Theoretical overview of lifetimes

Maria Laura Piscopo

Nikhef Theory Group, Amsterdam

"More than a lifetime" workshop Siegen, 23 September 2025

Why lifetimes?

- ♦ The lifetime $\tau = \Gamma^{-1}$ is a fundamental property of particles
- \diamond For heavy hadrons H_Q , systematic framework to compute Γ
- Consider both the beauty and charm systems
 - * Experimental precision very high [HFLAV, PDG]

See overview talks from LHCb, ATLAS, CMS, Belle II and BESIII

- * Aim at improving theoretical precision to:
 - * Test the SM and the framework used

Insights into interplay of strong and weak interactions

⋆ Perform indirect new physics (NP) searches

The theoretical framework

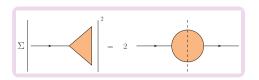
Effective field theories for heavy hadrons decays

Weak decays of heavy hadrons define multi-scale problem

$$m_W \gg m_Q \gg \Lambda_{QCD}$$
 $\sim 80 \text{ GeV} \sim [1-4.5] \text{ GeV} \sim 0.3 \text{ GeV}$

- \diamond At scales $\mu \sim m_Q$
 - * Use weak effective theory (WET) e.g. [Buchalla, Buras, Lautenbacher '96]
 - * Observables computed in terms of expansion in $1/m_W^2$
- \diamond At scales $\mu \sim \Lambda_{QCD}$
 - * Use heavy quark effective theory (HQET) e.g. [Isgur, Wise '89; Georgi '90]
 - * Observables computed in terms of expansion in $1/(2m_Q)$

The total decay width of a heavy hadron


♦ Start from the definition

Effective Hamiltonian describing leptonic and non-leptonic Q decays

$$\Gamma(H_Q) = \frac{1}{2m_{H_Q}} \sum_{n} \int_{PS} (2\pi)^4 \delta^{(4)}(p_n - p_{H_Q}) |\langle n| \mathcal{H}_{\text{eff}} |H_Q \rangle|^2$$

♦ Use optical theorem to rewrite [Shifman, Voloshin '85]

$$\Gamma(H_Q) = \frac{1}{2m_{H_Q}} \operatorname{Im} \langle H_Q | i \int d^4 x \, \mathrm{T} \{ \mathcal{H}_{\text{eff}}(x), \mathcal{H}_{\text{eff}}(0) \} | H_Q \rangle$$

The heavy quark expansion (HQE)

- $\diamond~Q$ carries most of the hadron momentum $~p^{\mu}_{H_Q} = m_{H_Q} v^{\mu}$
- Introduce parametrisation

$$p_Q^\mu = m_Q v^\mu + k^\mu \qquad \qquad k \sim \Lambda_{QCD} \ll m_Q$$

Define rescaled heavy-quark field

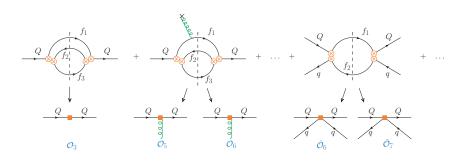
$$Q(x) = e^{-im_Q v \cdot x} Q_v(x)$$

The action of the covariant derivative

$$iD_{\mu}Q(x) = e^{-im_{Q}v \cdot x} \left(m_{Q}v_{\mu} + iD_{\mu}\right)Q_{v}(x)$$

$$D_{\mu} = \partial_{\mu} - iA_{\mu}^{a}(x)t^{a}$$

The HQE


Obtain systematic expansion

$$\Gamma(H_Q) = \underbrace{\Gamma_3}_{\Gamma(Q)} + \underbrace{\Gamma_5 \frac{\langle \mathcal{O}_5 \rangle}{m_Q^2} + \Gamma_6 \frac{\langle \mathcal{O}_6 \rangle}{m_Q^3} + \dots + 16\pi^2 \left[\tilde{\Gamma}_6 \frac{\langle \tilde{\mathcal{O}}_6 \rangle}{m_Q^3} + \tilde{\Gamma}_7 \frac{\langle \tilde{\mathcal{O}}_7 \rangle}{m_Q^4} + \dots \right]}_{\delta \Gamma(H_Q)}$$

