

Machine Learning LHC Likelihoods

Humberto Reyes-Gonzalez **RWTH Aachen**

Collaboration.

ML profile likelihoods arXiv:2502.XXXX

J. Araz, A. Butter, J. Iturriza, S. Kraml, R. Maselek, C. Krause, W. Waltenberger, H.R.G.

NF-likelihoods arXiv:2309.09743

H.R.G., Riccardo Torre.

Motivation

- Likelihood functions (full statistical models) parametrise the full information of an LHC analysis; wether it is New Physics (NP) search or an SM measurement.
- Their preservation is a key part of the LHC legacy.
- Usage: Resampling, Reinterpretation in the context of different NP models and/or with with different statistical approaches,....
- They are particularly relevant in the context of reinterpretation of LHC results.
- The challenge: Full statistical models, are often high dimensional functions that are both hard to parametrize and evaluate.
- The proposed solution: We learn the likelihood functions as Machine Learning models.

Overview

- Reinterpretation of LHC results
- LHC likelihoods
- Machine Learning the profile likelihoods of LHC results.
- •NFLikelihood: Unsupervised learning LHC likelihoods.
- Conclusions

Reinterpretation of LHC results

The LHC

New physics searches at the LHC

RESONANCES **DARK MATTER** EXOTICS LEPTOQUARK SUPERSYMMETRY LONG LIVED PARTICLES MULTIPLE HIGGSES

Reinterpretation of LHC results

- ATLAS and CMS has an extensive program of searches for new physics.
- Experimental analyses are often optimized and interpreted in the context of simplified models, EFTs, or specific BSM scenarios.

- physics.

- The aim of the LHC reinterpretation framework is to be able to test any BSM theory against LHC results.
- A very active field with strong communication between theorists and experimenters.

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/InterpretingLHCresults

• However, there is a sea of proposed theories/scenarios for new

• Many are non-minimal, less-known, not-thought-of- yet... theories that are not directly interpreted by LHC searches.

Reinterpretation of LHC results

MC event-based recasting.

9

Simplified Model Spectra re-interpretation

- A lot of LHC new physics searches present their results as upper limit and efficiency maps in the context of simplified model spectra (SMS).
- SMS results are relatively straightforward to reinterpret.
- Direct comparison of $\sigma \times BR$ of a BSM theory with $(\sigma \times BR)_{UL}$
- Very fast! No MC required.

SmodelS: 10 years of LHC reinterpretation

- SModelS is based on a general procedure to decompose Beyond the Standard Model (BSM) collider signatures into Simplified Model Spectrum (SMS) topologies.
- Previously, it focused only on Z_2 signatures . As of version 3, this has been extended arXiv:2409.12942.

Working principle.

- the decomposition of the BSM spectrum into SMS topologies
- a database of more than a hundred experimental SMS results.
- the interface between decomposition and results database to compute limits.
- Including finding the best combination of results for each decomposition. A la TACO: arXiv:2209.00025

A tool for interpreting simplified-model results from the LHC

Mohammad Mahdi Altakach, Sabine Kraml, Andre Lessa, Sahana Narasimha, Timothée Pascal, Camila Ramos, Humberto Reyes-González, Théo Reymermier, Yoxara Villamizar, Wolfgang Waltenberger

Previously involved in SModelS: Gaël Alguero, Federico Ambrogi, Jan Heisig, Charanjit K. Khosa, Juhi Dutta, Suchita Kulkarni, Ursula Laa, Veronika Magerl, Wolfgang Magerl, Philipp Neuhuber, Doris Proschofsky, Jory Sonneveld, Michael Traub, Matthias Wolf, Alicia Wongel

https://smodels.github.io/

Likelihoods of LHC new physics searches.

