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Introduction and motivation
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Motivation

a Differential calculation require a good handle of IR divergences, many schemes exist at NNLO

a Slicing scheme seems to be more feasible at N3LO due to non existence of subtraction schemes

B do(0) [ . do(0) do(0)
o(0)= Jodr—dT = L dT—dT + ,L, dr v

- qr slicing scheme
- N-jettiness slicing scheme

a SCET factorization theorem motivates us to consider jettiness as a convenient slicing variable for processes with jets in
the final state

lir% do(0O)=B,®B.®S. ®H_ ®do; o
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Slicing scheme ingredients

® A phase space is split according to a slicing variable

a Possible to use any lower order calculation with additional jet in the T > 7, region
approximate
cross section
N™'LO +j

cross section

do
dr

To apply at the NNNLO level:
- Existing NNLO+j calculations

- Many efficient NNLO subtraction schemes

Teut T
® Approximate cross section in the singular region from the factorisation formula

- Hard function H,

do do
_ ‘ 0
dar H.e{B.}e{J.}®5.® dt +0(7) - Beam function B, jet function J .
- Soft function S,
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Zero-jettiness measurement function

a For two hard partons with momenta p, and py, jettiness is defined as follows

— 2p, - k; 2p, -k;
Ty = Zmin{L, L} , k;—are soft partons

= Q Q
® |tis possible to rescale p, = ¥322n,p, = Y227

a Eikonal factors E(k, 1) have uniform scaling: rescale integration momenta ¢; = e {k,1}

7 QT
qi V/Sab ' q;

e(m+n)
S(r)~f[ddk] [d4]" 8(r—Fp)E(k, 1)—»-((5;22) J[ddk’] [a41]" (1—me{a,,ﬂ})E(k’ 1)

ext loop

Sudakov decomposition

a4 B _ _ _
k~=5n+—‘n+kli, ki-n=p;, k-i=a, n-a=2 n?’=a’=0
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Ingredients of the final result
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What is actually calculated?

® (-jettiness in hadronic collisions is equal to Thrust or 2-jettiness in e*e™ annihilation or Higgs decay

® The limit T — 0 corresponds to the soft limit of the squared amplitude - eikonal Feynman rules

® Need to include all possible real and virtual corrections to the amplitude squared

® Possible to combine different measurement function terms into unique configurations
® Perform integration over highly non-trivial region - all kinds of divergencies are possible
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From measurement function to configurations

® Minimum function is a problem for analytic calculation

a Definition which is more friendly for phase-space integration generates many configurations
6 (1—Zmin{ai,ﬁi}) =6(1—pf1—Py—...)0(ay —1)0(ag— )+ 6(1—f1 —ay—...)0(a; —1)0(B2 —az)...
i=1

= Configurations can be mapped to the minimal set due to symmetries of Eikonal factor and 6(1—{a, 8})
® RVV single configuration with 6(1 —k - n), trivial phase-space integration
- Two-loop soft current is known
a RRV two configurations nn and nii
- Emission of gluons and quark pair
a RRR two configurations nnn and nni

- Same hemisphere gluon emission
- Different hemispheres configuration nnn and quark pair emission in nnn configuration - this work
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Calculation strategy

|. There are many highly non-trivial integrals, which we can calculate with direct integration

- All integrations are divergent at the boundaries only
- Allintegrals are linear reducible, GPLs only at all steps

- Once there is a way to subtract divergencies integrals calculated with HyperInt

2. Utilization of the modern multi-loop calculation techniques to reduce the problem to (1)

- Reduction of integrals to the minimal set of master integrals

- Differential equations for integrals at the expense of introducing new parameters
- Symmetry relations between integrals

- Input expression organization in ”diagram”-like structures
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Relative complexity of ingredients
Number of 6(a — 3) constralnt\
>
=z 0— m For each soft emission we have one 6-function in the measurement
[} . . . . . .
E’ 5. function making integration more complicated
C,, , R
8 %, ~—
Z + N a For complicated denominators in the RRR case make direct
g .. integration is impossible
E . . . .
S a Complicated one-loop sub-integrals in the RRV make direct
= integration impossible
\% |

