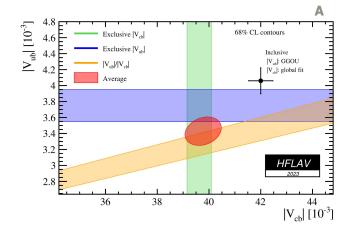
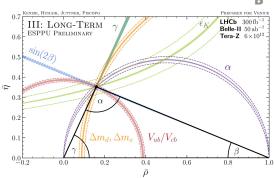

$|V_{cb}|$ and $|V_{ub}|$ at Belle II


Munira Khan on behalf of the Belle II collaboration




CKM matrix elements

- Precision measurement of CKM matrix elements are important inputs to SM and enable ways to test it
- Reducing the tension of inclusive vs exclusive determinations serves the scope of ESPP
- → Measurements of (semi-)leptonic decays at Belle II

Experimental site

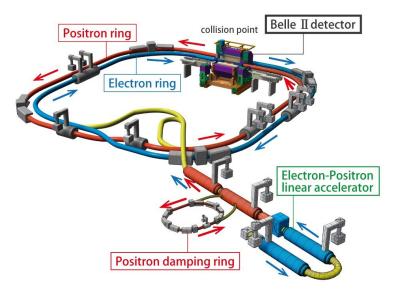
SuperKEKB

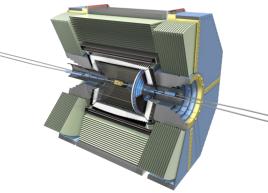
B-factory experiment in Tsukuba, Japan

Asymmetric e⁺e⁻ collider at Y(4S) resonance

Luminosity record of 5.1 x 10³⁴ cm⁻¹ s⁻¹

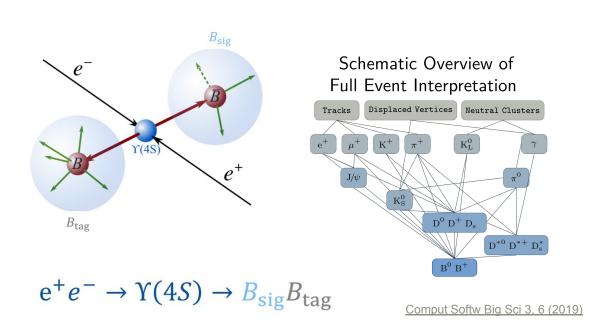
Run 1 (2019 – 2022): 424 fb⁻¹ of data, 365 fb⁻¹ at Y(4S)

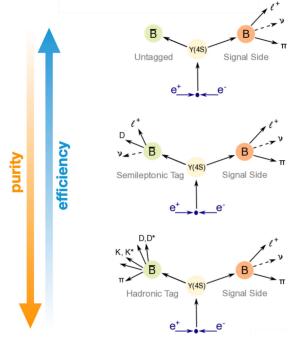

Run 2 (2024 – ongoing): 150 fb⁻¹ of data


 σ (bb) ~ 1.1nb BB events

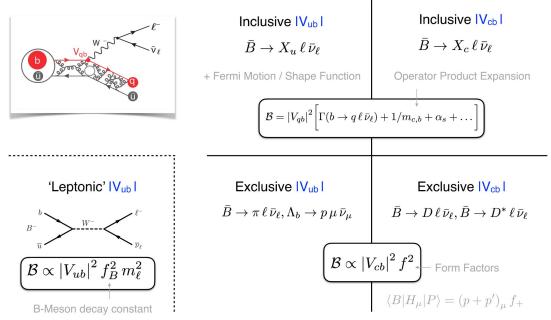
 $\sigma(q\bar{q}) \sim 3.7$ nb (q = u, d, s, c) continuum events

Belle II

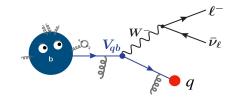

- Hermetic & dedicated sub-detectors for tracking, PID and calorimetry
- Well-suited to inclusive measurements and analyses with missing particles



Events kinematics and tagging at Belle II



Strategy for event tagging


Inclusive vs Exclusive $|V_{qb}|$ determinations

→ Long standing discrepancy between inclusive and exclusive determinations

Measurements at Belle II

|V_{cb}| Exclusive

• $B \rightarrow Dl\nu$ (untagged)

arXiv:2506.15256

• $B \rightarrow D^*l\nu$ (untagged)

Phys.Rev.D 108 (2023) 9, 9

 $|V_{cb}| = (40.13 \pm 0.27 \pm 0.93 \pm 0.58) \times 10^{-3}$

|V_{ch}| Inclusive

• B \rightarrow X $\ell \nu$ (q² moments, had. tagged)

