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Theory in a nutshell

e Tool of choice: effective theories
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+ Heavy Quark Expansion (HQE) for lifetimes:
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I'(Hg) factorizes into Wilson coefficients I'; and matrix elements (O;)

Focus on dimension-six four-quark contributions f6 and :'(’36} in this talk

Wilson coefficients s can be computed perturbatively S see Francesco Moretti's talk
Two methods for non-perturbative bag parameters '\'(’36}:

e Sum rules = see Martin Lang's talk

e Lattice QCD = this talk as well as Matthew Black's and Joshua Lin's talks 1



Bag parameters on the lattice

@) @ O) = (O
F(HQ)—F3+F5—< 5) —|—F6< ©) + ...+ 1672 o (Or) + ...

= O >

Q Q

o Q

e While ['(Hg) is scheme independent, I's and () individually are not:



Bag parameters on the lattice
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e While '(Hg) is scheme independent, 6 and (D) individually are not:

Perturbative F@:
e Dimensional regularization with D = 4 — 2¢

e Operators mix through renormalization,
also with evanescent operators (vanish in
D =4):

OR =ZooO + ZogE

e s scheme dependent:

1. Explicit dependence on p
2. Scheme for ~s
3. Choice of evanescent operators



Bag parameters on the lattice
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e While '(Hg) is scheme independent, 6 and (D) individually are not:
Perturbative F@: Lattice j@o*:
e Dimensional regularization with D =4 —2¢ e Lattice spacing a as UV regulator

e Operators mix through renormalization, e Operators mix through renormalization:
also with evanescent operators (vanish in

D =4): OF = 2101 + Z1,0,

T = Zoo® - ZoislE e Requires continuum limit a — 0 afterwards

Os) scheme dependent

e s scheme dependent:

1. Explicit dependence on p
2. Scheme for ~s
3. Choice of evanescent operators



Bag parameters on the lattice
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e While '(Hg) is scheme independent, 6 and (D) individually are not:

Perturbative F@:
e Dimensional regularization with D = 4 — 2¢

e Operators mix through renormalization,
also with evanescent operators (vanish in
D =4):

OR =ZooO + ZogE

e s scheme dependent:

1. Explicit dependence on p
2. Scheme for ~s
3. Choice of evanescent operators

— Need additional calculation to match the schemes

Lattice (D):

Lattice spacing a as UV regulator

Operators mix through renormalization:
O% = 21,01 + Z1,0;

Requires continuum limit a — 0 afterwards

Os) scheme dependent



Gradient flow

e Introduce parameter flow time 7 > 0

e Flowed fields in D + 1 dimensions obey differential flow equations:

Flow equations

0 a ab ~b 2 a a
5:.8:=D) Go, with  Bi(7,x)| _, = A%(x),
0 .
Ex = Ay with  x(7,x)|,_o = ¥(x)

Db = 6°%9, — f**°B;, G, =0,B; —9,B] + BB,

wo nv

A= (8, +BiT*) (0, +B.T")



Gradient flow schematically

e Let's simplify this a bit:
0 pa _ pabgb ith  B3(1,x)|_ = A%(x)
5,8 =DrC, Wi MT,X’TZO— o (x
9;B ~ (0 — g0B)(9xB + gB%)

~ 2B + g0y B — g3 B>
e Flow equations similar to the heat equation (thermodynamics)

Oru(t, %) = alu(t,%) with A=>"02

e Fields at positive flow time smeared out with smearing radius /87

= Intuition: Regulates divergences



Smearing

t/a%=0.00 t/a%=9.00

0.99995
0.9999 {4
0.99985

0.9998

[Courtesy of Oliver Witzel]



Applications of the gradient flow

e Inherent smearing removing small-distance fluctuations [Narayanan, Neuberger 2006; Liischer 2010; ..
e Gradient-flow scale setting extremely precise and cheap [Liischer 2010; Borsanyi et al. 2012; ]

e Composite operators do not require renormalization [Liischer, Weisz 2011]

> Define gradient-flow scheme which is valid both on the lattice and perturbatively:

Oj(x) divergent —  Oj(, x) finite

e Consider gradient flow as renormalization group transformation [Carosso, Hasenfratz, Neil 2018;
Harlander, FL, Neumann 2020; Hasenfratz, Monahan, Rizik, Shindler, Witzel 2022]
e Match to MS scheme with small-flow-time expansion [Liischer, Weisz 2011; Suzuki 2013; Liischer
2013]
e Define the energy-momentum tensor of QCD on the lattice [Suzuki 2013; Makino, Suzuki 2014;
Harlander, Kluth, FL 2018]
= Applications to thermodynamics [FlowQCD since 2014]
e Apply to electroweak Hamiltonians of flavor physics [Suzuki, Taniguchi, Suzuki, Kanaya 2020;
Harlander, FL 2022]



Flowed operator product expansion

e Small-flow-time expansion

@,’(T, X) = ZCU(T)OJ(X) + O(T)

J

e Invert to express operators through flowed operators

Flowed OPE

(He) = Z ri(0:) = Z Fii H(1)(0(7)) = Z Fi(m)(05(7))

e (Hg) defined in regular QCD expressed through finite flowed operators O;(7)
e Gradient-flow definition of ['(Hg) valid both on the lattice and perturbatively



Calculation of '(Hg) in the gradient-flow scheme

r(Ho) = .T(O3) = 316 (7)(04(r))

Perturbative '; - (; L(7): Lattice (O;(7)):
e Dimensional regularization with e lattice spacing a as UV regulator
D=4-2e e Finite for a — 0

e Finite and scheme independent: e No operator mixing

1. No explicit dependence on p
2. No dependence on scheme for ~s
3. Independent of evanescent operators

> Gradient-flow scheme convenient for matching



Calculation of '(Hg) in the gradient-flow scheme

r(Ho) = .T(O3) = 316 (7)(04(r))

Perturbative '; - (; L(7): Lattice (O;(7)):
e Dimensional regularization with e lattice spacing a as UV regulator
D=4-2e e Finite for a — 0

e Finite and scheme independent: e No operator mixing

1. No explicit dependence on p
2. No dependence on scheme for ~s
3. Independent of evanescent operators

> Gradient-flow scheme convenient for matching
L] F,-: Francesco Moretti's talk
e (;'(7): this talk

o (O;(1)): Matthew Black's talk 8



Gradient-flow Lagrangian

e Write Lagrangian for the gradient flow as [Liischer, Weisz 2011; Liischer 2013]

L=~Lqcp+ Le+ Ly,
ng
a a " F ,
Laco = QFWFWJré V(D + me)r + ...

e Construct flowed Lagrangian using Lagrange multiplier fields L7, (7, x) and A¢(7, x):

o
Lp = —2/0 dr Tr [L5T? (9, B2 TP — DE°GS, TP)] 0,B; = DG,
ng [e'9)
L = Z/ dr (S\f(a-r — D) xr + Xr (57 = Z) Af), Orx =Ax, O-x= XZ
f=1"0

= Flow equations automatically satisfied

= QCD Feynman rules + gradient-flow Feynman rules (complete list in [Artz, Harlander, FL,
Neumann, Prausa 2019] )



Gradient-flow Feynman rules

e Flowed propagators

p

1 /
7 v, b 2000890000 T [, @ = 6ab?(slw e—(T+7 )P’
e Flow lines
p ab —(r—7")p?
7', v, b 990990000, T, @ = 077 O(t — 5)d,, € P
—_—

e Flow vertices

v,b

0 — —igf"bc/ dr’ (5l,p(r —q)p+ 2049, — 26ﬂpry)
0

= Can integrate into standard tool chains for perturbative calculations 10



Operator basis for AQ = 0 lifetime differences

Z r(0:) = 3T (HB())

e Define finite flowed operators:

(@7(1 = 5)a)(G7,u(1 — 75)Q)
(Q(L —5)a)(@(1 +5)Q)

(@u(1 —5) TAq) (@1 (1 — 15) T Q)
(R —75) TAq)(@vu(1 + ) T Q)

e Reminder: O;(7) do not require renormalization
e Compute matching matrix (jj(7):