® Unregulated divergencies in the RRR case

A ~ Cn —mM8MmM D~ ——mM8M
ky -ky (ky -ko)(ky - kg) (k1 +ky +kg)?
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RVV corrections

(2)

Two-loop corrections rg~ to single gluon emission soft current are known exactly in &

= le
. rs@0=1+ ZAl [ (k_(r?) (E) n)] 0

Two contributions from different hemisphere emissions need to be integrated, S(gS) =890+81,1 +502

J(z Y- =51 (k) [6(1—k-n)0(k-n—k-n)+5(1—k-1)0(k-n—k-i)]wp, (k)

. ® Linear propagators only
wr,m(k) = RB[JL(k)JM(k)] = -
® Factorisation of k-dependent part of soft current
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One-loop corrections with two soft emissions
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One-loop corrections with double emission

a RRV squared amplitudes generated from scratch
a Results for one-loop soft current are known

a RRV result for gg final state were computed earlier

® Recalculation in the unified way including qq final state

Multi-loop calculations inspired approach
m Reduction to the minimal set of master integrals with loop and phase-space integration

u Differential equations from IBP reduction - parameter to differentiate is needed
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Modified reverse unitarity to deal with 0-integrals

® |n dimensional regularisation system of IBP equation can be constructed by differentiation under integral sign

a 2 _ _
fddla—lu[vu-f({l})], S5 0k i—k-n)=6(k-i—k-n)

® |BP for integrals with 8-functions generate new auxiliary topologies, partial fractioning required

O(k-n—k-n) 6(k-n—k-n)
(c-me(k )b (k-n)a(k-n)P

- RRR 00 —600+6060+006—0660+606+060— 666
~— ~—
Level 3 Level 2 Level 1 Level 0
- RRV 060 —660+606— 66
~—~— — ~—~—

Level 2 Level 1 Level 0
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RRV master integrals calculation

® Number of Mils after IBP reduction of both configurations in RRV case

66 0660+606 066
8 36 15

a Direct integration possible, except pentagon and box with a; = 0

@ DE in auxiliary parameters for most complicated integrals

Original integrals from DE solution
® Additional parameter z is not needed - utilize variables from integral representation

® To recover integrals of interest I instead of taking limit I =lim,_,, J(z) we integrate I = f dz J(z)
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RRV master integrals from differential equations

® For 66 integrals we introduce auxiliary parameter x and solve DE system 2, J(x) = M(¢, x)J(x)

1 1
156:Jd(k1'k2)f(k1'k2):J dXJd(kl'k2)5(k1 'kz_;—()f(ksz):J J(x)dx
0 0

® For 60 and 66 we use integral representation for 8-function and solve DE system 9, J(z) = M(¢, z)J(z)

1

1
6(b—a)= J bé(zb—a)dz, Is5p= J J(z)dz
0

0

® For 60 integrals PDE system in two variables z;, z,, no IBP reduction with 8-functions needed

1 1
Tgo :j d21J dzy J(24,25)
0 0
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Differential equations in canonical form

For all auxiliary integrals it is possible to find alternative basis of integrals, such ¢ dependence of the DE system matrix
factorizes completely: M(g) — €A

Straightforward solution for integrals in canonical basis in terms of GPLs

Simpler boundary conditions fixing due to known general form of expansion near singular points

g(z) = z217P1 (¢; + 0(2)) +2°2"P2¢ (cy + O(2)) + ...

a Construction of subtraction terms to remove endpoint singularities in the final integration

1 1 1
J J(z)dz:f [J(Z)—Z‘"‘”b‘ejo(Z)—(1—Z)ak+b“€j1(2)]dz+J (2150 (2) = (1 = 2)* ¢ () da
0 0 0

e—expanded g—exact
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Summary: real-real-virtual contributions

® |BP reduction of integrals with 6-functions and loop integration can be efficiently implemented
a Differential equations for auxiliary integrals can be constructed and solved analytically