Phys.Rev.D 107 (2023) 7, 072002 J. High Energy Phys. 10 (2022) 068

• B \rightarrow X_c $\ell \nu$ (M_x moments, had. tagged)
arXiv:2009.04493

|V_{ub}| Exclusive

• $B^0 \rightarrow \pi^- \ell^+ \nu_\ell$ and $B^+ \rightarrow \rho^0 \ell^+ \nu_\ell$ (untagged)

Phys.Rev.D 111 (2025) 11, 112009

• $B \rightarrow \tau \nu$ arXiv:2502.04885

|V_{ub}| Inclusive

• B \rightarrow X_u ℓ v partial branching fractions (had. tagged)

Paper in preparation

arXiv:2506.15256 submitted to PRD

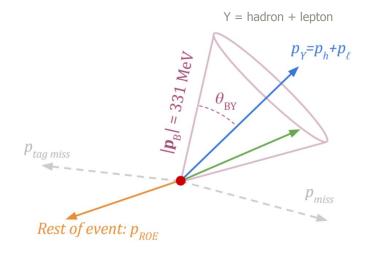
Exclusive |V_{cb}|

Determination of $|V_{cb}|$ using $B \to D\ell\nu_{\ell}$ decays at Belle II

arXiv:2506.15256 submitted to PRD

$B \to D\ell\nu$ at Belle II

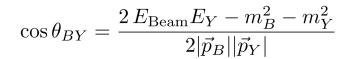
Advantages to $B \to D\ell\nu$: Depends only on one form factor and one main background ($B \to D^*l\nu$ feed-down)

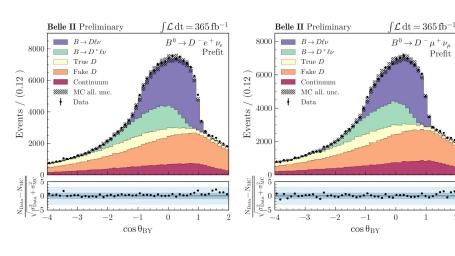

Differential measurement of using $w = \frac{m_B^2 + m_D^2 - q^2}{2m_B m_D}$

through
$$\cos \theta_{BY} = \frac{2 E_{\text{Beam}} E_Y - m_B^2 - m_Y^2}{2 |\vec{p}_B| |\vec{p}_Y|}$$

Access B momentum direction via

- Calculating weights
$$u = \frac{1}{2}(1 - \hat{p}_B^* \cdot \hat{p}_{\mathrm{ROE}}^*) \sin^2 \theta_B^*$$

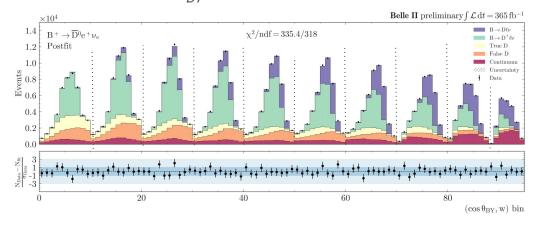

B → Dlv at Belle II


Reconstruct: $D^0 \rightarrow K^- \pi^+ \& D^+ \rightarrow K^- \pi^+ \pi^+$ and lepton of matching charge (e, μ)

D* veto and selections to reduce other backgrounds

Several control samples validated and correction factors derived from some of them

Signal expected in $\cos \theta_{BY} = [-1, 1]$



Signal extraction fit

Maximum likelihood fit in 10 equal-width bins of $\cos \theta_{_{RV}}$ and 10 bins of w

Five components:

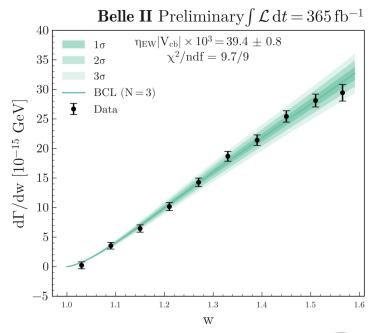
- B \rightarrow Dlv signal
- $B \rightarrow D^*l\nu$ feed-down
- Correctly reconstructed D
- Mis-reconstructed D
- ullet ee o Lighter quarks and tau pairs

Bin-to-bin migration effects are accounted for by constructing signal templates based on generated values of \boldsymbol{w}

$$\mathcal{B}(B^0 \to D^- \ell^+ \nu_{\ell}) = (2.06 \pm 0.05 \,(\text{stat.}) \pm 0.10 \,(\text{sys.}))\%$$

$$\mathcal{B}(B^+ \to \bar{D}^0 \ell^+ \nu_{\ell}) = (2.31 \pm 0.04 \,(\text{stat.}) \pm 0.09 \,(\text{sys.}))\%$$

|V_{ch}| extraction and results


$$w = \frac{m_B^2 + m_D^2 - q^2}{2m_B m_D}$$
 $q^2 = (\rho_B - \rho_D)^2$

Two form factor models:

- → BCL (Bourrely, Caprini, Lellouch) parameterization [PRD 79, 013008 (2009)]
- → CLN (Caprini, Lellouch, Neubert) parameterization [Nucl. Phys. B 530, 153 (1998)]

$$|V_{cb}| = (39.2 \pm 0.4 \pm 0.6 \pm 0.5) \times 10^{-3}$$

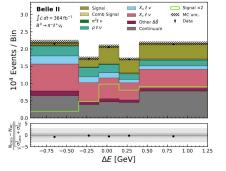
The most precise measurement to date using $B \to D\ell\nu$!

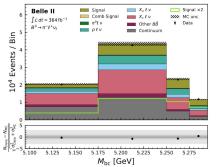
Exclusive |V_{ub}|

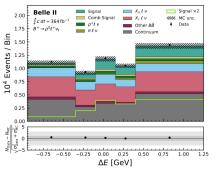
Determination of $|V_{ub}|$ from simultaneous measurements of untagged $B^0 \rightarrow \pi^- \ell^+ \nu_\ell$ and $B^+ \rightarrow \rho^0 \ell^+ \nu_\ell$ decays

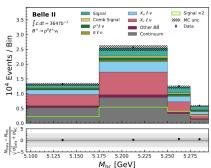
Phys.Rev.D 111 (2025) 11, 112009

Analysis setup

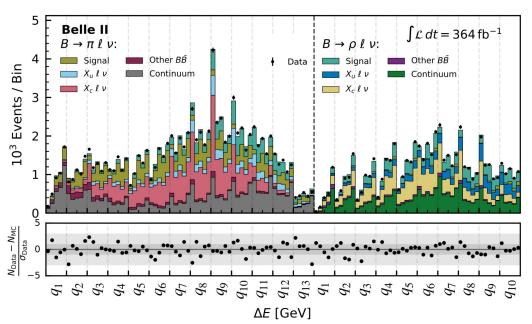

Variables of interest: ΔE , M_{bc} , q^2


Signal components:


- a. True Signal
- b. Combinatorial Signal
- c. Isospin-conjugate signal
- d. Cross-feed signal


Background suppression:

BDTs for BB and continuum suppression trained wrt. on signal mode and q^2 bin \rightarrow 2 x (13 + 11) = 48 BDTs

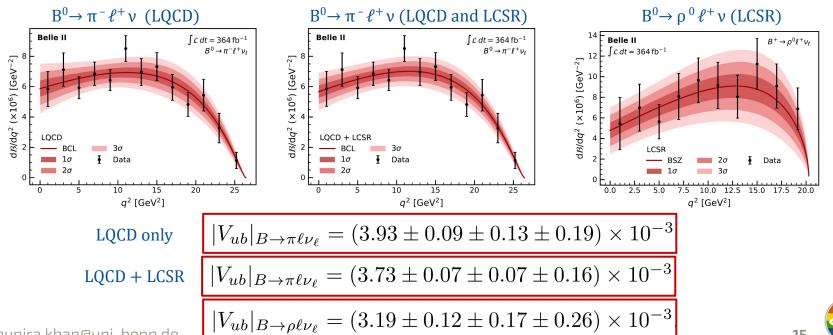


Fit results

Simultaneous 3D fit in 460 bins: (13+10) of q^2 x 5 of ΔE x 4 of M_{bc}

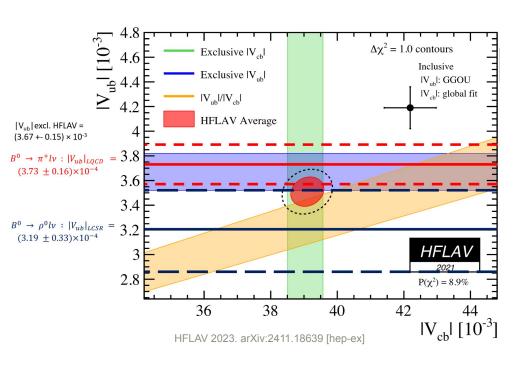
Signal yields are obtained in bins of true q²

Total branching fraction as sum of partial ones obtained from fitted yields and efficiencies


$$\mathcal{B}(B^0 \to \pi^- \ell^+ \nu_\ell) = (1.516 \pm 0.042 \pm 0.059) \times 10^{-4}$$

$$\mathcal{B}(B^+ \to \rho^0 \ell^+ \nu_\ell) = (1.625 \pm 0.079 \pm 0.180) \times 10^{-4}$$