- * Γ_d , $\tilde{\Gamma}_d$ short distance coefficients
- * $\mathcal{O}_d, \tilde{\mathcal{O}}_d$ local operators bilinear in the heavy quark field
- * $\Gamma(Q)$ total decay width of free Q quark
- * $\delta\Gamma(H_Q)$ effects due to interaction with soft gluons and quarks

The HQE

$$\Gamma(H_Q) = \Gamma_3 + \Gamma_5 \frac{\langle \mathcal{O}_5 \rangle}{m_Q^2} + \Gamma_6 \frac{\langle \mathcal{O}_6 \rangle}{m_Q^3} + \ldots + 16\pi^2 \left[\tilde{\Gamma}_6 \frac{\langle \tilde{\mathcal{O}}_6 \rangle}{m_Q^3} + \tilde{\Gamma}_7 \frac{\langle \tilde{\mathcal{O}}_7 \rangle}{m_Q^4} + \ldots \right]$$

$$\langle \mathcal{O}_d \rangle \propto \langle H_Q | \bar{Q} \underbrace{(iD_\mu) \dots (iD_\nu)}_{d-3} Q | H_Q \rangle$$

$$\langle \tilde{\mathcal{O}}_d \rangle \propto \langle H_Q | \left(\bar{Q} \Gamma q \right) \left(\bar{q} \Gamma \underbrace{\left(i D_{\mu} \right) \dots}_{d-6} Q \right) | H_Q \rangle$$

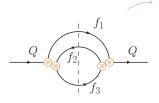
HQE: beauty vs. charm

- \diamond The HQE is a double expansion in $\alpha_s(m_Q)$ and Λ_{QCD}/m_Q
- ♦ In the beauty system $(m_b \sim 4.5 \text{GeV})$:

$$\alpha_s(m_b) \sim 0.22$$

$$\frac{\Lambda_{QCD}}{m_b} \sim 0.10$$

- * Applicability of the HQE is well justified
- \diamond In the charm system ($m_c \sim 1 \text{GeV}$):


$$\alpha_s(m_c) \sim 0.33$$
 $\frac{\Lambda_{QCD}}{m_c} \sim 0.30$

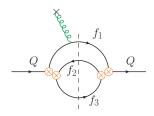
* Can we still *reliably* apply the HQE?

Must compare HQE predictions with measurements

A closer look into HQE

Dimension-three contribution

Include all possible final state leptons and quarks f_i


 \diamond Total decay width of free Q quark

$$\langle H_Q|\bar{Q}_vQ_v|H_Q\rangle = 2m_{H_Q}+\dots$$

$$\Gamma_3 = \underbrace{\frac{G_F^2 m_Q^5}{192\pi^2}}_{\Gamma_0} \left(c_3^{(0)} + \frac{\alpha_s}{4\pi} c_3^{(1)} + \left(\frac{\alpha_s}{4\pi} \right)^2 c_3^{(2)} + \ldots \right)$$


 \diamond Strong dependence on the mass-scheme choice for Q

Power corrections due to two-quark operators

- Parametrise soft-gluons exchange
- \diamond Expand quark propagators and Q field in D_u
- Use background field method and Fock-Schwinger gauge

See e.g. [Novikov, Shifman, Vainshtein, Zakharov '83]

Dimension-five contribution

Parametrised by the *kinetic* and *chromomagnetic* operators:

$$\begin{split} 2m_{H_Q}\mu_\pi^2(H_Q) &= -\langle H_Q|\bar{Q}_v(iD_\mu)(iD^\mu)Q_v|H_Q\rangle\\ \\ 2m_{H_Q}\mu_G^2(H_Q) &= \langle H_Q|\bar{Q}_v(iD_\mu)(iD_\nu)(-i\sigma^{\mu\nu})Q_v|H_Q\rangle \end{split}$$

Result at order $1/m_O^2$:

$$\Gamma_5 \frac{\langle \mathcal{O}_5 \rangle}{m_Q^2} = \Gamma_0 \left[c_{\mu_\pi} \frac{\mu_\pi^2}{m_Q^2} + \left(c_G^{(0)} + \frac{\alpha_s}{4\pi} c_G^{(1)} + \ldots \right) \frac{\mu_G^2}{m_Q^2} \right]$$

