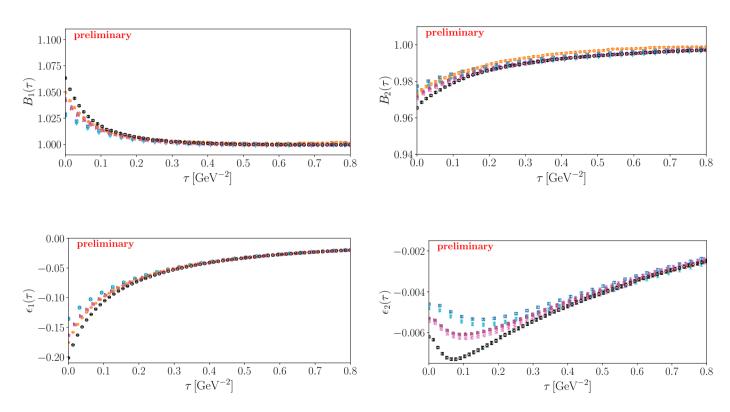


$$B_i^{\text{GF}}(a, M_{\pi}^{\text{latt}}, \tau) = B_i^{\text{GF,cont}}(\tau) + C a^2 + D a^2 \left[(M_{\pi}^{\text{latt}})^2 - (M_{\pi}^{\text{phys}})^2 \right]$$

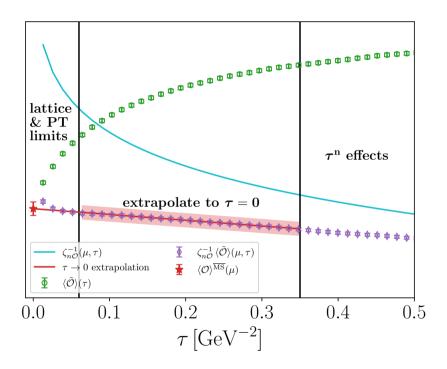




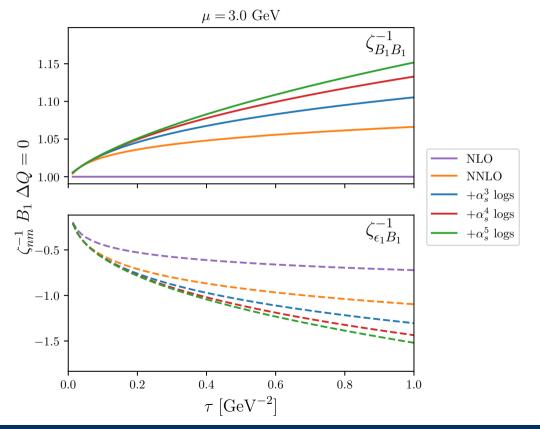
$$B_i^{\text{GF}}(a, M_{\pi}^{\text{latt}}, \tau) = B_i^{\text{GF,cont}}(\tau) + C a^2 + D a^2 \left[(M_{\pi}^{\text{latt}})^2 - (M_{\pi}^{\text{phys}})^2 \right]$$



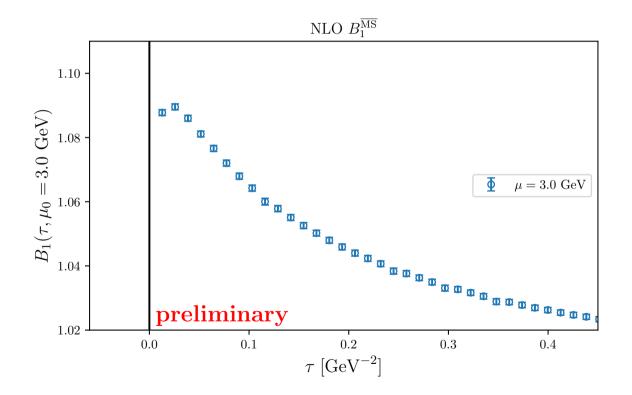
➤ Well-controlled chiral-continuum limits along flow time ✔