→ Consistent with SM



Determination of |V_{iib}|

Estimate $|V_{ij}|$ by minimizing $\chi^2 = \sum_{i,j=1}^{N} (\Delta B_i - \Delta \Gamma_i \tau) C_{ij}^{-1} (\Delta B_j - \Delta \Gamma_j \tau) + \chi^2_{theo}$

Exclusive |V_{ub}| result

Separate $|V_{ub}|$ extraction fits for π and ρ mode

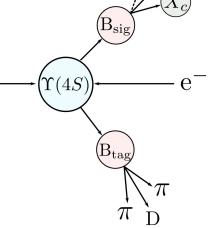
Different theory calculations:

- only LQCD constraints
- LQCD + LCSR

Experimentally limited by size of off-resonance dataset and description of the non-resonant $B\to X_u\ell\nu$ backgrounds

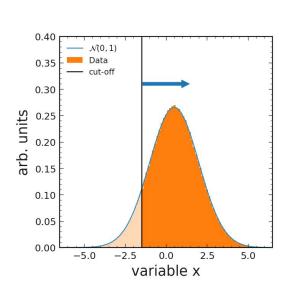
Published in:

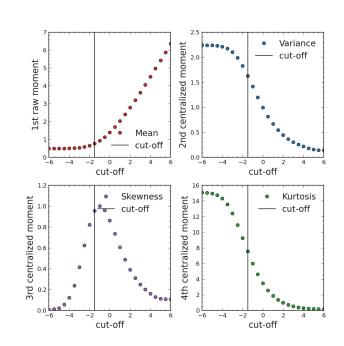
Phys.Rev.D 107 (2023) 7, 072002


Inclusive |V_{cb}|

Measurement of Lepton Mass Squared Moments in $B \rightarrow X_c \ell \nu$ decays with the Belle II Experiment

Inclusive |V_{cb}|

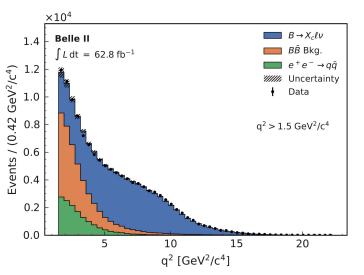

- Theory uncertainty on incl. $|V_{cb}|$ associated to truncation of the HQE and perturbative expansion $q^2 \equiv (p_\ell + p_\nu)^2 = (p_B p_X)^2$
 - → Measuring moments allows reduction of this uncertainty
- Reduced number of parameters by exploiting reparametrization invariance:
 not allowed for lepton-energy or hardon-mass moments
- Novel method to determine $|V_{cb}|$ from q^2 moments with reduced number of parameters in the fit $e^{[JHEP\ 02\ (2019),\ 177]}$
- \rightarrow First result of q² moments from Belle II at 62 fb⁻¹



Inclusive |V_{cb}|

Moments measured w.r.t. various lower thresholds in the distribution

$$\mu_n = \int_{-\infty}^{-\infty} (x - c)^n f(x) dx$$
Raw moment: $c = 0$
Central moment: $c = Mean$

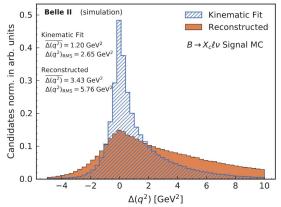

Reconstruction strategy

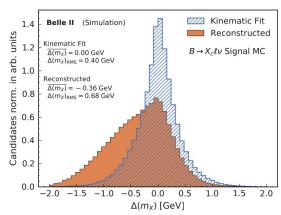
- Employ hadronic tagging to obtain full event kinematic information
- Kinematic fit to improve resolution in M_χ and q^2

Tag Side Signal side e^+ Signal side e^+ B_{sig}° X_c $P_{\text{sig}} = P_{e^+e^-} - P_{\text{tag}}$

Variables of interest:

 M_{y} , q^2

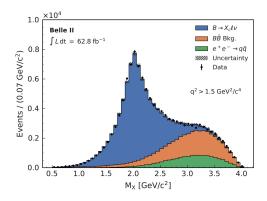



Kinematic Fit

Not sufficient resolution and bias for M_{χ} and q^2 after reconstruction

Use kinematic constraints:

- B meson mass at 5.279 GeV
- No missing momentum
- Positive M_v²


✓ Improved resolution in M_x and q²



Published in:

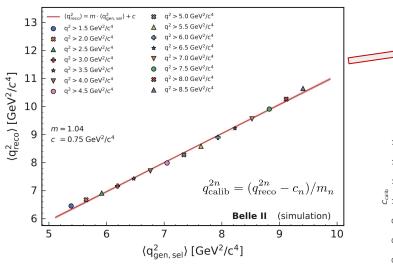
Phys.Rev.D 107 (2023) 7, 072002

Background subtraction fit

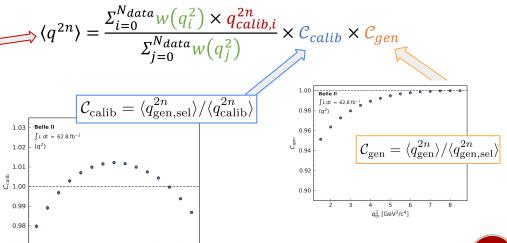
Event-wise master formula

$$\langle q^{2n} \rangle = \frac{\sum_{i=0}^{N_{data}} w(q_i^2) \times q_{calib,i}^{2n}}{\sum_{i=0}^{N_{data}} w(q_i^2)} \times \mathcal{C}_{calib} \times \mathcal{C}_{gen}$$

Fit to M_x to extract Signal and Background normalization

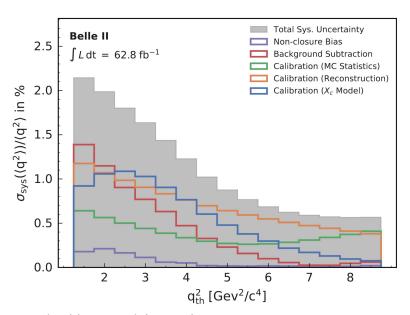

- Free floating signal-yield
- bin-wise nuisance parameters
- One fit for each lower threshold cut in q²
- → Bin-wise signal probability

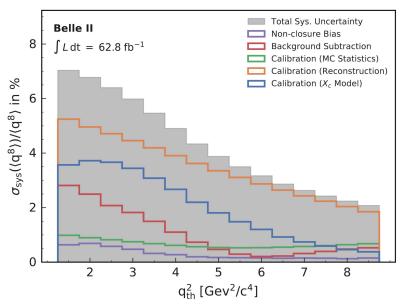
Cubic spline interpolation to obtain continuous signal probability functions


Calibration procedure

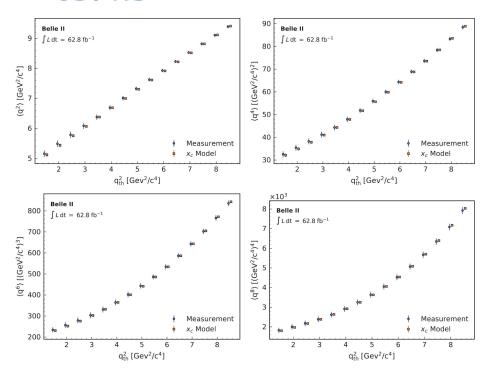
- Linear fit on MC to reconstructed moments vs generator-level moments
- For each moment & threshold cut, constant factors $C_{\rm calib}$ and $C_{\rm gen}$ correct further bias

Event-wise master formula


 q_{th}^{2} [GeV²/c⁴]



Systematic uncertainties


Systematics dependant on lower threshold cut and moment of q²

Results

Extracted moments can be used in fit to determine value of $|V_{cb}|$ (Extracted $|V_{cb}|$ value combined with Belle result)

$$|V_{cb}| = (41.70 \pm 0.69) \times 10^{-3}$$

J. High Energy Phys. 10 (2022) 068

Inclusive |V_{ub}|

Measurement of inclusive $B \rightarrow X_u \ell \nu$ partial branching fractions and $|V_{ub}|$ at Belle II

Measurement outline

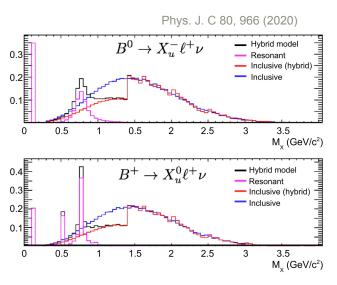
Kinematic selections break inclusivity requirement of the HQE and predictions of differential decay rates become necessary

 \rightarrow Predictions rely on effective description of the b-quark motion inside

the meson

 \rightarrow Shape functions

Three phase space regions


(87%, 57% and 32% of full available phase space)