The coefficient of the kinetic operator:

$$c_{u_{\pi}} = -c_3/2$$

From the reparameterization invariance of the HQE

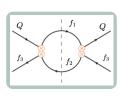
Dimension-six contribution

♦ Parametrised by the *Darwin* operator:

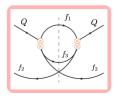
$$2m_{H_Q}\rho_D^3(H_Q) = \langle H_Q|\bar{Q}_v(iD_\mu)(iv\cdot D)(iD^\mu)Q_v|H_Q\rangle$$

♦ IR divergences from expansion of light-quark propagators

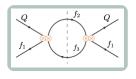
$$\Gamma_6 \frac{\langle \mathcal{O}_6 \rangle}{m_Q^3} = \Gamma_0 \left[\mathcal{C}_D^{(0)} + \frac{\alpha_s}{4\pi} \mathcal{C}_D^{(1)} \dots \right] \frac{\rho_D^3}{m_Q^3}$$


with

$$C_D \underset{m_q \to 0}{\sim} \log \left(\frac{m_q^2}{m_Q^2} \right) \qquad q = \{u, d, s\}$$


- * Sensitivity to long-distance dynamics $\Lambda_{QCD} \sim m_q \ll m_Q$
- * Signal of mixing with four-quark operators at order $1/m_O^3$

Power corrections due to four-quark operators


Weak Exchange

Pauli inteference

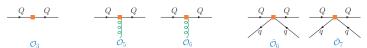
Weak Annihilation

- \diamond Arise first at order $1/m_Q^3$
- Different size of corresponding topologies:
 - * Large contribution from Pauli interference
 - * Small effect due to helicity suppression from WE and WA

See talk by F. Moretti

Dimension-six contribution

Possible choice for the four-quark operator basis


$$\begin{split} \tilde{\mathcal{O}}_{1}^{q} &= (\bar{Q}_{v}\gamma_{\mu}(1-\gamma_{5})q)(\bar{q}\gamma^{\mu}(1-\gamma_{5})Q_{v}) \\ \tilde{\mathcal{O}}_{2}^{q} &= (\bar{Q}_{v}(1-\gamma_{5})q)(\bar{q}(1+\gamma_{5})Q_{v}) \\ \tilde{\mathcal{O}}_{3}^{q} &= (\bar{Q}_{v}\gamma_{\mu}(1-\gamma_{5})t^{a}q)(\bar{q}\gamma^{\mu}(1-\gamma_{5})t^{a}Q_{v}) \\ \tilde{\mathcal{O}}_{4}^{q} &= (\bar{Q}_{v}(1-\gamma_{5})t^{a}q)(\bar{q}(1+\gamma_{5})t^{a}Q_{v}) \end{split}$$

Corresponding parametrisation:

$$\begin{split} \langle H_Q^q | \tilde{\mathcal{O}}_i^q | H_Q^q \rangle &= f_{H_Q}^2 m_{H_Q}^2 \left(1 + \frac{4}{3} \frac{\alpha_s}{\pi} \right) \tilde{B}_i^q \\ \langle H_Q^q | \tilde{\mathcal{O}}_i^{q'} | H_Q^q \rangle &= f_{H_Q}^2 m_{H_Q}^2 \tilde{\delta}_i^{q'q} \qquad q \neq q' \\ \\ \tilde{B}_{1,2}^q &= 1 + \delta \tilde{B}_{1,2}^q \qquad \tilde{B}_{3,4}^q = 0 + \tilde{\epsilon}_{1,2}^q \qquad \tilde{\delta}_i^{q'q} \ll 1 \quad \text{(eye-contractions)} \end{split}$$