Milestones on full statistical model publication

- ATLAS started publishing full statistical models of NP searches (2019) ATL-PHYS-PUB-2019-029.
- First ML learned likelihoods. The (supervised) DNNLikelihood (2019) arXiv:1911.03305
- Release of the pyhf package to construct statistical models (2020) 10.21105/joss.02823
- Interface with reinterpretation tools: SmodelS (2020) arXiv:2009.01809, MadAnalysis (2022) arXiv:2206.14870,
- Spey: Generalised framework for likelihood handling (2023) arXiv:2307.06996.
- Unsupervised Likelihood learning. The NFLikelihood (2023) arXiv:2309.09743
- COMBINE: The CMS statistical analysis and combination tool (2024) arXiv:2404.06614

Let's keep it going!

Likelihoods of LHC results

LHC Statistical model:

With this we perform global fits, exclude BSM models, find upper limits, search for SM deviations, etc.

 $\Theta) = P_{\Theta}(\Theta | x) \pi_{x}(x)$ Prior Posterior Evidence

$$[ON_{S,i,k}(\vec{\theta}) + B_{i,k}(\vec{\theta})] \prod_{j=1}^{n_{syst}} G(\vec{\theta}_{j}^{obs}; \vec{\theta}_{j}; 1)$$
(Observed) data
(Auxiliary

The profile likelihood

• For new physics searches reinterpretation, we are often interested in the Profile Likelihood (PL).

$$P(x \mid \mu; \theta)$$

- maximised given a signal strength μ .
- In the case of positive signal $\mu=1$, otherwise if data is Standard Model like $\mu=0$.
- The PL is a function of the signal yields (data), N_s .
- Or of the signal yields n_s AND the control yields N_c ^{*}. Depending on how is fitted.

 $\hat{\theta}(\mu)$

• The PL is defined as a function where the nuisance parameters are fixed such that the likelihood is

Likelihood ratio test statistic

• With the PL we construct Log Likelihood Ratio (LLR) tests, e.g.

$$\tilde{q}(\mu) = -2\log\frac{L(\mu;\hat{\theta}(\mu))}{L(\hat{\mu},\hat{\theta}(\hat{\mu}))}$$

 Depending on how the PL is fitted and defined, we can derive upper limits, exclusion confidence levels and discoveries, by computing a corresponding p-value.

$$p_{\mu,\text{obs}} = \int_{\tilde{q}_{\mu},\text{obs}}^{\infty} f$$

 $f(\tilde{q}_{\mu}|\mu')$ $d\tilde{q}$ - *pv*

Machine Learning the profile likelihoods

Motivation.

- In LHC-reinterpretation, to exclude a BSM model, we are mostly interested in the profiled likelihood given a signal strength.
- Optimally, we can compute the profiled likelihood from pyhf's full statistical models.
- However, this computation can take several minutes per parameter point. A pheno study often requires to survey thousands of points.
- This considerably scales-up the time consumption. Specially for fast reinterpretation approaches.
- Using Neural Networks provides a fast and compact way using profiled likelihoods in our dayto-day pheno studies.
- We will super useful for anomaly surveys, proto-models style (arXiv:2105.09020).

Challenge: Computational bottleneck

BSM model

Full statistical model calculations enter here

Likelihood computation

limit derivation

Courtesy of R. Maselek

Solution: Machine Learning

BSM model

Machine Learning enters here

Courtesy of R. Maselek

The usual suspects to learn

- ·Likelihood Observed.
- Likelihood a priori Expected.
- Likelilhood a posteriori Expected.
- Asimov Likelihood.

The usual suspects to learn

For now we learn:

- Likelihood Observed.
- Likelihood a priori Expected.
- Likelihood a posteriori Expected.
 Asimov Likelihood.

Training strategy

- SAMPLING: MCMC Metropolis-Hastings.
- INPUTS: event yields in all bins and channels (including CRs)
- ARCHITECTURE: 5X256
- OUTPUTS: negative log likelihoods (for μ =0 and μ =1), for expected and observed data
- LOSS FUNCTION: MSE but others tested
- OPTIMIZER: ADAM
- SCHEDULER: Cosine Decay with warmup

Deployment strategy

SAVING: After training, the best models for each analysis are ensemble together and saved as **ONNX** files and stored on Github or Zenodo.