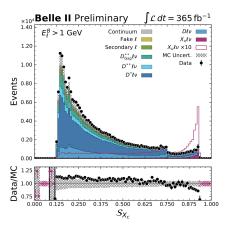
 $B \begin{pmatrix} b & V_{ub} & \bar{\nu} \\ \bar{q} & \ddots & \ddots & \ddots \\ \bar{q} & \ddots & \ddots & \ddots & \ddots \\ \bar{q} & \ddots & \ddots & \ddots & \ddots \\ \bar{q} & \ddots & \ddots & \ddots & \ddots \\ \bar{q} & \ddots & \ddots & \ddots & \ddots & \ddots \\ \bar{q} & \ddots & \ddots & \ddots & \ddots & \ddots \\ \bar{q} & \ddots & \ddots & \ddots & \ddots & \ddots \\ \bar{q} & \ddots & \ddots & \ddots & \ddots & \ddots \\ \bar{q} & \ddots & \ddots & \ddots & \ddots & \ddots \\ \bar{q} & \ddots & \ddots & \ddots & \ddots & \ddots \\ \bar{q} & \ddots & \ddots & \ddots & \ddots & \ddots \\ \bar{q} & \ddots & \ddots & \ddots & \ddots & \ddots \\ \bar{q} & \ddots & \ddots & \ddots & \ddots & \ddots \\ \bar{q} & \ddots & \ddots & \ddots & \ddots & \ddots \\ \bar{q} & \ddots & \ddots & \ddots & \ddots & \ddots \\ \bar{q} & \ddots & \ddots & \ddots & \ddots \\ \bar{q} & \ddots & \ddots & \ddots & \ddots & \ddots \\ \bar{q} & \ddots & \ddots & \ddots & \ddots & \ddots \\ \bar{q} & \ddots & \ddots & \ddots & \ddots & \ddots \\ \bar{q} & \ddots & \ddots & \ddots & \ddots & \ddots \\ \bar{q} & \ddots & \ddots & \ddots &$

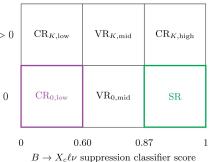
Hybrid model approach to combine resonant and non-resonant modelling

3D re-weighting in
$$E_{\ell}^{\ B}$$
 , $M_{\chi \prime}^{\ }$ q^2

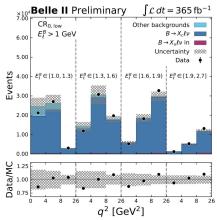
$$w_{ijk} = rac{\Delta \mathcal{B}_{ijk}^{ ext{inc}} - \Delta \mathcal{B}_{ijk}^{ ext{exc}}}{\Delta \mathcal{B}_{ijk}^{ ext{inc}}}$$

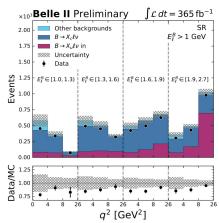
Selections and modelling corrections


Hadronic tagging and inclusive reconstruction of X Variables of interest: E_{ρ}^{B} , M_{x} , q^{2}


Background suppression

- BDT-based corrections to continuum shape and normalization
- ML-algorithm trained on nine kinematic variables to suppress B → X_cℓv background


Modelling corrections to $B\to X_{_{c}}\ell\nu$


- mismodelling could not be attributed to a single source: normalization and shape correction are corrected separately: normalization from ABCD method
- Shape correction is directly implemented into the signal extraction procedure by simultaneously fitting $CR_{0,low}$ ($B \to X_c \ell \nu$ enriched region)

Signal Extraction

Simultaneous fit in signal region (SR) and control region (CR)

2D fit in $E_{\ell}^{\ B}$ and q^2

Three templates:

Signal $B \to X_u \ell \nu$, $B \to X_c \ell \nu$ and other bkg.

Different phase-space selections

•	
$E_\ell^B > 1.0 \text{ GeV}$	87%
$E_{\ell}^B > 1.0 \text{ GeV}$ $M_X < 1.7 \text{ GeV}$	57%

Phase space selections Acceptance

 $E_{\ell}^{B} > 1.0 \text{ GeV}$ $M_{X} < 1.7 \text{ GeV}$ $q^{2} > 8 \text{ GeV}^{2}$ 31%

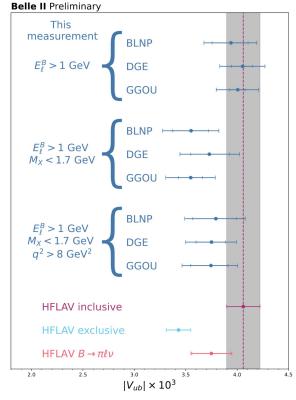
Unconstrained $B \to X_{ij} \ell \nu$ normalization factor in SR (fixed in CR)