® Auxiliary integrals are simplified in the limit, and all required boundary constants can be calculated
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Triple real soft emissions



Triple real emissions
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Recalculated input for eikonal factors with partial fractioning and topology mapping

m ggg = ggg + gcc, coincides with the known expression in physical gauge

® gqq in agreement with

Same hemisphere

8(z =Py —P2—Bs)

® Same hemisphere result for ggg final state is known

Intro Details RRV
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Divergences unregulated dimensionally
. 5 ® Same hemisphere emission of k;, k, partons
kl k2 _. ® [ntegration in the region f3; << ay,fy << a,
01 e e o > =

-
W
"
\
\
\
Y
[ ]

Both are close to the 1i direction cos 6; ~ cos 6, ~ 1+ O(A)

® And large energies difference w; ~ 1 << w4 ~1/2

Possible cases for integrals in the potentially unregulated region

® |ntegrals in the region with scaleless integrations safe
® |ntegrals with zero sum of two contributions from 6; > 6, and 6, < 6, parts safe
® Rare cases of integrals with non-trivial region contribution Additional regulator needed
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Additional regulator in action

® Example region k;,k,: B; ~ A and a, ~ 1/A change of variables f, =&, a; and ay, = /&,

® Our choice for regulator to modify integration measure for each dk;0(a; —b;) — dk;0(a; —b;)b’

(a1 )1—25+v _
J daydBydagdpy(fyp,) | [ dndPaddE = 6 <88y =xE,
—
(a1 f1a282)° fdozldﬁgdxdé’lM €0 <81, 8,=%&;

1=v ,2—¢
& x

® Additional complications due to a new regulator

- More complicated reduction due to an additional parameter in the problem

- Master integrals calculation is more difficult due to the need to consider the double limit €, v — 0
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Reduction of v-regulated integrals

Approaches to v-dependent IBP reduction problem (IBP with v is available)

|. Direct v-dependent reduction with additional variable

X Time consuming and not flexible especially if basis change needed

v/ Minimal set of master integrals and full v-dependent solution
2. Filtering - remove all equations with potentially divergent integrals from the IBP system

v/ Very fast compared to the full »-dependent reduction

X Potentially unreduced integrals, needs divergencies analysis for all integrals in the IBP system
3. Expansion - rewrite IBP system as a new system for 1/ v expansion coefficients of integrals

v/ Fast reduction with control of divergencies
X Additional divergent parts of integrals from the intermediate steps of IBP reduction can appear
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Importance of a good master integrals basis

(oo}
® From the analysis of possible divergencies we consider ansatz J, = . Jflk) V& with kg = —1
k=ko

Solution of the IBP reduction problem for regular-v integrals I, has the form

0) — (0) F(=1)
19 =R, J)) + Dy, Iy
® We require a "good” basis to fulfill the following conditions:

- Coefficients in front of master integrals do not contain 1/v poles
- Each master integral is a member of only one set J}, or J,

- Candidates for the set J}, can be found from the v = 0 reduction

m Regular integrals JLO) are calculated in a standard way, calculation of needed divergent parts jgl) is simplified, since only
specific regions contribute
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DE for RRR integrals with auxiliary mass

® Integrals for both nnn and nnii configurations with denominator 1/k2,, are difficult to calculate

® Since integrals are single scale, auxiliary parameter is needed to construct the system of DE I — J(m?2)

1 - 1
(k1 +kop+ks)? (k1 +ko+kg)*+m?2

a We modify the most complicated propagator

Calculation of boundary conditions is possible in the limit m? — oo, but still very difficult

® Massless integrals I are obtained from the solution for J(m?) in the limit m? — 0, which is not trivial
Difficulties of the chosen strategy
® Both points m? — 0 and m? — oo are singular points of the DE system

a Solution of the DE for integrals with massive denominator is only possible numerically

Intro Details RRV RRR Results
0000 000000 0000000 000000 @0000000000000 0000000000

