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Motivation

- Likelihood functions (full statistical models) parametrise the full information of an LHC analysis;
wether it is New Physics (NP) search or an SM measurement.

* Their preservation is a key part of the LHC legacy.

- Usage: Resampling, Reinterpretation in the context of different NP models and/or with with different
statistical approaches,....

» They are particularly relevant in the context of reinterpretation of LHC results.

- The challenge: Full statistical models, are often high dimensional functions that are both hard to
parametrize and evaluate.

* The proposed solution: We learn the likelihood functions as Machine Learning models.



Overview

* Reinterpretation of LHC results

 LHC likelihoods

* Machine Learning the profile likelihoods of LHC results.
* NFLikelihood: Unsupervised learning LHC likelihoods.

* Conclusions



Reinterpretation of LHC results
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New physics searches at the LHC
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Reinterpretation of LHC results

* ATLAS and CMS has an extensive program of searches for new
physics.

» Experimental analyses are often optimized and interpreted in the
context of simplified models, EFTs, or specific BSM scenarios.

THE QUANTUM UNIVERSE
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- However, there is a sea of proposed theories/scenarios for new
p = physics.

* Many are non-minimal, less-known, not-thought-of- yet...
theories that are not directly interpreted by LHC searches.
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* The aim of the LHC reinterpretation framework is to be able to test any
BSM theory against LHC results.

e A very active field with strong communication between theorists and

experimenters.
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/InterpretingLHCresults



Reinterpretation of LHC results
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Simplified Model Spectra re-interpretation
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Signal Efficiency x Acceptance

* A lot of LHC new physics searches present their results as
upper limit and efficiency maps in the context of simplified
model spectra (SMS).

» SMS results are relatively straightforward to reinterpret.

» Direct comparison of 6 X BR of a BSM theory with
(6 X BR)y;

* Very fast! No MC required.
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SmodelS: 10 years of LHC reinterpretation

* SModelS is based on a general procedure to decompose Beyond the Standard Model (BSM) collider
signatures into Simplified Model Spectrum (SMS) topologies.

- Previously, it focused only on Z, signatures . As of version 3, this has been extended arxiv:2409.12942.

Working principle.
* the decomposition of the BSM spectrum into SMS topologies
* a database of more than a hundred experimental SMS results.
* the Iinterface between decomposition and results database to compute limits.
* Including finding the best combination of results for each decomposition. A la TACO: arXiv:2209.00025
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Likelihoods of LHC new physics searches.



Milestones on full statistical model publication

« ATLAS started publishing full statistical models of NP searches (2019) arL-pHYs-PUB-2019-029.

* First ML learned likelihoods. The (supervised) DNNLikelihood (2019) arxiv:1911.03305

 Release of the pyhf package to construct statistical models (2020) 10.21105/j0ss.02823

» Interface with reinterpretation tools: SmodelS (2020) arxiv:2009.01809, MadAnalysis (2022) arxiv:2206.14870,

» Spey: Generalised framework for likelihood handling (2023) arxiv:2307.06996.
- Unsupervised Likelihood learning. The NFLikelihood (2023) arxiv:2309.09743
- COMBINE: The CMS statistical analysis and combination tool (2024) arxiv:2404.06614

Let’s keep it going!
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Likelihoods of LHC results

Bayes theorem:

P(®,x) = P (x|0O)rg(0O) = Pgy(O | x)x,(x)

’— Likelihood L Prior L Posterior L Evidence
LHC Statistical model:

P@@ data) = @@6 /u,S,l,k.‘_ b; k(

signal/control yields (Observed) data
Nuisance parameters (uncertainties)

(Auxiliary) data

Parameters of Interest (signal strength, observables, etc.)

With this we perform global fits, exclude BSM models, find upper limits, search for SM
deviations, etc.
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The profile likelihood

+ For new physics searches reinterpretation, we are often interested in the Profile Likelihood (PL).

P(x| p; 0(p))

- The PL is defined as a function where the nuisance parameters are fixed such that the likelihood is

maximised given a signal strength u.

- In the case of positive signal u=1, otherwise if data is Standard Model like u=0.

- The PL is a function of the signal yields (data), Ns.
-+ Or of the signal yields ns AND the control yields N¢ *. Depending on how is fitted.

15 *Relevant in case of e.g. signal leakage



Likelihood ratio test statistic

- With the PL we construct Log Likelihood Ratio (LLR) tests, e.g.