This ensures framework-independent usability. In the spirit of arXiv:2312.14575.

Les Houches guide to reusable ML models in LHC analyses

Jack Y. Araz¹, Andy Buckley², Gregor Kasieczka³, Jan Kieseler⁴, Sabine Kraml⁵, Anders Kvellestad⁶, Andre Lessa⁷, Tomasz Procter², Are Raklev⁶, Humberto Reyes-Gonzalez^{8,9,10}, Krzysztof Rolbiecki¹¹, Sezen Sekmen¹², Gokhan Unel¹³

SPEY: smooth inference for reinterpretation studies

Jack Y. Araz 💿

USAGE: The NN likelihoods will be available for statistical studies via an Spey (arXiv:2307.06996) backend.

5		from spey import BackendBase, ExpectationType
6		<pre>from spey.base.model_config import ModelConfig</pre>
7		
8		<pre>import onnx, onnxruntime</pre>
9		import numpy as np
10		
1		
12	\sim	class MLlikelihoods(BackendBase):
L3		
14		Spey plug-in to evaluate machine learned likelihoods
15		
16		Args:
17		signal_yields (``List[float]``): Signal yields
18		network_path (``str``): Path to the network onnx file
19		
00		

Example Likelihoods

• ATLAS-SUSY-2018-04

- Search for direct stau production in events with two -leptons
- 2 signal bins, 3 control bins
- DOI: 10.1103/PhysRevD.101.032009

• ATLAS-SUSY-2019-08

- 9 signal bins, 5 control bins
- DOI: https://doi.org/10.17182/hepdata.90607.v4

·1911.12606

- collisions with the ATLAS detector.
- Four separate statistical models.
- EWKinos (43,5), Selectrons(15,6) Sleptons(32,5), Smuons(15,5)
- DOI: 10.1103/PhysRevD.101.052005

• Search for direct production of e-winos in final states with 1 lepton, MET and a Higgs boson decaying into 2 -jets

• Searches for electroweak production of supersymmetric particles with compressed mass spectra in $\sqrt{s} = 13$ TeV in

Results ATLAS-SUSY-2018-04

expected

observed

Results ATLAS-SUSY-2018-04

Results ATLAS-SUSY-2019-08

Results ATLAS-SUSY-2019-08

A priori prescription

Asimov prescription

VERY GOOD MATCH

Results 1911.12606-EWKino-leakage

NF-likelihoods

Motivation

- Now we look at the other side of the statistical model.
- We focus on the likelihood function of the parameters, given an observation.
- This is relevant for measurements and global fits of parameters to data.
- The challenge: To parametrize all the parameters of interest (POIs) and nuisance parameters.
- Proposed solution: To model them as Normalizing Flows.

$P_{\Theta}(\Theta \mid x = \text{obs})$

Basic principle

Following the change of variables formula, perform a series of **bijective**, continuous, invertible transformations on a simple probability density function (pdf) to obtain a complex one.

See review: Ivan K. et. al. arXiv:1908.09257

Choosing the transformations

THE OBJECTIVE:

To perform the right transformations to accurately estimate the complex underlying distribution of some observed data.

THE RULES OF THE GAME:

- The transformations (bijectors) must be invertible
- They should be sufficiently expressive
- And computationally efficient (including Jacobian)

THE STRATEGY:

Let *Neural Networks* learn the parameters of *Autoregressive** *Normalizing* Flows.

Choosing the transformations

Previous results.

- DNNLikelihood
- Supervised Learning with Deep Neural Networks.
- •95-dim LHC-like toy likelihood.
- arXiv:1911.03305 (A. Coccaro, M. Pierini, L. Silvestrini, R. Torre)

Example Likelihoods

$P_{\Theta}(\Theta \,|\, x = \text{obs})$

LHC-like toy likelihood.