20/41 18.11.2024 Andrey Pikelner: N3LO 0-jettiness soft function KITTTP



KIT

Details of the DE solution

® A much larger DE system, ~ 650 equations are needed for nnii configuration compared to ~ 150 for nnn
® Need to calculate all contributing regions into boundary conditions in the m? — oo limit
~ (m?)° ~(m?)~* ~ (m?)~?¢

1/m? a; ~ m? a;,a; ~m’

® For each large parameter a; ~ m? we remove 6 => additional IBP reduction of boundary conditions integrals possible

® Numerical solution of the DE system as a sequence of series expansions

Intro Details RRV RRR Results
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From boundaries at m? — oo to m2 — 0 solution
(1/m2)n+2e
. "\\ (1/m2)n+£
(m2)n+as
o ) )
(1/m?)

Regular points only

® Sum of all regions at m? — oo to get high precision numerical solution at the first regular point R
® High precision numerical solution of the DE between segence of regular point R, = R;...R, = R,

® Final result - Taylor branch of the generalized m? — 0 expansion gives the required result
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Nice features of the DE and its solution

® Numerical DE solution at finite m?

- Independent numerical checks at finite m?

Local Fuchsian form of the DE near singular points m? — 0 and m? — co

- Matrix solution and generalized power series expansions
- Minimal set of independent boundary constants to calculate

Self-consistency checks of the DE solution and boundaries

- Unphysical branches disappear after boundaries substitution
- On the real axis m? € (0, 00) all integrals have zero imaginary parts

Relations between specific branch expansion coefficients and IBP reduction of boundary constants

® Massless integrals we are interested in are extracted from the specific branch of m? — 0 DE solution

Intro Details RRV RRR Results
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Boundaries at m? — co and series expansions

® Local Fuchsian form of the transformed DE with = Tg and y = y(mn?)

28 _[ Ao A,
a—y—[y +ZP()]g, Pi(0)#0

® [eading order matrix solution g(y) = U(y)]§ directly read from the Fuchsian DE: U(y — 0) ~ y*o

Specific branch y* expansions, A = be

J(lm = y‘"‘lﬂ( o +c1 v +c1 L. ) ® We are interested in y = m? and y = 1/m?
® Minimal vector B is a subset of U{c1 0 io}
I =yt wck yiel i) = All ¢}, with j > 0 through subset of ¢/,

@ Reducible integrals expansion coefficients reduction

Intro Details RRV RRR Results
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IBP reduction of boundary constants at m? — 0o

Local Fuchsian form = Matrix series solution = |BP for constants

I. Available IBP reduction tables for massive integrals X; = ZRi’k(m2)Jk
K

2. Deep enough 1/m? expansions for master integrals J,. due to possible poles/zeroes in Ri,k(mQ)

3. Substitution of expanded Mls and unknown integrals X; = ZXEA) to IBP tables provides relations between
2

leading expansion coefficients x”, and ¢’ valid for each branch (m?)* independently
i,0 j,0

A 2
X X
) _ (n2Va1+A | A i1 i,2
X" = (m*) (Xi~“+m2+m4+'“
® |n each region additional boundary constants calculated and checked against reduction prediction

a Due to huge difference in calculation complexity possible to select simpler/less divergent integrals
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Boundary integrals simplification

a Main difficulty comes from the dependence of k?zs +m? on three angles, but in specific regions simplifications occur

k2., +m’ = Zai/a’j — v/ a:B;a; B; cos (ki,l,kj’L) +m?
i7]

) -
® Region (m2) , single large parameter e.g. a; ~ m?

k2

123 +m2 - (/32 +ﬁ3)+m2

. 2\ 2¢ . 2 . . 2
® Region (m , pair of large parameters e.g. a; ~ a, ~ m~, angle dependence remains since k; - k, ~m

2 2 2
k123 +m”° -k, +(a; +ay)Bs+m
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Boundary constants in the region (m?)~¢

® Dependence on angles disappears in k2,, + m? — a; (; + B, ) + m? in the m* — oo limit

® Only non-trivial scalar product for e.g. a; ~ m?is (ky - k3) and 0(a; — f3;) — 1