L(u; 6(u))
L(4, 0(i))

g(u) = —2log

- Depending on how the PL is fitted and defined, we can derive upper limits, exclusion confidence levels
and discoveries, by computing a corresponding p-value.
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Machine Learning the profile likelihoods



Motivation.

 In LHC-reinterpretation, to exclude a BSM model, we are mostly interested in the profiled likelihood
given a signal strength.

- Optimally, we can compute the profiled likelihood from pyhf’s full statistical models.

* However, this computation can take several minutes per parameter point. A pheno study often requires
to survey thousands of points.

» This considerably scales-up the time consumption. Specially for fast reinterpretation approaches.

- Using Neural Networks provides a fast and compact way using profiled likelihoods in our day-
to-day pheno studies.

- We will super useful for anomaly surveys, proto-models style (arXiv:2105.09020).

18



Challenge: Computational bottleneck

Likelihood
computation

T

Full statistical model calculations enter here

BSM model limit derivation

Courtesy of R. Maselek



Solution: Machine Learning

BSM model limit derivation

Machine Learning enters here

Courtesy of R. Maselek



The usual suspects to learn

Likelihood Observed.
Likelihood a priori Expected.
Likelilhood a posteriori Expected.

Asimov Likelihood.

21



The usual suspects to learn

For now we learn:

‘Likelihood Observed.

Likelihood a priori Expected.
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Training strategy

* SAMPLING: MCMC Metropolis-Hastings.

* INPUTS: event yields in all bins and channels (including

CRs)
 ARCHITECTURE: 5X256

* OUTPUTS: negative log likelihoods (for p=0 and p=1),

for expected and observed data

- LOSS FUNCTION: MSE but others tested
* OPTIMIZER: ADAM

- SCHEDULER: Cosine Decay with warmup
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Deployment strategy

SAVING: After training, the best models for each analysis are ensemble together and saved as ONNX files

and stored on Github or Zenodo.
This ensures framework-independent usability. In the spirit of arXiv:2312.14575.

Les Houches guide to reusable ML models in LHC analyses

9 . ‘ i . . = .
Jack Y. Araz', Andy Bucklev?, Greeor Kasieczka®, Jan Kieseler*, Sabine Kraml®, Anders Kvellestad®,
. . g
7 2 ' 8010 T
Andre Lessa’, Tomasz Procter®, Are Raklev®, Humberto Reyes-Gonzalez>™ ', Krzysztof Rolbiecki!,
u) "
Sezen Sekmen'?, Gokhan Unel?

USAGE: The NN likelihoods will be available for statistical studies via an Spey (arXiv:2307.06996) backend.

from spey import BackendBase, ExpectationType
from spey.base.model_config import ModelConfig

import onnx, onnxruntime
import numpy as np

SPEY: smooth inference for reinterpretation studies

12 ~ class MLlikelihoods(BackendBase):

Jack Y. Araz

Spey plug-in to evaluate machine learned likelihoods
Args:

signal_yields ( List[float] ): Signal yields
network_path ( str ): Path to the network onnx file.
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Example Likelihoods

- ATLAS-SUSY-2018-04
» Search for direct stau production in events with two -leptons
» 2 signal bins, 3 control bins

- DOI: 10.1103/PhysRevD.101.032009

e ATLAS-SUSY-2019-08

» Search for direct production of e-winos in final states with 1 lepton, MET and a Higgs boson decaying into 2 -jets
* 9 signal bins, 5 control bins
* DOI: https://doi.org/10.17182/hepdata.90607.v4

*1911.12606

- Searches for electroweak production of supersymmetric particles with compressed mass spectra in \/E = 13 TeVin

collisions with the ATLAS detector.
 Four separate statistical models.
- EWKinos (43,5), Selectrons(15,6) Sleptons(32,5), Smuons(15,5)
* DOI: 10.1103/PhysRevD.101.052005

25
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Results ATLAS-SUSY-2019-08
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Results 1911.12606-EWKIino-leakage

expected observed
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NF-likelihoods




Motivation

* Now we look at the other side of the statistical model.

* We focus on the likelihood function of the parameters, given an observation.

* This is relevant for measurements and global fits of parameters to data.

* The challenge: To parametrize all the parameters of interest (POIls) and nuisance parameters.

* Proposed solution: To model them as Normalizing Flows.
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Basic principle

Following the change of variables formula, perform a series of bijective, continuous, invertible transformations on a
simple probability density function (pdf) to obtain a complex one.
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Choosing the transformations

THE OBJECTIVE: YOU MUST cﬂnggi;
To perform the right transformations to accurately estimate the complex | o
underlying distribution of some observed data.

