

NNNLO zero-jettiness soft function

Andrey Pikelner | 18.11.2024, Siegen

In collaboration with: Daniel Baranowski, Maximilian Delto, Kirill Melnikov and Chen-Yu Wang

2111.13594, 2204.09459, 2401.05245, 2409.11042

I. Introduction and motivation
2. Ingredients of the final result
3. One-loop corrections with two soft emissions
4. Triple real soft emissions
5. Final result and applications

Introduction and motivation

Motivation

- Differential calculation require a good handle of IR divergences, many schemes exist at NNLO
- Slicing scheme seems to be more feasible at N3LO due to non existence of subtraction schemes

$$\sigma(O) = \int_{0} d\tau \frac{d\sigma(O)}{d\tau} = \int_{0}^{\tau_{0}} d\tau \frac{d\sigma(O)}{d\tau} + \int_{\tau_{0}} d\tau \frac{d\sigma(O)}{d\tau}$$

- q_T slicing scheme

[Catani, Grazzini'07]

- N-jettiness slicing scheme

[Boughezal et al.'15][Gaunt et al.'15]

 SCET factorization theorem motivates us to consider jettiness as a convenient slicing variable for processes with jets in the final state

$$\lim_{\tau \to 0} d\sigma(O) = B_\tau \otimes B_\tau \otimes S_\tau \otimes H_\tau \otimes d\sigma_{LO}$$

Intro	
0000	

Details

Slicing scheme ingredients

- A phase space is split according to a slicing variable
- Possible to use any lower order calculation with additional jet in the $\tau > \tau_{\rm cut}$ region

To apply at the NNNLO level:

- Existing NNLO+j calculations
- Many efficient NNLO subtraction schemes

Approximate cross section in the singular region from the factorisation formula

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \mathrm{H}_{\tau} \otimes \{\mathrm{B}_{\tau}\} \otimes \{\mathrm{J}_{\tau}\} \otimes \mathop{\mathrm{S}}_{\tau} \otimes \frac{\mathrm{d}\sigma_{0}}{\mathrm{d}\tau} + \mathcal{O}(\tau)$$

- Hard function H_{τ}
- Beam function B_{τ} , jet function J_{τ}
- Soft function S_{π}

Details Intro 0000

• For two hard partons with momenta p_a and p_b jettiness is defined as follows

$$\mathscr{T}_0 = \sum_{i=1}^m \min\left\{\frac{2p_a \cdot k_i}{Q}, \frac{2p_b \cdot k_i}{Q}\right\}, \quad k_i - are \ soft \ partons$$

- It is possible to rescale $p_a=\frac{\sqrt{s_{ab}}}{2}n, p_b=\frac{\sqrt{s_{ab}}}{2}\bar{n}$ and go to the frame where n and \bar{n} are back-to-back
- $\qquad \text{Eikonal factors } E(k,l) \text{ have uniform scaling: rescale integration momenta } q_i = q_i' \frac{Q\tau}{\sqrt{s_{ab}}}, \, q_i \in \{k,l\}$

$$S(\tau) \sim \int \underbrace{\left[d^{d}k\right]^{m}}_{locat} \underbrace{\left[d^{d}l\right]^{n}}_{locat} \delta(\tau - \mathcal{T}_{0}) E(k, l) \rightarrow \frac{1}{\tau} \left(\frac{s_{ab}}{Q^{2}\tau^{2}}\right)^{\varepsilon(m+n)} \int \left[d^{d}k'\right]^{m} \left[d^{d}l'\right]^{n} \delta\left(1 - \sum_{i=1}^{m} \min\{\alpha_{i}, \beta_{i}\}\right) E(k', l')$$

Sudakov decomposition

$$k_i = \frac{\alpha_i}{2} n + \frac{\beta_i}{2} \bar{n} + k_{i,\perp}, \quad k_i \cdot n = \beta_i, \quad k_i \cdot \bar{n} = \alpha_i, \quad n \cdot \bar{n} = 2, \quad n^2 = \bar{n}^2 = 0$$

Intro 000

Details 000000 RRV

Ingredients of the final result

What is actually calculated?

