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Motivation
• Likelihood functions (full statistical models) parametrise the full information of an LHC analysis; 
wether it is New Physics (NP) search or an SM measurement.


• Their preservation is a key part of the LHC legacy. 

•Usage: Resampling, Reinterpretation in the context of different NP models and/or with with different 
statistical approaches,…. 


• They are particularly relevant in the context of reinterpretation of LHC results.


• The challenge: Full statistical models, are often high dimensional functions that are both hard to 
parametrize and evaluate.


• The proposed solution: We learn the  likelihood functions as Machine Learning models. 
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Overview

•Reinterpretation of LHC results


•LHC likelihoods


•Machine Learning the profile likelihoods of LHC results.


•NFLikelihood: Unsupervised learning LHC likelihoods.


•Conclusions
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Reinterpretation of LHC results
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The LHC

Where new 
physics?
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New physics searches at the LHC
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Reinterpretation of LHC results
•ATLAS and CMS has an extensive program of searches for new 
physics.


•Experimental analyses are often optimized and interpreted in the 
context of simplified models, EFTs, or specific BSM scenarios. 

•However, there is a sea of proposed theories/scenarios for new 
physics.


•Many are non-minimal, less-known, not-thought-of- yet... 
theories that are not directly interpreted by LHC searches. 


• The aim of the LHC reinterpretation framework is to be able to test any 
BSM theory against LHC results.


• A very active field with strong communication between theorists and 
experimenters. 

8https://twiki.cern.ch/twiki/bin/view/LHCPhysics/InterpretingLHCresults



Reinterpretation of LHC results
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Simplified Model Spectra re-interpretation

•A lot of LHC new physics searches present their results as 
upper limit and efficiency maps in the context of simplified 
model spectra (SMS). 


•SMS results are relatively straightforward to reinterpret.

•Direct comparison of  of a BSM theory with 




•Very fast! No MC required.


•

σ × BR
(σ × BR)UL
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SmodelS: 10 years of LHC reinterpretation
• SModelS is based on a general procedure to decompose Beyond the Standard Model (BSM) collider 

signatures into Simplified Model Spectrum (SMS) topologies.


• Previously, it focused only on  signatures . As of version 3, this has been extended arXiv:2409.12942.
Z2

https://smodels.github.io/

Working principle. 
• the decomposition of the BSM spectrum into SMS topologies

• a database of more than a hundred experimental SMS results. 
• the interface between decomposition and results database to compute limits.

• Including finding the best combination of results for each decomposition. A la TACO: arXiv:2209.00025 
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Likelihoods of LHC new physics searches.
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Milestones on full statistical model publication 

•ATLAS started publishing full statistical models of NP searches (2019)  ATL-PHYS-PUB-2019-029.


• First ML learned likelihoods. The (supervised) DNNLikelihood (2019)  arXiv:1911.03305


•Release of the pyhf package to construct statistical models (2020) 10.21105/joss.02823


• Interface with reinterpretation tools: SmodelS (2020) arXiv:2009.01809, MadAnalysis (2022) arXiv:2206.14870, 


•Spey: Generalised framework for likelihood handling  (2023) arXiv:2307.06996.  


•Unsupervised Likelihood learning. The NFLikelihood (2023) arXiv:2309.09743


• COMBINE: The CMS statistical analysis and combination tool (2024) arXiv:2404.06614


Let’s keep it going!
13



Likelihoods of LHC results
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P(μ, θ; data) = Πnc
k=1P[ni; μϵi,k( ⃗θ)NS,i,k( ⃗θ) + Bi.k( ⃗θ)]Πnsyst

j=1G(θobs
j ; θj; 1)

With this we perform global fits, exclude BSM models, find upper limits, search for SM 
deviations, etc.

LHC  Statistical model:

Parameters of Interest (signal strength, observables, etc.)

Nuisance parameters (uncertainties)
(Observed) data

(Auxiliary) data

Bayes theorem:

P(Θ, x) = Px(x |Θ)πΘ(Θ) = PΘ(Θ |x)πx(x)

signal/control yields

PriorLikelihood Posterior Evidence



The profile likelihood

P(x |μ; ̂θ(μ))

• For new physics searches reinterpretation, we are often interested in the Profile Likelihood (PL).


• The PL is defined as a function where the nuisance parameters are fixed such that the likelihood is 
maximised given a signal strength 𝝁.