THE RULES OF THE GAME:

e The transformations (bijectors) must be invertible
e They should be sufficiently expressive

e And computationally efficient (including Jacobian)

THE STRATEGY:
Let Neural Networks learn the parameters of Autoregressive* Normalizing
Flows.
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Choosing the transformations

\ Bijector Affine Rational
A Quadratic
4 ) NF t
XA Y P Spline
¥’ O—8 Coupling RealNVP C-RQS
Autoregressive MAF A-RQS
X1 Y1 I1 "Y1
- Yo P2 Yo / l l
3 Y3 T3 Y3 T
Ln Yn Ly Yn s
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Previous results.

DNNLikel

arXiv:1911
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031

662

686

68% HPDI test: [-1.16e-01,5.81e-01]

68% HPDI DNN Fj: [-1.31e-01,5.83¢-01]

h

68% HPDI test: [-1.05e+00,8.66e-01]

68% HPDI DNN Fj: [-1.04e+00.8.80¢-0:

Supervised Learning with Deep Neural Networks.

95-dim LHC-like toy likelihood.
.03305 (A. Coccaro, M. Pierini, L. S

1

68% HPDI test: [-6.82e-01,1.23¢+00]
68% HPDI DNN Fj: [-6.90e-01,1.23¢+00]

68

Ilvestrini, R. Torre

DNN Fj sampling

mmmm Test set (109 points)

Sampled DNN F3 (10° points)
68.27% HPDI

95.45% HPDI

99.73% HPDI

68% HPDI test: [-1.15e+00,7.84e-01]
% HPDI DNN Fj: [-1.17e+00,7.75e-01]

68% HPDI test: [-9.03e-01,9.91e-01]
68% HPDI DNN Fj: [-9.08e-01,1.01e-+00]

68% HPDI test: |
68% HPDI DNN Fj:
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Example Likelihoods

Py(® | x = obs)

LHC-like toy likelihood.
Simplified likelihood (Multivariate-Gaussian)
1 parameter of interest (signal strength)

89 nuisance parameters.
Ref. arXiv:1809.05548

ElectroWeak fit Likelihood

EW observables.

Including recent measurements of top mass (CMS)
and W mass (CDF).

8 parameters of interest (Wilson coefficients of
SMEFT operators)

32 nuisance parameters.

Ref. arXiv:2204.04204

37

Flavor fit likelihood
Flavor observables related to

12 parameters of interest (Wilson coefficients)

/7 nuisance parameters.
Ref. arXiv:1809.05548



https://arxiv.org/abs/1809.05548
https://arxiv.org/abs/1809.05548
https://arxiv.org/abs/2204.04204
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LHC-like toy likelihood.

H_ .
EH | B true Hyperparameters for Toy Likelihood
l,l’ W Bas IS pred # of hidden algorithm  # of spline range L1 factor patience max # of
| —— HPDIy4 samples  layers bijec.  knots epochs
J ===+ HPDlIy, 2.10° 3x64 MAF 2 - - 0 20 200
B \ —-— HPDI3,

Table 1: Hyperparameters leading to the best determination of the Toy Likelihood.

Results for Toy Likelihood

# of Mean Mean HPDIe;, HPDIe;, HPDIes, time (s)
samples KS-test SWD

2-10° 0.4893 +=.0292 0.03947 = .0019 0.02073 0.01207 0.01623 133

Table 2: Best results obtained for the Toy Likelihood.

Results for Toy Likelihood POI
POI KS-test HPDIe;, HPDIes, HPDles,
W 0.54 0.02742 0.01359 0.01786

Table 3: Results for the POI in the Toy Likelihood.

5% s 0o v o e PR o PR 0 o oe v

oo cXoXooKol=
oNofoofoo o=

— L —— L _—— L~ _
/0%9 QO FA0YE BAOL MA0L X NACY B HA0D /,59»%9,»9 ,,59/\"%_0,@ ;;909 a0 MO

a8 R. Torre, HRG. arxiv:2309.09743



ElectroWeak fit Likelihood

I pred
I true
—— HPDIl,

--= HPDly,
—-= HPDI3,

Hyperparameters for the EW Likelihood

# of hidden # of algorithm spline range L1 factor patience # of
samples  layers bijec. knots epochs
2. 10° 2 3x128 A-RQS 4 -6 0 20 800

Table 4: Hyperparameters leading to the best determination of the EW Likelihood.