Operator mixing at dimension-six

♦ Recall

 \diamond $\tilde{\mathcal{O}}_6$ and \mathcal{O}_6 mix under renormalisation

$$\left\langle \begin{array}{c} \sqrt{q} & \sqrt{q} \\ \sqrt{q} & \sqrt{q} \end{array} \right\rangle \sim \left[\frac{1}{\epsilon} + \log \left(\frac{\mu^2}{m_q^2} \right) + c \right] \left\langle \mathcal{O}_{\rho_D} \right\rangle + \mathcal{O} \left(\frac{1}{m_Q} \right)$$

- \diamond All dependence on $\log(m_q^2)$ in \mathcal{C}_D cancels
- \diamond Constant c depends on choice of op. basis See e.g. [Fael, Mannel, Vos '19]
- Found sizeable contribution of the Darwin operator

[Lenz, MLP, Rusov '20; Mannel, Moreno, Pivovarov '20]

Status of the HQE (perturbative side)

$$\Gamma_d = \Gamma_d^{(0)} + \frac{\alpha_s}{\pi} \Gamma_d^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 \Gamma_d^{(2)} + \left(\frac{\alpha_s}{\pi}\right)^3 \Gamma_d^{(3)} \dots$$

Semileptonic (SL) modes		
$\Gamma_3^{(3)}$	Fael, Schönwald, Steinhauser '20 Czakon, Czarnecki, Dowling '21	
$\Gamma_5^{(1)}$	Alberti, Gambino, Nandi '13 Mannel, Pivovarov, Rosenthal '15	
$\Gamma_6^{(1)}$	Mannel, Moreno, Pivovarov '19	
$\Gamma_7^{(0)}$	Dassinger, Mannel, Turczyk '06	
$\Gamma_8^{(0)}$	Mannel, Turczyk, Uraltsev '10	
$\tilde{\Gamma}_6^{(1)}$	Lenz, Rauh '13	

Non-leptonic (NL) modes		
$\Gamma_3^{(2)}$	Egner, Fael, Schönwald, Steinhauser '24	
$\Gamma_3^{(1)}$	Ho-Kim, Pham '83; Altarelli, Petrarca '91 Bagan et al. '94; Krinner, Lenz, Rauh '13 Lenz, Nierste, Ostermaier '97	
$\Gamma_5^{(1)}$	Mannel, Moreno, Pivovarov '23, '24, '25	
$\Gamma_6^{(0)}$	Lenz, MLP, Rusov '20 Mannel, Moreno, Pivovarov '20	
$\tilde{\Gamma}_6^{(1)}$	Beneke, Buchalla, Greub, Lenz, Nierste '02 Franco, Lubicz, Mescia, Tarantino '02	
$\tilde{\Gamma}_7^{(0)}$	Gabbiani, Onishchenko, Petrov '03	

Status of the HQE (perturbative side)

$$\Gamma_d = \Gamma_d^{(0)} + \frac{\alpha_s}{\pi} \Gamma_d^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 \Gamma_d^{(2)} + \left(\frac{\alpha_s}{\pi}\right)^3 \Gamma_d^{(3)} \dots$$

Semileptonic (SL) modes		
$\Gamma_3^{(3)}$	Fael, Schönwald, Steinhauser '20 Czakon, Czarnecki, Dowling '21	
$\Gamma_5^{(1)}$	Alberti, Gambino, Nandi '13 Mannel, Pivovarov, Rosenthal '15	
$\Gamma_6^{(1)}$	Mannel, Moreno, Pivovarov '19	
$\Gamma_7^{(0)}$	Dassinger, Mannel, Turczyk '06	
$\Gamma_8^{(0)}$	Mannel, Turczyk, Uraltsev '10	
$\tilde{\Gamma}_6^{(1)}$	Lenz, Rauh '13	

See talks by K. Schönwald and D. Moreno

Non-leptonic (NL) modes		
$\Gamma_3^{(2)}$	Egner, Fael, Schönwald, Steinhauser '24	
$\Gamma_3^{(1)}$	Ho-Kim, Pham '83; Altarelli, Petrarca '91 Bagan et al. '94; Krinner, Lenz, Rauh '13 Lenz, Nierste, Ostermaier '97	
$\Gamma_5^{(1)}$	Mannel, Moreno, Pivovarov '23, '24, '25	
$\Gamma_6^{(0)}$	Lenz, MLP, Rusov '20 Mannel, Moreno, Pivovarov '20	
$\tilde{\Gamma}_6^{(1)}$	Beneke, Buchalla, Greub, Lenz, Nierste '02 Franco, Lubicz, Mescia, Tarantino '02	
$\tilde{\Gamma}_7^{(0)}$	Gabbiani, Onishchenko, Petrov '03	