- Simplified likelihood (Multivariate-Gaussian)
- 1 parameter of interest (signal strength)
- 89 nuisance parameters.
- Ref. <u>arXiv:1809.05548</u>

ElectroWeak fit Likelihood

- EW observables.
- Including recent measurements of top mass (CMS) and W mass (CDF).
- 8 parameters of interest (Wilson coefficients of SMEFT operators)
- 32 nuisance parameters.
- Ref. <u>arXiv:2204.04204</u>

Flavor fit likelihood

- Flavor observables related to
- 12 parameters of interest (Wilson coefficients)
- 77 nuisance parameters.
- Ref. <u>arXiv:1809.05548</u>

LHC-like toy likelihood.

Hyperparameters for Toy Likelihood								
# of samples	hidden layers	algorithm	# of bijec.	spline knots	range	L1 factor	patience	max # of epochs
$2 \cdot 10^5$	3×64	MAF	2	-	-	0	20	200

Table 1: Hyperparameters leading to the best determination of the Toy Likelihood.

Results for Toy Likelihood								
# of samples	Mean KS-test	Mean SWD	$\mathrm{HPDIe}_{1\sigma}$	$\mathrm{HPDIe}_{2\sigma}$	$\mathrm{HPDIe}_{3\sigma}$	time (s)		
$2\cdot 10^5$	$0.4893 \pm .0292$	$0.03947 \pm .0019$	0.02073	0.01207	0.01623	133		

Table 2: Best results obtained for the Toy Likelihood.

	Results for Toy Likelihood POI						
POI	KS-test	$\mathrm{HPDIe}_{1\sigma}$	$\mathrm{HPDIe}_{2\sigma}$	$\mathrm{HPDIe}_{3\sigma}$			
μ	0.54	0.02742	0.01359	0.01786			

Table 3: Results for the POI in the Toy Likelihood.

ElectroWeak fit Likelihood

Hyperparameters for the EW Likelihood								
# of samples	hidden layers	# of bijec.	algorithm	spline knots	range	L1 factor	patience	# of epochs
$2\cdot 10^5$	2	3×128	A-RQS	4	-6	0	20	800

Table 4: Hyperparameters leading to the best determination of the EW Likelihood.

		Results for the EW Likelihood					
# of samples	Mean KS-test	Mean SWD	$\mathrm{HPDIe}_{1\sigma}$	$\mathrm{HPDIe}_{2\sigma}$	$\mathrm{HPDIe}_{3\sigma}$	time (s)	
$2 \cdot 10^5$	0.4307 ± 0.06848	0.003131 ± 0.00053	0.000339	0.0008664	0.006973	7255	

Table 5: Best results obtained on the EW Likelihood.

Results for EW Likelihood							
POI	KS-test	$\mathrm{HPDIe}_{1\sigma}$	$\mathrm{HPDIe}_{2\sigma}$	$\mathrm{HPDIe}_{3\sigma}$			
$c_{arphi l}^1$	0.1901	0.08384	0.09787	0.437			
$c_{arphi l}^3$	0.2078	0.0346	0.1039	0.4967			
$c_{arphi q}^1$	0.4581	0.02279	0.01131	0.04866			
$c_{arphi q}^3$	0.4989	0.01219	0.01439	4.1017			
$c_{arphi d}$	0.5221	0.01713	0.03808	0.09952			
$c_{arphi e}$	0.4885	0.01453	0.2146	0.1401			
$c_{arphi u}$	0.5259	0.005409	0.005082	0.341			
c_{ll}	0.2193	0.1667	0.08047	0.0713			

Table 6: Results for the Wilson coefficients in the EW Likelihood.

R. Torre, HRG. arxiv:2309.09743

Flavor fit likelihood

Hyperparameters for the Flavor Likelihood								
# of samples	hidden layers	# of bijec.	algorithm	spline knots	range	L1 factor	patience	$\begin{array}{c} \max \ \# \ \text{of} \\ \text{epochs} \end{array}$
10⁶	3 imes 1024	2	A-RQS	8	-5	1e-4	50	12000

Table 7: Hyperparameters leading to the best determination of the Flavor Likelihood.