KIT

Karlsruhe Institute of Technology

® |ntegration over the relative angle between soft partons in terms of ,F, function of argument dependent on

r = 0(a—B) + 5006 —a)

® For same-hemisphere emissions we split integration region into r; > 1; and r; <r;

k, ky ko
] ek Ko %W K r@gf;” ks
— =0 — == — = <=\ =
n . n .
5(a1_ﬁ1)9(a2_ﬁ2) o(ay —f1)0(B2 — az) 0(a; — ﬁ1)9(/52 az) 0(ay —f1)0(az —B2)
Intro Details RRV RRR Results
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Boundary constants in the region (m

® For two large parameters, say a; ~ a, ~ m? integrations become unconstrained 8(a; — 3;)0(a, — o) — 1

® Turn boundary integrals into ordinary PS integral J using 1 = f dqé(q—k; —k,) insertion

[ dadks&(1— B, —B3)Cs 1 2
b= f a?+aqfs +m? * [T;Di(ay, By a2 as, Bs) X Jesng (Bs: 0P )
: _f [dk,1[dk,]15 (k2) 5 (k2) 6D (q—k, —k,)
fne (ky -1)™ (ky - n)* (ky - 0)™ (ko - 0)™ (ky -1+ B3)™ (kg -0+ B3)™°

IBP reduction possible, nontrivial part in the angular integral Q,, = f (k,VI)al(k_VdSEZ v

a After partial fractioning only Q,, with n = 1,2 and maximum single vi2 # 0 and all other vj2 =0
® Trivial integration over large parameter a, ~ m?, linear propagators simplified e.g. a; +a; — a,
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Direct integration of Mls and boundary constants

® We have calculated ~ 130 integrals without l/kf23 denominator and ~ 100 boundary conditions by direct integration

with HyperInt

a Summary of used techniques

|. Change variables to satisfy all constraints from 6 and 6 functions
Perform as many integrations as possible in terms of ,F; and F; functions with known transformation properties

Perform remaining integrations in terms of ,F, functions if possible

= W

For the final integral representation with minimal number of integrations and minimal set of divergencies - construct subtraction
terms

wn

Integrand with all divergencies subtracted is expanded in € and integrated term by term with HyperInt

6. Subtraction terms are integrated in the same way

Intro Details RRV RRR Results
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Numerical checks of calculated integrals

2

® For integrals without 1/k7,,

denominator use parametrisation similar to one used for analytical calculation

- Straightforward hyper-cube parametrisation due to simple angle dependence of 1/ (ki ~kj) denominators only
- Sector decomposition with remapping x — 1 divergencies to x’ — 0 with pySecDec or FIESTA

2

1o3 at m? = 0 we avoid the need to use angles and construct Mellin-Barnes representation

® For integrals with 1/k

- Repeated application of (A + B)* — f AMB”2 important to have A, B > 0 at each step
- Angle integration simplified until can be integrated in terms of gamma functions only
- Analytical continuation with MBresolve and numerical integration with MB

2

105 atfinite m?, which are less divergent due to mass regularization

® |ntegrals with 1/k

- Careful preselection of less divergent integrals using available reduction to prevent SD from complexity explosion
- For finite integrals or integrals with factorized divergencies direct integration with subtraction

- Midpoint splitting for x; — 1 divergencies and sector decomposition for overlapping divergencies using FIESTA
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Mellin-Barnes representation for angular integral

2

® First we convert complicated denominator 1/k?,.,

into product of scalar products

c+ioco

1 1 dz,dz, T(A 42y +29)(—21 )T (—25)

(kq -ko + ko - kg +kg-kq)t () @2nri)? (kg -ko)zr+eetA(ky -kg) 7 (kg - kg )22

c—ico

® |ntroduce unit length vectors to make standard angular integral structure transparent

ct+ioco . 22 N
1 1 dz 2 (\/ aiﬁj —4/ ajﬁi) 1 ki
K-k ) T(A 2 AT F2) 2/242]2 o Pis| b=
(ki - k) r'(a) g sl (ai/jiaj/jj) (pi - pj) [k; 1|