• In the case of positive signal 𝝁=1, otherwise if data is Standard Model like 𝝁=0.


• The PL is a function of the signal yields (data), Ns. 

• Or  of the signal yields ns AND the control yields Nc *. Depending on how is fitted. 

*Relevant in case of e.g. signal leakage15



Likelihood ratio test statistic

q̃(μ) = − 2 log
L(μ; ̂θ(μ))
L( ̂μ, ̂θ( ̂μ))

• With the PL we construct Log Likelihood Ratio (LLR) tests, e.g. 

•  Depending on how the PL is fitted and defined, we can derive upper limits, exclusion confidence levels 
and discoveries, by computing a corresponding p-value.

pμ,obs = ∫
∞

q̃μ,obs
f (q̃μ |μ′ ) dq̃μ
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Machine Learning the profile likelihoods
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Motivation.
• In LHC-reinterpretation, to exclude a BSM model, we are mostly interested in the profiled likelihood 
given a signal strength.


•Optimally, we can compute the profiled likelihood from pyhf’s full statistical models.


•However, this computation can take several minutes per parameter point. A pheno study often requires 
to survey thousands of points.


• This considerably scales-up the time consumption. Specially for fast reinterpretation approaches.


•Using Neural Networks  provides a fast and compact way using profiled likelihoods in our day-
to-day pheno studies. 

•We will super useful for anomaly surveys, proto-models style (arXiv:2105.09020).



Challenge: Computational bottleneck

BSM model limit derivationLikelihood
computation

Full statistical model calculations enter here
Courtesy of R. Maselek19



Solution: Machine Learning

BSM model limit derivationLikelihood
computation

Machine Learning enters here

Courtesy of R. Maselek20



The usual suspects to learn

•Likelihood Observed.  

•Likelihood a priori Expected. 

•Likelilhood a posteriori Expected. 

•Asimov Likelihood.
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The usual suspects to learn

•Likelihood Observed.  

•Likelihood a priori Expected. 

•Likelihood a posteriori Expected. 

•Asimov Likelihood.

For now we learn:
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Training strategy

•SAMPLING: MCMC Metropolis-Hastings.

• INPUTS: event yields in all bins and channels (including 
CRs)


•ARCHITECTURE: 5X256

•OUTPUTS: negative log likelihoods (for μ=0 and μ=1), 
for expected and observed data


• LOSS FUNCTION: MSE but others tested

•OPTIMIZER: ADAM

•SCHEDULER: Cosine Decay with warmup
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Deployment strategy
SAVING: After training, the best models for each analysis are ensemble together and saved as ONNX files 
and stored on Github or Zenodo. 

This ensures framework-independent usability. In the spirit of arXiv:2312.14575.


USAGE: The NN likelihoods will be available for statistical studies via an Spey (arXiv:2307.06996) backend.
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Example Likelihoods
•ATLAS-SUSY-2018-04 
•Search for direct stau production in events with two -leptons

• 2 signal bins, 3 control bins

•DOI: 10.1103/PhysRevD.101.032009


• ATLAS-SUSY-2019-08 
• Search for direct production of e-winos in final states with 1 lepton, MET and a Higgs boson decaying into 2 -jets 
• 9 signal bins, 5 control bins 
• DOI: https://doi.org/10.17182/hepdata.90607.v4 

• 1911.12606 
•Searches for electroweak production of supersymmetric particles with compressed mass spectra in  TeV in 
collisions with the ATLAS detector.


• Four separate statistical models.

•EWKinos (43,5), Selectrons(15,6) Sleptons(32,5), Smuons(15,5) 

•DOI: 10.1103/PhysRevD.101.052005


s = 13
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Results ATLAS-SUSY-2018-04

Δexp/obs = ln
Lexp/obs(μ = 1)
Lexp/obs(μ = 0)

prediction = truth
prediction = truth

PRELIMINARYPRELIMINARY
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Results ATLAS-SUSY-2018-04

L NOT fitted with Control RegionsL fitted with Control Regions
A priori prescription Asimov prescription27



Results ATLAS-SUSY-2019-08

Δexp/obs = ln
Lexp/obs(μ = 1)
Lexp/obs(μ = 0)

PRELIMINARYPRELIMINARY
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Results ATLAS-SUSY-2019-08

PRELIMINARY PRELIMINARY

A priori prescription Asimov prescription

All include control regions
VERY GOOD MATCH
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Results 1911.12606-EWKino-leakage

Δexp/obs = ln
Lexp/obs(μ = 1)
Lexp/obs(μ = 0)30



NF-likelihoods
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Motivation

PΘ(Θ |x = obs)

•Now we look at the other side of the statistical model.