Results for the Flavor Likelihood							
# of samples	Mean KS-test	Mean SWD	$\mathrm{HPDIe}_{1\sigma}$	$\mathrm{HPDIe}_{2\sigma}$	$\mathrm{HPDIe}_{3\sigma}$	time (s)	
$5\cdot 10^5$	0.4237 ± 0.03405	0.02717 ± 0.002374	0.00867	0.007346	1.419e-07	9550	

Table 8: Best results obtained for the Flavor Likelihood.

]	Results for Flavor Likelihood POIs								
POI	KS-test	$\mathrm{HPDIe}_{1\sigma}$	$\mathrm{HPDIe}_{2\sigma}$	$\mathrm{HPDIe}_{3\sigma}$					
c^{LQ1}_{1123}	0.4346	0.007251	1.83e-05	4.731e-08					
c^{LQ1}_{2223}	0.4736	0.01249	0.00162	0.03575					
c_{1123}^{Ld}	0.486	0.01466	0.006628	0.002338					
c^{Ld}_{2223}	0.4138	0.0513	0.02446	2.398e-08					
c_{11}^{LedQ}	0.5362	0.00738	0.004683	5.387e-08					
c_{22}^{LedQ}	0.5161	0.02799	0.001639	2.155e-09					
c^{Qe}_{2311}	0.4476	0.01389	0.007458	1.419e-07					
c^{Qe}_{2322}	0.382	0.02132	0.02496	0.0004609					
c_{1123}^{ed}	0.4789	0.04076	0.00333	5.602e-08					
c^{ed}_{2223}	0.4436	0.008685	0.016	1.502e-08					
$c_{11}^{\prime \; LedQ}$	0.3203	0.09194	0.007041	8.011e-08					
$c_{22}^{\prime \; LedQ}$	0.4157	0.03001	0.008749	4.374e-08					

Table 9: Results for the Wilson coefficients in the Flavor Likelihood.

R. Torre, HRG. arxiv:2309.09743

Flavor fit likelihood

41

Outlook

- Learn more profile likelihoods from ATLAS statistical models. Possibly including a posteriori and Asimov.
- Investigate how to learn profile likelihoods from CMS statistical models. Other technical developments required.
- Saving NFlikelihoods in ONNX format.
- Aim for learning full statistical models with (conditional) normalizing flows.

Conclusions

- Multivariate phenomenological studies require efficient handling of likelihoods.
- NNs provide an orders of magnitude faster alternative for LHC likelihood publication. • From dozens of minutes to less than a second per point!
- Profile likelihoods are easily learnable by NNs.
- They can easily be integrated into modern reinterpretation frameworks.
- Complete infrastructure for ML Likelihoods under construction.
- Normalizing Flows show great capacity of learning complex high dimensional functions. • Specially, the A-RQS.
- NFs can accurately and efficiently model LHC and EFT-fit likelihoods. •
- Further developments under way. Stay tuned!

Thank you!

ATLAS full statistical models

- Full statistical models by ATLAS are available on **HEPData**
- They are provided as JSON files
- There are background files and signal patches
- Each patch corresponds to some signal point and contains modifiers to the background files
- There can be hundreds of modifiers
- Spey/PyHF can load and process these files

```
"patch": [
        "op": "add",
        "path": "/channels/0/samples/0",
        "value": {
            "data": [
                2.3051342964172363
            "modifiers": [
                    "data": null,
                    "name": "lumi",
                    "type": "lumi"
                },
{
                    "data": [
                         0.6571804118166927
                    "name": "staterror_QCR1cut_cuts",
                    "type": "staterror"
                },
{
                    "data": {
                        "hi": 1.06675,
                         "lo": 0.911403
                    "name": "PRW_DATASF",
                    "type": "normsys"
                },
```