11



Method of projectors

e Define projectors
Pi[O;] = Dy (0]0;|K) = 6 + O(as)
e Apply to small flow-time expansion:

PO =D P[O)]

J

° only depend on 7
Set all other scales to zero

No perturbative corrections to P,[O]], because all loop integrals are scaleless

“Master formula”

= Pj[0i(7)]

p=m=0

12



Calculation of (;*

e Projector for O = (Q%L(l —75)q)(q7.(1 — 75) Q):

Pl [O] Trhne 1Tr111162 <O‘( (1 - 75)7116) (q(l - 75)VV©)O|O>|

p=m=0

1
16N2

e Sample diagrams:

p< R B ﬁ %

13



Automatized calculation

e qgraf [Nogueira 1991] : Generate Feynman diagrams

L] q2e/tapir [Gerlach, Herren, Lang 2022] and €XP [Harlander, Seidensticker, Steinhauser 1998; Seidensticker
1999] : Assign diagrams to topologies and prepare FORM code

® FORM [Vermaseren 2000; Kuipers, Ueda, Vermaseren, Vollinga 2013] : Insert Feynman rules, perform
tensor redUCtIOﬂ, Dirac traces, and color algebra [van Ritbergen, Schellekens, Vermaseren 1998]

e Generate system of equations employing integration-by-parts-like relations [Tkachov 1981;
Chetyrkin, Tkachov 1981] with in-house Mathematica code

e Kira [Maierhdfer, Usovitsch, Uwer 2017; Klappert, FL, Maierhfer, Usovitsch 2020; FL, Usovitsch, Wu 2025] &
FireFly [Klappert, FL 2019; Klappert, Klein, FL 2020] : Solve system to express all integrals through
six master integrals with Laporta algorithm [Laporta 2000]

e Master integrals computed in [Harlander, Kiuth, FL 2018]

14



Results for the matching matrix ¢!

0 ; 0 _%_ELMT ?
0 5421 0 5 %
-1 -1 Qs 3 wr 2 s O(al
C (T) +7T _% :1J,Lm— (1) %+%th7— 0 (i +(ﬂ—) ’ (QS)
0 9 0 §_ZLMT

e Normalized by non-singlet axial currents [Borgulat, Harlander, Kohnen, FL 2023]
e ag = as(p) renormalized in MS scheme
o L, =In 22T + Ve

e Set N. =3, TR:%

= Ready to be used in Matthew Black’s talk

15



Running along the flow time

e Wilson coefficients and bag parameters depend on renormalization scale z in MS scheme
e Running determined by anomalous dimension ~(u):

2dO(p)
du?

= =(1)O(n)

e Similarly, dependence on flow time 7 in gradient-flow scheme
e Running determined by flowed anomalous dimension [Harlander, FL, Neumann 2020] :

78:0(1) = 5(7)O(7)

with
(1) = (18:¢())¢H(7)

= Can evolve the flowed bag parameters along the flow time to stabilize them

16



Summary and outlook

Combining perturbative Wilson coefficients and non-perturbative bag parameters from
lattice QCD nontrivial

Gradient-flow scheme convenient because it is valid both on the lattice and perturbatively

Computed the matching matrix for lifetime differences through NNLO in QCD

Ready for bag parameters = Matthew Black's talk

And for checking renormalization scheme independence with Wilson coefficients

== Francesco Moretti's talk

17



Gradient flow

e Introduce parameter flow time 7 > 0 [Narayanan, Neuberger 2006; Liischer 2000; Liischer 2010]

Flowed fields in D + 1 dimensions obey differential flow equations:

0,0(rx) — - 951600

500 ~ Dy®(7,x) with  &(7,x)|._q = &(x)

&(7,x)

Flow equation drives flowed fields to minimum of action

Flow equation similar to the heat equation (thermodynamics)

Oru(t,X) = alu(t,%) with A=Y 02

e Fields at positive flow time smeared out with smearing radius /8t

= Intuition: Regulates divergences
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