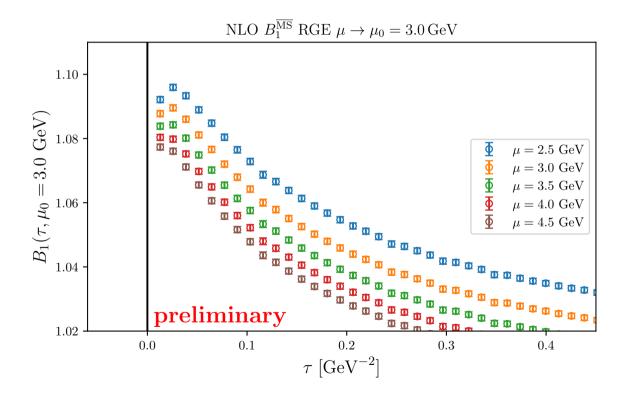
lacktriangle Combine continuum limits of lattice data with perturbative matching coefficients $\zeta_{nm}^{-1}(\mu,\tau)$



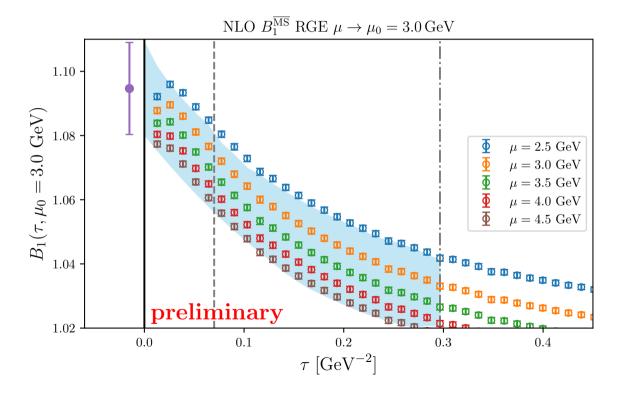
lacktriangle Combine continuum limits of lattice data with perturbative matching coefficients $\zeta_{nm}^{-1}(\mu,\tau)$



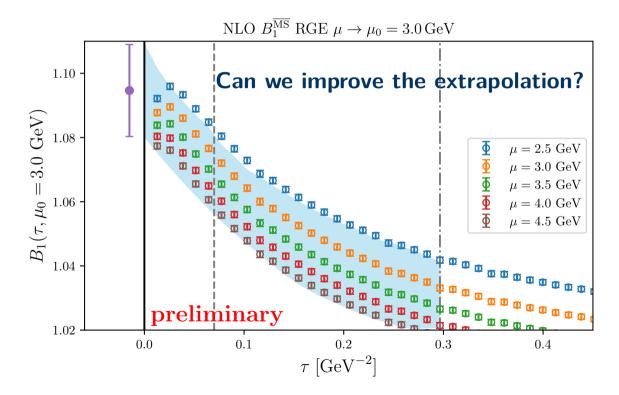
▶ Matching can be done for any scale μ ➡ run back to $\mu_0 = 3$ GeV for final results



- ightharpoonup au o 0 limit should be RG-independent ightharpoonup perform combined fits to better control extrapolation
 - \blacktriangleright Final result takes spread of all acceptable fits performed between au_{\min} and au_{\max}



- ightharpoonup au o 0 limit should be RG-independent ightharpoonup perform combined fits to better control extrapolation
 - \blacktriangleright Final result takes spread of all acceptable fits performed between au_{\min} and au_{\max}



➤ We can RG-improve the matching procedure using the flow-time RGE:

$$\tau \partial_{\tau} \tilde{\mathcal{O}}(\tau) = \tilde{\gamma}(a_s(\mu), L_{\mu\tau}) \tilde{\mathcal{O}}(\tau),$$

for a flowed anomalous dimension

$$\tilde{\gamma}(a_s(\mu), L_{\mu\tau}) = (\tau \partial_{\tau} \zeta(\tau, \mu)) \zeta^{-1}(\tau, \mu).$$

 \blacktriangleright Define a perturbative flow time coupled to renormalisation scale μ :

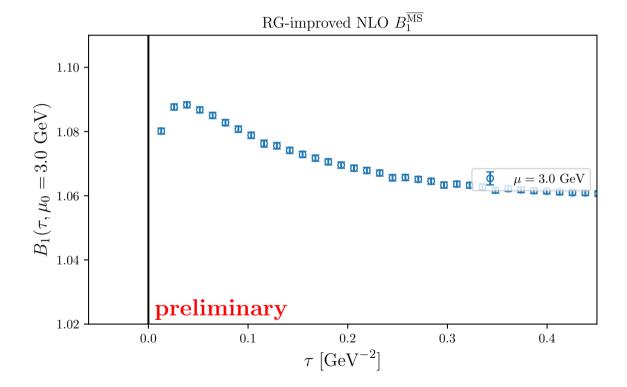
$$\tau_{\mu} = e^{-\gamma_{\rm E}}/2\mu^2$$