Status of the HQE (non-perturbative side)

 \diamond Most inputs are known only for the B^0 (and B^+) mesons

	B^0, B^+	B_s
$\langle \mathcal{O}_5 \rangle$	Fits to SL data $^{\diamond}$ Lattice QCD $^+$ HQET sum rules *	Spectroscopy relations **
$\langle \mathcal{O}_6 \rangle$	Fits to SL data $^{\diamond}$ EOM relation to $\langle \tilde{\mathcal{O}}_6 \rangle$	Sum rules estimates ** $EOM \ relation \ to \ \langle \tilde{\mathcal{O}}_6 \rangle$
$\langle \tilde{\mathcal{O}}_6 \rangle$	HQET sum rules [‡] Lattice QCD [†]	HQET sum rules [‡]
$\langle ilde{\mathcal{O}}_7 angle$	Vacuum insertion approximation	

 ^{♦ [}Finauri, Gambino '23; Bernlochner, et al. '22]
 * [Ball, Braun '94; Neubert '96]
 ** [Bigi et al. '11]
 + [Gambino et al. '17; Bazavov et al. '18]
 † [Black, Harlander, Lange, Rago, Shindler, Witzel '23, '24]
 † [Kirk, Lenz, Rauh '18; King, Lenz, Rauh '20; Black, Lang, Lenz, Wüthrich '24]

Status of the HQE (non-perturbative side)

 \diamond Most inputs are known only for the B^0 (and B^+) mesons

	B^0, B^+	B_s
$\langle \mathcal{O}_5 \rangle$	Fits to SL data $^{\diamond}$ Lattice QCD $^+$ HQET sum rules *	Spectroscopy relations **
$\langle \mathcal{O}_6 \rangle$	Fits to SL data $^{\diamond}$ EOM relation to $\langle \tilde{\mathcal{O}}_6 \rangle$	Sum rules estimates ** EOM relation to $\langle \tilde{\mathcal{O}}_6 \rangle$
$\langle \tilde{\mathcal{O}}_6 \rangle$	HQET sum rules [‡] Lattice QCQ [†]	HQET sum rules [‡]
$\langle \tilde{\mathcal{O}}_7 \rangle$	Vacuum insertion approximation	

 ^{♦ [}Finauri, Gambino '23; Bernlochner, et al. '22]
 * [Ball, Braun '94; Neubert '96]
 * * [Bigi et al. '11]
 + [Gambino et al. '17; Bazavov et al. '18]
 † [Black, Harlander, Lange, Rago, Shindler, Witzel '23, '24]
 † [Kirk, Lenz, Rauh '18; King, Lenz, Rauh '20; Black, Lang, Lenz, Wüthrich '24]

See talks by M. Black, M. Lang, F. Lange and J. Lin

Status of the HQE (non-perturbative side)

- \diamond Beyond the B^0 -meson system:
 - * First steps towards extraction of $\langle \mathcal{O}_{5,6} \rangle$ for B_s from data

```
[De Cian, Feliks, Rotondo, Vos '23]
```

* Prospects for measuring moments in SL D decays at BESIII

```
[Bernlochner, Gilman, Malde, Prim, Vos, Wilkinson '24]
```

* First attempt to extract inputs for the *D* system from current data

[Shao, Huang, Oin '25]

```
See talks by A. Gilman, Th. Mannel, C. Schwanda and K. Vos
```

- * Baryonic matrix elements are less constrained:
 - * Use of spectroscopy relations and simplified models of QCD
 - * Recent study of $\langle \mathcal{O}_{5,6} \rangle$ for Λ_b using small-velocity sum rules

[Melić, Nišandžić '25]