Results for the EW Likelihood

# of Mean Mean HPDlIe;, HPDIe;, HPDles, time (s)

samples KS-test SWD

2-10° 0.4307 £ 0.06848 0.003131 4 0.00053  0.000339 0.0008664 0.006973 7255

Table 5: Best results obtained on the EW Likelihood.

Results for EW Likelihood
POI KS-test HPDIei, HPDIes, HPDIes,
c,;  0.1901  0.08384  0.09787 0.437
c 0.2078  0.0346 0.1039 0.4967
cpq 0.4581  0.02279  0.01131  0.04866
co, 0.4989  0.01219  0.01439  4.1017
cea 05221  0.01713  0.03808  0.09952
cpe  0.4885  0.01453  0.2146 0.1401
cou  0.5259  0.005409  0.005082  0.341
cy  0.2193  0.1667  0.08047  0.0713

Table 6: Results for the Wilson coefficients in the EW Likelihood.

R. Torre, HRG. arxiv:2309.09743



Flavor fit likelihood
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Hyperparameters for the Flavor Likelihood

# of hidden # of algorithm spline range L1 factor patience max # of
samples layers  bijec. knots epochs
10° 3x1024 2 A-RQS 8 -5 le-4 50 12000

Table 7: Hyperparameters leading to the best determination of the Flavor Likelihood.

Results for the Flavor Likelihood

# of Mean Mean HPDIle;, HPDIes, HPDles, time (s)
samples KS-test SWD

5-10° 0.4237 £0.03405 0.02717 + 0.002374 0.00867 0.007346 1.419e-07 9550

Table 8: Best results obtained for the Flavor Likelihood.

Results for Flavor Likelihood POIs

POI  KS-test HPDIe;, HPDIes, HPDlIes,
k2104346  0.007251  1.83e-05  4.731e-08
k2l 04736  0.01249  0.00162  0.03575
Clihs 0.486  0.01466  0.006628  0.002338
c3shs  0.4138  0.0513 0.02446  2.398e-08
cked? 05362 0.00738  0.004683  5.387e-08
%@ 05161 0.02799  0.001639  2.155e-09
¢S5, 0.4476  0.01389  0.007458  1.419e-07
S5,  0.382  0.02132  0.02496  0.0004609
$%s3  0.4789  0.04076  0.00333  5.602e-08
53,3 0.4436  0.008685  0.016  1.502e-08
cFed@ 03203  0.09194 0.007041  8.011e-08
hy49  0.4157  0.03001  0.008749  4.374e-08

Table 9: Results for the Wilson coefficients in the Flavor Likelihood.

R. Torre, HRG. arxiv:2309.09743



Flavor fit likelihood
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Outlook

- Learn more profile likelihoods from ATLAS statistical models. Possibly including a
posteriori and Asimov.

- Investigate how to learn profile likelihoods from CMS statistical models. Other
technical developments required.

-+ Saving NFlikelihoods in ONNX format.

+ Aim for learning full statistical models with (conditional) normalizing flows.
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Conclusions

Multivariate phenomenological studies require efficient handling of likelihoods.

- NNs provide an orders of magnitude faster alternative for LHC likelihood publication.
From dozens of minutes to less than a second per point!

+ Profile likelihoods are easily learnable by NNs.

+ They can easily be integrated into modern reinterpretation frameworks.

- Complete infrastructure for ML Likelihoods under construction.

- Normalizing Flows show great capacity of learning complex high dimensional functions.
Specially, the A-RQS.

+ NFs can accurately and efficiently model LHC and EFT-fit likelihoods.

* Further developments under way. Stay tuned!
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Thank you!



* Full statistical models by ATLAS are available on
HEPData

* They are provided as JSON files
* There are background files and signal patches

* Each patch corresponds to some signal point and
contains modifiers to the background files

* There can be hundreds of modifiers

- Spey/PyHF can load and process these files

45

ATLAS full statistical models

‘patch™:
{

|

‘'op"”: "add",
‘path”: "/channels/0/samples/0",
'value": {

‘data": |
2.3051342964172363
1,
'modifiers": [
{
‘data'':
‘name’’ :
‘type':

'‘data": [
0.6571804118166927
1,

name"”: "staterror QCRlcut cuts",
‘type": "staterror”

'‘data": {
'hi": 1.06675,
"lo": 0.911403

},
name': "PRW_DATASF",

‘type": "normsys”

Courtesy of R. Maselek