•We focus on the likelihood function of the parameters, given an observation.


•This is relevant for measurements and global fits of parameters to data.


•The challenge: To parametrize all the parameters of interest (POIs) and nuisance parameters.


•Proposed solution: To model them as Normalizing Flows.
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Normalizing direction

Generative direction

Following the change of variables formula, perform a series of bijective, continuous, invertible transformations on a 
simple probability density function (pdf) to obtain a complex one. 

See review: Ivan K. et. al.
arXiv:1908.09257

Basic principle
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Choosing the transformations

THE RULES OF THE GAME: 
• The transformations (bijectors) must be invertible

• They should be sufficiently expressive

• And computationally efficient (including Jacobian)

THE OBJECTIVE: 
To perform the right transformations to accurately estimate the complex 
underlying distribution of some observed data. 

THE STRATEGY: 
Let Neural Networks learn the parameters of Autoregressive* Normalizing 
Flows.

34



Choosing the transformations

Affine Rational 
Quadratic 

Spline 
Coupling RealNVP C-RQS

Autoregressive MAF A-RQS

y = Θx + h

Bijector

NF type
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Previous results.
•DNNLikelihood 
•Supervised Learning with Deep Neural Networks.

•95-dim LHC-like toy likelihood.

•arXiv:1911.03305 (A. Coccaro, M. Pierini, L. Silvestrini, R. Torre )

68% HPDI test: [-1.16e-01,5.81e-01]
68% HPDI DNN F3: [-1.31e-01,5.83e-01]
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Example Likelihoods
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LHC-like toy likelihood. 
● Simplified likelihood (Multivariate-Gaussian)

● 1 parameter of interest (signal strength)

● 89 nuisance parameters.

●  Ref. arXiv:1809.05548

Flavor fit likelihood 
● Flavor observables related to 

● 12 parameters of interest (Wilson coefficients)

● 77 nuisance parameters.

●  Ref. arXiv:1809.05548

ElectroWeak fit Likelihood 
● EW observables.

● Including recent measurements of top mass (CMS) 

and W mass (CDF).

● 8 parameters of interest (Wilson coefficients of 

SMEFT operators)

● 32 nuisance parameters.

●  Ref.  arXiv:2204.04204

PΘ(Θ |x = obs)

https://arxiv.org/abs/1809.05548
https://arxiv.org/abs/1809.05548
https://arxiv.org/abs/2204.04204


LHC-like toy likelihood. 

38 R. Torre, HRG. arxiv:2309.09743



ElectroWeak fit Likelihood

39 R. Torre, HRG. arxiv:2309.09743



Flavor fit likelihood

40 R. Torre, HRG. arxiv:2309.09743
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Flavor fit likelihood



Outlook

• Learn more profile likelihoods from ATLAS statistical models. Possibly including a 
posteriori and Asimov.


• Investigate how to learn profile likelihoods from CMS statistical models. Other 
technical developments required.


• Saving NFlikelihoods in ONNX format.


• Aim for learning full statistical models with (conditional) normalizing flows.
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Conclusions
• Multivariate phenomenological studies require efficient handling of likelihoods.


• NNs provide an orders of magnitude faster alternative for LHC likelihood publication. 
From dozens of minutes to less than a second per point!


• Profile likelihoods are easily learnable by NNs.


• They can easily be integrated into modern reinterpretation frameworks.


• Complete infrastructure for ML Likelihoods under construction.


• Normalizing Flows show great capacity of learning complex high dimensional functions. 
Specially, the A-RQS.


• NFs can accurately and efficiently  model LHC and EFT-fit likelihoods.


•  Further developments under way. Stay tuned!

43



Thank you!

44



•Full statistical models by ATLAS are available on 
HEPData


•They are provided as JSON files


•There are background files and signal patches


•Each patch corresponds to some signal point and 
contains modifiers to the background files


•There can be hundreds of modifiers


•Spey/PyHF can load and process these files

ATLAS full statistical models

Courtesy of R. Maselek45