B-meson lifetimes

The observables

Compute total widths

$$\Gamma(B) = \Gamma_3 + \Gamma_5 \frac{\langle \mathcal{O}_5 \rangle}{m_b^2} + \Gamma_6 \frac{\langle \mathcal{O}_6 \rangle}{m_b^3} + \dots + 16 \pi^2 \left[\tilde{\Gamma}_6 \frac{\langle \tilde{\mathcal{O}}_6 \rangle}{m_b^3} + \tilde{\Gamma}_7 \frac{\langle \tilde{\mathcal{O}}_7 \rangle}{m_b^4} + \dots \right]$$

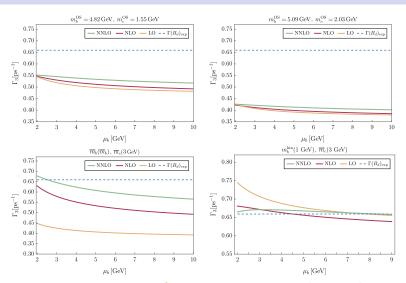
- * Strong dependence on value of b-quark mass in Γ_3
- And lifetime ratios

$$\tau(B_{(s)}^+)/\tau(B_d) = 1 + \left[\delta\Gamma(B_d)^{\mathrm{HQE}} - \delta\Gamma(B_{(s)}^+)^{\mathrm{HQE}}\right]\tau(B_{(s)}^+)^{\mathrm{exp}}$$

- * No two-quark op. contributions for $\tau(B^+)/\tau(B_d)$ in isospin limit
- * Crucial effect of $SU(3)_F$ breaking for $\tau(B_s)/\tau(B_d)$

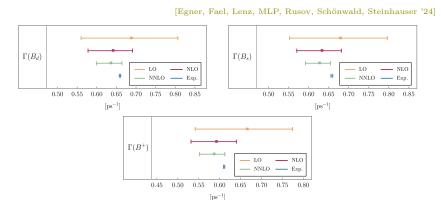
The value of the quark masses

- $\diamond\,$ The numerical value of the quark masses plays a fundamental role
- \diamond Different renormalisation schemes: on-shell (OS), $\overline{\mathrm{MS}}$...
- ♦ Current SL fits are based on the kinetic scheme


[Bigi, Shifman, Uraltsev, Vainshtein '97]

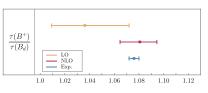
$$m_b^{\rm OS} = m_b^{\rm kin}(\mu^{\rm cut}) + [\Lambda(\mu^{\rm cut})]_{\rm pert} + \frac{[\mu_\pi^2(\mu^{\rm cut})]_{\rm pert}}{2m_b^{\rm kin}(\mu^{\rm cut})} + \dots$$

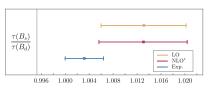
- \star Similarly for parameters of two-quark operators matrix elements
- * Conversion relations known up to N³LO-QCD


[Fael, Schönwald, Steinhauser '21, '20]

Mass-scheme dependence

[Egner, Fael, Lenz, MLP, Rusov, Schönwald, Steinhauser '24]

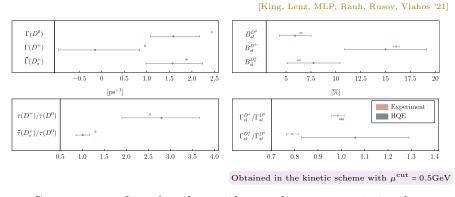

Results for B-meson lifetimes



Significant improvement in renormalisation scale dependence

Results for B-meson lifetime ratios

[Egner, Fael, Lenz, MLP, Rusov, Schönwald, Steinhauser '24]

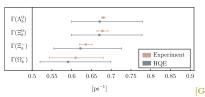


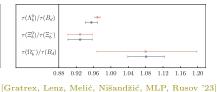
- \diamond Unaffected by the NNLO results for leading term Γ_3
- \diamond Good agreement with data for $\tau(B^+)/\tau(B_d)$
- \diamond Complete NLO corrections for $\tau(B_s)/\tau(B_d)$ still missing
 - * Large uncertainties from poorly known size of $SU(3)_F$ breaking