 \blacktriangleright Integrating the RGE from any lattice flow time τ to τ_{μ} will yield 'RG-improved' matched results

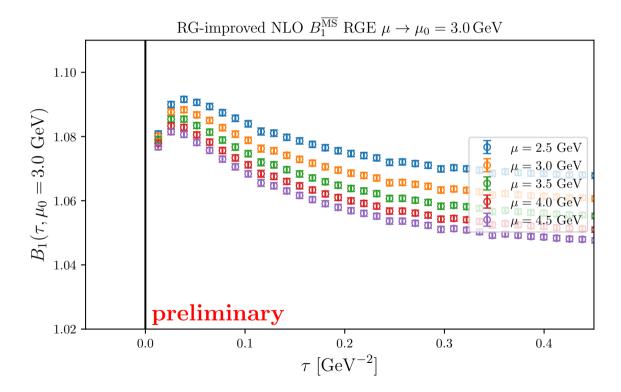
$$\mathcal{O}(\mu) = \zeta^{-1}(\tau_{\mu}, \mu) \exp \left[\int_{\tau}^{\tau_{\mu}} d\tau \, \tilde{\gamma}(a_s(\mu), L) \right] \, \tilde{\mathcal{O}}(\tau)$$

- ➤ Should decrease slope of fixed-order matching results and improve convergence of short-flow-time expansion
- ➤ Use perturbative flowed anomalous dimension at NLO and NNLO
 - ightharpoonup could also calculate $\tilde{\gamma}$ non-perturbatively [Hasenfratz et. al, '22]

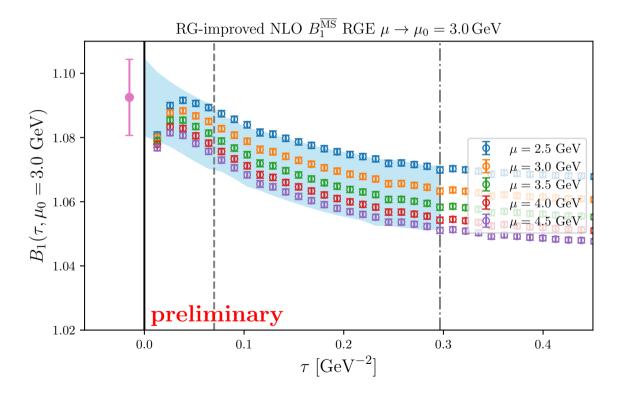
- ➤ We can RG-improve the matching procedure using the flow-time RGE:
 - now all same steps apply as before with "flatter data"

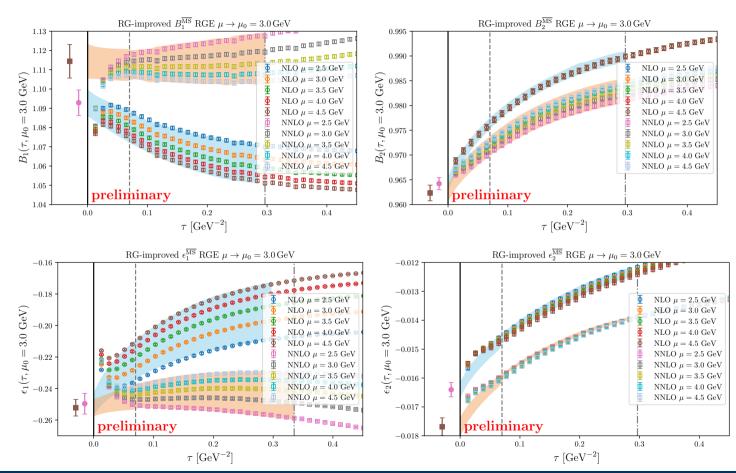


- ➤ We can RG-improve the matching procedure using the flow-time RGE:
 - now all same steps apply as before with "flatter data"