® Final angles integration can be done in closed form well suited for subsequent MB integrations

3
T(1—2e—A)[[T(3—e—2,
A9, d0,dQ; r3(1—¢) (—2e=MIIr(5-e=2)
(p1-p2)*

(p2-ps)a(ps-pr)s  mol2205A0(1=2¢) &
_]‘[l_ﬂlr(l—Qe—)\i—Aj)
s
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Use angles between transverse momenta as parameters

i k) = 172y — o) + aPias By

pio=(1—cos6;) py3=(1—cosby) py3z=(1—cosb, cosb,—sinb, sinb,cosbs)

Integral divergences analysis

® x; €[0,1] = z; €[0, 00), div: {z} = 0 or {z} - o0 = For all integrals with Z, # @ split at point 0 < p < co
® Possible subsets Z and Z, of {z1,...,2,} oo 0o I
i 1
® Do rescalings z; = Az;,2; € Zg and z; = 1/A2;,2; € Zeo fdzf(z)zpf a iZ = f( 1[:—Z )+pf i:f(p( +z))
= Divergent if forf % [TP(z)P> - A™ f % [TP)P 2 2 z z z z
w+dim (Z,) — dim (Zoo) <0 ® Select less divergent integrals determined by all Z, sets
Intro Details RRV RRR Results
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Summary: triple-real contributions A“(IT

Additional regulator is required for correct IBP reduction

Efficient techniques are developed to decrease the complexity of the reduction with additional regulator

DE for auxiliary m? dependent integrals with l/kf23 propagator makes calculation possible

DE in addition to numerical solution also provides many important consistency checks and relations

® |ntegrals are highly non-trivial for numerical checks
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Final result and applications



KIT

Laplace space and UV renormalization

® Final unrenormalized result for the NNNLO soft function is a sum over configurations C

RVV,C RRV,C RRR,C
SNANLO = Zs +Zs +Zs
a For the renormalization we need the NNLO result expanded to higher orders in ¢

2 3
€ a 2¢e a 3e
B Sab 3 s,B Sab s,B Sab q 4 )
(Q%Q) S+ (Q2T2) Sy +— (Q2T2) 53+ﬁ(as’B

= Do strong coupling renormalization a, g = u*Z, .a5(u) and do Laplace transform with parameter i = ue’®

ST,B =

[e o]
~ S
— —Tu 2¢ _ - ab
S (i), L) = f e ™S (a5 = 07, 0.00), Ls =In (a3 )
0
a Convenient to consider Sp because the renormalization in Laplace space is multiplicative
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Renormalization and checks from RG equation

® Multiplicative renormalization in the Laplace space with Lg dependent renormalization constant Z(a,, Lg)
S(as Ls) = Z,(a, Ls)Sp(a,, Ls) = 0 (¢°) Lo =in{un'g)
- w dependence in ag() and Lg
® 7, determined by the pole part of SB satisfies RG equation
- I is finite
(aiLs + ﬁ(as)aias) InZ,(as, Lg) =T} (ag, Lg) = =4y cusp(as)Ls — 274(as) = Known cusp an.dim y¢ygp

- Known non-cusp an.dim v,
a Possible to make prediction for the NNNLO pole part of éB and therefore for S; 5 from the NNLO result

a Final form of the renormalized NNNLO soft function can be split into constant and Lg dependent parts

oo 2i oo 2i
o J 3 — &
n(8(as,Lg)) = > > Cyal Ll =In(8)+ > > Cyalll, §=5(a,,0)
i=1 j=0 i=1 j=1
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Result for NNNLO zero-jettiness soft function

a Eikonal line representation dependence completely factorizes at NNNLO due to Casimir scaling

n(S) 80 15472 104(:3) G (2140+871n2 2865 1471-4)]
2 %) o, _ _

=—a,n® +a%|nT (—+
Cn W7 aS[nf sl 27 9 80 | 54 9 15

3| oo (265408 400m% 519045  328n*
+aZ | n;Tq — —
6561 243 243 1215

® With a, = £2 and new coefficients calculated numerically with high precision

Xpp = 68.94258498 Xpa = 839.72385238 Xan = —T753.77578727

= Soft function constants in ng = 5 QCD required for resummed predictions (q : Cg — Cy) and (g: Cg — C,)