Particularly in the Darwin operator contribution

$D ext{-}meson\ lifetimes$

Test the HQE in the charm sector




- ♦ Can accommodate data but with *very large* uncertainties due to:
 - * Charm-quark mass
- * Poorly known non-perturbative inputs
- ♦ Results confirmed by independent study [Gratrex, Melić, Nišandžić '22]

HQE for beauty and charm baryons

For b-baryons:

* Very good agreement of HQE predictions with data

```
Also with the new more precise measurements of \tau(\Xi_{i}^{0,-}) by LHCb
                                              [2507.12402; 2406.12111]
```

- Main uncertainties from scale variation and dim-six four-quark op.
- Good agreement found also for charmed baryons
 - Can accommodate experimentally observed hierarchies

```
[Gratrex, Melić, Nišandžić '22; Dulibić, Gratrex, Melić, Nišandžić '23]
```

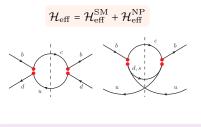
Lifetimes beyond the SM

In the presence of NP effects

♦ Lifetime ratios are theoretically more clean

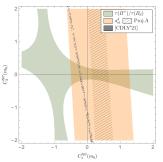
$$\frac{\tau(B^{+})}{\tau(B_{d})} = 1 - \underbrace{\tau(B^{+}) \left[\delta\Gamma(B^{+}) - \delta\Gamma(B_{d})\right]^{\text{HQE}}}_{\text{theory}}$$

$$- \underbrace{\tau(B^{+}) \left[\delta\Gamma(B^{+}) - \delta\Gamma(B_{d})\right]^{\text{NP}}}_{\text{indirectly constrained}}$$

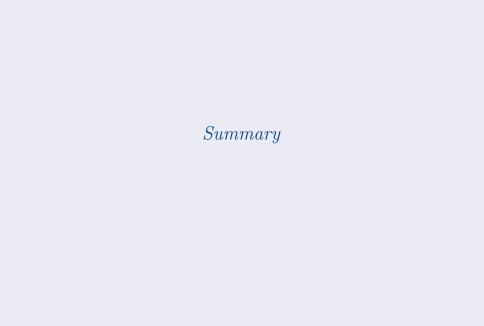

- \diamond Potential to constrain BSM decays of the b quark
- Mainly limited by theory uncertainties
- \diamond Until further insights on size of $SU(3)_{\rm F}$ break., use $\tau(B^+)/\tau(B_d)$

BSM effects in $\tau(B^+)/\tau(B_d)$ and mixing

 \diamond Tensions in NL B-decays triggered by $b \to c\bar{u}d(s)$


[Bordone, Gubernari, Huber, Jung, van Dyk '20]

- * How large is space for NP in $b \to c\bar{u}d(s)$ decays?
- * Repeat computation with 20 additional NP operators, also for a^d_{sl}



Compare with study of decays like $\bar{B}_s \to D_s^+ \pi^-$

[Cai, Deng, Li, Yang '21]

[Lenz, Müller, MLP, Rusov '22]

Conclusions

- ♦ The HQE is a very successful framework
 - * Enormous progress made in increasing its accuracy
 - * Main limitation from knowledge of non-perturbative inputs

However, big efforts in improving current precision

- \diamond Predictions for *B*-meson lifetimes at NNLO-QCD:
 - * Strong reduction of scale and mass-scheme dependence
 - * Precision reaches now the order of a few %
 - * Subleading QCD corrections and QED effects become relevant!

 May significantly affect not only the uncertainties but also the central values
 - * Combined semileptonic and lifetime fit? See talk by M. Prim

Conclusions

- \diamond Testing the HQE beyond the B system:
 - * b-baryon lifetimes found in very good agreement with data
 - * Predictions in charm sector can accommodate observed patterns
 - Dominant sources of uncertainties from poor convergence of the perturbative expansion and lack of precise non-perturbative inputs

Crucial the inclusion of NNLO-QCD corrections to Γ_3

♦ Potential to indirectly constraint certain BSM b-quark decays

See also recent study [Lenz, Mohamed, Wüthrich '24]

See talk by A. Lenz

* Main limitation due to theoretical uncertainties

Thanks for the attention!