- ➤ We can RG-improve the matching procedure using the flow-time RGE:
 - now all same steps apply as before with "flatter data"





Summary

- lacktriangle Finalising first lattice calculation of $\Delta \mathit{Q}=0$ matrix elements for heavy meson lifetime ratios
- ➤ Gradient flow and short-flow-time expansion is an effective tool for renormalisation and matching
 - → Proof of principle calculation of charm and strange quark masses [Black et al. '25]
- ➤ Scale dependence of short-flow-time expansion can be studied in detail

Outlook

- \blacktriangleright Perform large-scale simulations to extrapolate to B and B_s mesons
- ➤ 'Eye' diagrams need for absolute lifetime operators
 - to be included in both lattice simulations and perturbative matching

Thanks for the attention!

Backup Slides

 \blacktriangleright For lifetimes, the dimension-6 $\Delta Q=0$ operators are:

$$\mathcal{O}_{1}^{q} = \bar{b}^{\alpha} \gamma^{\mu} (1 - \gamma_{5}) q^{\alpha} \, \bar{q}^{\beta} \gamma_{\mu} (1 - \gamma_{5}) b^{\beta}, \qquad \langle \mathcal{O}_{1}^{q} \rangle = \langle B_{q} | \mathcal{O}_{1}^{q} | B_{q} \rangle = f_{B_{q}}^{2} M_{B_{q}}^{2} B_{1}^{q}, \\
\mathcal{O}_{2}^{q} = \bar{b}^{\alpha} (1 - \gamma_{5}) q^{\alpha} \, \bar{q}^{\beta} (1 - \gamma_{5}) b^{\beta}, \qquad \langle \mathcal{O}_{2}^{q} \rangle = \langle B_{q} | \mathcal{O}_{2}^{q} | B_{q} \rangle = \frac{M_{B_{q}}^{2}}{(m_{b} + m_{q})^{2}} f_{B_{q}}^{2} M_{B_{q}}^{2} B_{2}^{q}, \\
T_{1}^{q} = \bar{b}^{\alpha} \gamma^{\mu} (1 - \gamma_{5}) (T^{a})^{\alpha\beta} q^{\beta} \, \bar{q}^{\gamma} \gamma_{\mu} (1 - \gamma_{5}) (T^{a})^{\gamma\delta} b^{\delta}, \qquad \langle T_{1}^{q} \rangle = \langle B_{q} | T_{1}^{q} | B_{q} \rangle = f_{B_{q}}^{2} M_{B_{q}}^{2} \epsilon_{1}^{q}, \\
T_{2}^{q} = \bar{b}^{\alpha} (1 - \gamma_{5}) (T^{a})^{\alpha\beta} q^{\beta} \, \bar{q}^{\gamma} (1 - \gamma_{5}) (T^{a})^{\gamma\delta} b^{\delta}, \qquad \langle T_{2}^{q} \rangle = \langle B_{q} | T_{2}^{q} | B_{q} \rangle = \frac{M_{B_{q}}^{2}}{(m_{b} + m_{q})^{2}} f_{B_{q}}^{2} M_{B_{q}}^{2} \epsilon_{2}^{q}.$$

➤ For simplicity of computation, we rewrite these to be colour-singlet operators:

$$\mathcal{O}_{1} = \bar{b}^{\alpha} \gamma_{\mu} (1 - \gamma_{5}) q^{\alpha} \bar{q}^{\beta} \gamma_{\mu} (1 - \gamma_{5}) b^{\beta}
\mathcal{O}_{2} = \bar{b}^{\alpha} (1 - \gamma_{5}) q^{\alpha} \bar{q}^{\beta} (1 + \gamma_{5}) b^{\beta}
\tau_{1} = \bar{b}^{\alpha} \gamma_{\mu} (1 - \gamma_{5}) b^{\alpha} \bar{q}^{\beta} \gamma_{\mu} (1 - \gamma_{5}) q^{\beta}
\tau_{2} = \bar{b}^{\alpha} \gamma_{\mu} (1 + \gamma_{5}) b^{\alpha} \bar{q}^{\beta} \gamma_{\mu} (1 - \gamma_{5}) q^{\beta}$$

$$\mathcal{O}_{1}^{+} \\
\mathcal{O}_{2}^{+} \\
T_{1}^{+} \\
T_{2}^{+}$$