S, S.g
¢y =—1369.575849 cy® =—3541.982541
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Singular region cross section from MC simulation

fit region

Ohaa d7’

1
R(r)= 242 from EERAD3

T=0F {7=1

R(T) = 0 Udhq;d %
a Fitin the region, where NNLO MC predictions and approximate factorization prediction overlap
® From the condition R(7)+ R(7) =1 and all C;, G;; except C3 known
) a k oo i+l G a. il ; 1
= C (—5) ; (_b) 1
R(7) 1+1§ |5 exp ;; il ) I =

a Missing C; in the parametrisation of dijet region for NNLO Thrust
C; =—1050 % 180 £ 500
v RRR
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From soft function to singular cross section

a Coefficient C3 is determined by constant parts of Hard(H), Jet(]) and Soft(S) functions

- N3LO hard function is known cI; = 8998.08
- N3LO jet function known cg =—128.651

S

® From Cg value can determine c3, since all other ingredients are known

s {—19988 + 1440 £+ 4000 fit result

€= —1369.57 this work, exact

® |nverse of the relation with known c§ allows C; color structures prediction

n?N2 n?NO n?N_2 nl}N1 n% Nt n?NO sum
From cg 2766.05 —60.1237  0.37891 —1581.01 18.4901 133.47 1277.25
Fit 354151 —265£8 —71+£3 —=5078=%x145 2367 95£120 [ —1543£195
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Applications

® Thrust resummation for a, determination, missing ingredient cg is now available

S

5 numerical fit

- C

J .S

_ oH
¢y known, fitted c;, c3

_ ~H T S
Cg3,C3 known, attempt to extract C3

® Higgs decay to quarks/gluons a, series convergence restored

§, =1—2.36a,+1.617a’ —(22.89 £ 5.67) o’
S—— ———

fit
a Differential N3LO jet production in DIS and VBF
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Applications

® Thrust resummation for a, determination, missing ingredient cg is now available

S

5 numerical fit

- C

S

_ .H J
Cy known, fitted C3,C3

_ ~H J S
C3,C3 known, attempt to extract C3

® Higgs decay to quarks/gluons a, series convergence restored

§; =1—2.36a,+1.617a> —1.785a?
El ~ s S

exact
a Differential N3LO jet production in DIS and VBF
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Generalization to N3LO [-jettiness

0,0 0,055 -
v J PR B N N
{ HE i i Yo }
. = " + @ji+a‘—a:|'+| .5—[ i
©imOjm
m

® Most complicated real contribution from dipole terms with emissions between i, j lines only

® For each soft momenta k and dipole eikonal factor S;; dependent on p;, p; only with ©;; = 6 (k -p;i—k- pj)
[6(T—k pi—...)0,0;+5(T—k-p;—...) 0,05+ 5 (T—k P —...) 01O | S5

a With ©,,, =1—0,,, most singular contributions coincide with zero-jettiness contributions
[5(’r—k~pi—...)(~3ji +5(T—k'pj —...)@ij]Sij + less singular

RRR Results
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i
Conclusion

a Zero-jettiness slicing scheme is pushed from N2LO to N3LO level with the last missing ingredient calculated

- Thrust resummation in e*e™ annihilation and Higgs decay

- Differential cross section predictions for DIS and VBF

a Developed techniques
- For efficient reduction of phase-space integrals with Heaviside 6-functions constraints in the presence of loop corrections and
additional regulators

- For the high precision numerical solution of differential equations for auxiliary integrals, making possible most complicated
master integrals computation

- For calculation of the large number of highly divergent integrals required for boundary conditions and master integrals without
complicated dependence on soft partons momenta
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Thank you for your attention!
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