 \rightarrow Accounts for $B \rightarrow X_{_{\! c}} \ell \nu$ mismodelling and correlations

|V_{ub}| determination

$$|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \ell \nu)}{\tau_B \Delta \Gamma(B \to X_u \ell \nu)}}$$

Three theoretical frameworks:


- BLNP [PRD 72, 073006 (2005)]
- Dressed Gluon Expansion [JHEP 10, 058 (2007)]
- Gambino, Giordano, Ossola and Uraltsev [JHEP 01, 097 (2006)]

Result in most inclusive phase space region (GGOU):

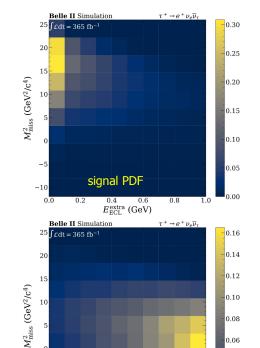
$$\Delta \mathcal{B}(B \to X_u \ell \nu) = (1.54 \pm 0.08 \pm 0.12) \times 10^{-3}$$

$$|V_{ub}| = (4.01 \pm 0.11 \pm 0.16^{+0.07}_{-0.08}) \times 10^{-3}$$

- → Consistent with inclusive HFLAV average, exceeds exclusive average
- → Competitive with Belle thanks to better tagging algorithm and more modern background suppression methods
- ightarrow Leading systematics: $B
 ightarrow X_u \ell \nu$ modelling and corrections on $B
 ightarrow X_c \ell \nu$ modelling

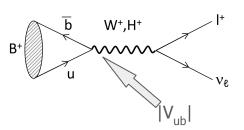
Exclusive |V_{ub}|

Measurement of $B \to \tau \nu$ branching fraction with a hadronic tagging method at Belle II



Exclusive $|V^{}_{ub}|$ from hadronic tagged $B{\to}\tau\nu$

0.06


0.02

Analysis setup

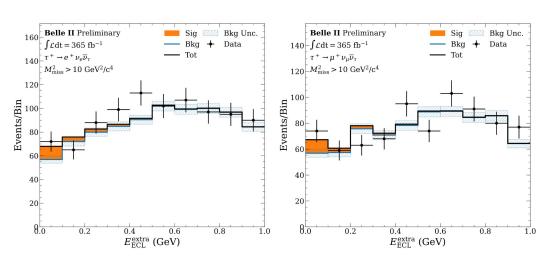
Clean in theory, experimentally challenging
Helicity suppressed in SM
Sensitive to NP contributions (e.g.charged Higgs)

Fully reconstruct Btag and analyse simultaneously for four tau decay modes:

$$\tau \rightarrow \text{evv}$$
, $\tau \rightarrow \mu\nu\nu$, $\tau \rightarrow \pi\nu$, $\tau \rightarrow \rho\nu$ (72% of tau decay modes)

Reconstructing the Rest of the Event (ROE):

- \rightarrow Sum of cleaned-up energy in calorimeter: E_{FCI}^{extra}
- \rightarrow Missing mass of undetected particles: $M^2_{\ miss}$


background PDF

Signal extraction procedure

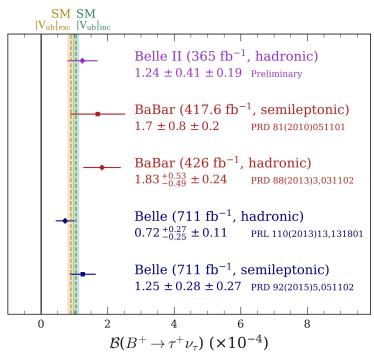
Suppress continuum background with two separate BDTs for hadronic and lepton

decay modes

Signal yield extracted from simultaneous 2D binned likelihood fit on E_{ECL}^{extra} and M_{miss}^2 to all four channels

Exclusive |V_{ub}| result

Branching fraction is measured with 3σ significance

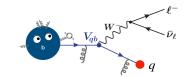

$$\mathcal{B}(B^+ \to \tau^+ \nu_\tau) = [1.24 \pm 0.41 (\text{stat.}) \pm 0.19 (\text{syst.})] \times 10^{-4}$$

→ Consistent with current world average and SM prediction

$$|V_{ub}|_{B^+ \to \tau^+ \nu_{\tau}} = [4.41^{+0.74}_{-0.89}] \times 10^{-3}$$

Uncertainty competitive with previous analysis despite lower statistics

→ Improved tagging algorithm and optimized selection



Summary and Outlook

Summary and Outlook

Several results from Belle II were presented

Results on moments at Belle II:

- q² moments (Phys.Rev.D 107 (2023) 7, 072002)
- M_v moments (arXiv:2009.04493)

Many ongoing measurements on moments:

- First simultaneous measurement of E_ℓ^B , q^2 and M_ν moments in $B \to X_c \ell \nu$ decays
- q² and $M_{_X}$ moments in $B_{_S} \to X_{_C} \ell \nu$ decays

|V_{cb}| Exclusive

 $B \rightarrow Dl\nu$ (untagged)
arXiv:2506.15256

$$|V_{cb}| = (39.2 \pm 0.4 \pm 0.6 \pm 0.5) \times 10^{-3}$$

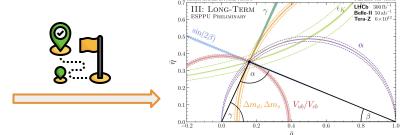
• $B \rightarrow D^*l\nu$ (untagged) Phys.Rev.D 108 (2023) 9, 9

$$|V_{ch}| = (40.13 \pm 0.27 \pm 0.93 \pm 0.58) \times 10^{-3}$$

|V_{ub}| Exclusive

- $B^0 \rightarrow \pi^- \ell^+ \nu_\ell$ and $B^+ \rightarrow \rho^0 \ell^+ \nu_\ell$ (untagged)

 Phys.Rev.D 111 (2025) 11, 112009
 - $B \rightarrow \tau \nu$ $|V_{ub}| = (3.73 \pm 0.07 \pm 0.07 \pm 0.16) \times 10^{-3}$ arXiv:2502.04885 $|V_{..}| = (4.41 \pm 0.89) \times 10^{-3}$


|V_{ch}| Inclusive

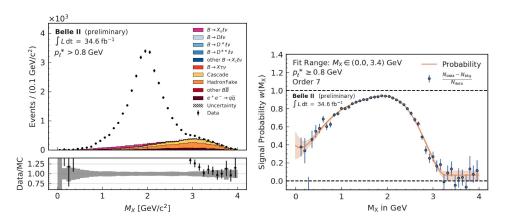
- $\begin{array}{ll} \bullet & B \rightarrow X_c \ell \nu \; (\text{q}^2 \; \text{moments, had. tagged}) \\ & \quad \text{Phys.Rev.D } 107 \; \text{(2023)} \; \text{7, 072002} \\ & \quad \text{J. High Energy Phys. } 10 \; \text{(2022)} \; \text{068} \end{array} \quad |V_{cb}| = \; (41.70 \; \pm \; 0.69) \; \times 10^{-3} \end{array}$
- $B \to X_c \ell \nu$ (M_x moments, had. tagged)
 arXiv:2009.04493

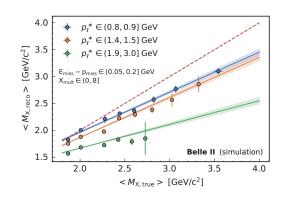
|V_{ub}| Inclusive

B → X_u (v partial branching fractions (had. tagged)
 Paper in preparation

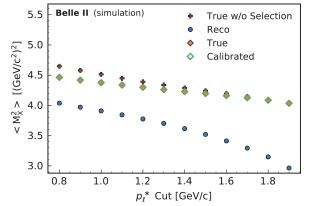
$$|V_{ub}| = (4.01 \pm 0.11 \pm 0.16) \times 10^{-3}$$

Backup


arXiv:2009.04493

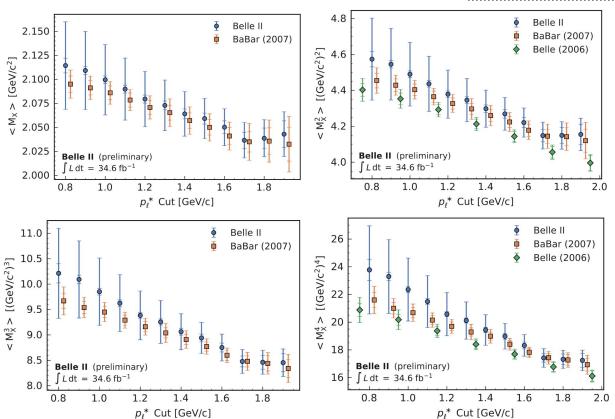

Inclusive |V_{cb}|

Measurement of Hadronic Mass Moments in $B \rightarrow X_c \ell \nu$ decays at Belle II



Background subtraction and calibration

$$\langle M_X^n \rangle = \frac{\sum_i w_i(M_X) M_{X, \text{calib}}^n}{\sum_i w_i(M_X)} \times \mathcal{C}_{\text{calib}} \times \mathcal{C}_{\text{true}}$$



arXiv:2009.04493

Results

Consistent with previous results but non-competitive result at 32.6 fb⁻¹