• 0-jettiness in hadronic collisions is equal to Thrust or 2-jettiness in e⁺e⁻ annihilation or Higgs decay

- \blacksquare The limit au o 0 corresponds to the soft limit of the squared amplitude eikonal Feynman rules
- Need to include all possible real and virtual corrections to the amplitude squared

- Possible to combine different measurement function terms into unique configurations
- Perform integration over highly non-trivial region all kinds of divergencies are possible

Intro	Details	RRV	RRR	Results
0000	o●oooo	0000000	000000000000000000	000000000

From measurement function to configurations

- Minimum function is a problem for analytic calculation
- Definition which is more friendly for phase-space integration generates many configurations

$$\delta\left(1-\sum_{i=1}^{m}\min\{\alpha_{i},\beta_{i}\}\right)=\delta(1-\beta_{1}-\beta_{2}-\ldots)\theta(\alpha_{1}-\beta_{1})\theta(\alpha_{2}-\beta_{2})\cdots+\delta(1-\beta_{1}-\alpha_{2}-\ldots)\theta(\alpha_{1}-\beta_{1})\theta(\beta_{2}-\alpha_{2})\ldots$$

- Configurations can be mapped to the minimal set due to symmetries of Eikonal factor and $\delta(1-\{\alpha,\beta\})$
- RVV single configuration with $\delta(1-k \cdot n)$, trivial phase-space integration
 - Two-loop soft current is known

[Duhr, Gehrmann'13]

- \blacksquare RRV two configurations nn and $n\bar{n}$
 - Emission of gluons and quark pair

[Chen et al.'22] [Baranowski et al.'24]

- \blacksquare RRR two configurations nnn and nn $ar{n}$
 - Same hemisphere gluon emission

[Baranowski et al.'22]

Results

- Different hemispheres configuration $nn\bar{n}$ and quark pair emission in nnn configuration - this work

Intro	Details	RRV	RRR
0000	00●000	000000	0000000000000000000000000000000000

Calculation strategy

- 1. There are many highly non-trivial integrals, which we can calculate with direct integration
 - All integrations are divergent at the boundaries only
 - All integrals are linear reducible, GPLs only at all steps
 - Once there is a way to subtract divergencies integrals calculated with HyperInt

[Panzer'15]

- 2. Utilization of the modern multi-loop calculation techniques to reduce the problem to (1)
 - Reduction of integrals to the minimal set of master integrals
 - Differential equations for integrals at the expense of introducing new parameters
 - Symmetry relations between integrals
 - Input expression organization in "diagram"-like structures

0000 000000 0000000 00000000 0000000000	Intro	Details	RRV	RRR	Results
	0000	000●00	0000000	000000000000000000	000000000

Relative complexity of ingredients

000000

- For each soft emission we have one θ -function in the measurement function making integration more complicated
- For complicated denominators in the RRR case make direct integration is impossible
- Complicated one-loop sub-integrals in the RRV make direct integration impossible
- Unregulated divergencies in the RRR case

RVV corrections

Two-loop corrections $r_{\rm s}^{(2)}$ to single gluon emission soft current are known exactly in ε

[Duhr, Gehrmann'13]

Two contributions from different hemisphere emissions need to be integrated, $S_{\sigma}^{(3)} = s_{2,0} + s_{1,1} + s_{0,2}$

$$s_{l,m} = \int \frac{d^dk}{(2\pi)^{d-1}} \delta^+(k^2) [\delta(1-k\cdot n)\theta(k\cdot \bar{n}-k\cdot n) + \delta(1-k\cdot \bar{n})\theta(k\cdot n-k\cdot \bar{n})] w_{L,M}(k)$$

- Linear propagators only
- Factorisation of k-dependent part of soft current

One-loop corrections with two soft emissions

One-loop corrections with double emission

- RRV squared amplitudes generated from scratch
- Results for one-loop soft current are known
- RRV result for gg final state were computed earlier
- Recalculation in the unified way including qq final state

[Zhu'20][Czakon et al.'22]

[Chen, Feng, Jia, Liue '22]

[Baranowski et al.'24]

Multi-loop calculations inspired approach

- Reduction to the minimal set of master integrals with loop and phase-space integration
- Differential equations from IBP reduction parameter to differentiate is needed

Intro	Details	RRV	RRR	Results
0000	000000	0●00000	0000000000000000000	000000000
0000	000000	000000	000000000000000000	0000000000

Modified reverse unitarity to deal with θ -integrals

In dimensional regularisation system of IBP equation can be constructed by differentiation under integral sign

$$\int d^dl \frac{\partial}{\partial l_\mu} \Big[v_\mu \cdot f(\{l\}) \Big], \qquad \frac{\partial}{\partial k \cdot \bar{n}} \theta(k \cdot \bar{n} - k \cdot n) = \delta(k \cdot \bar{n} - k \cdot n)$$

• IBP for integrals with θ -functions generate new auxiliary topologies, partial fractioning required

$$\frac{\theta(\mathbf{k}\cdot\bar{\mathbf{n}}-\mathbf{k}\cdot\mathbf{n})}{(\mathbf{k}\cdot\bar{\mathbf{n}})^{\mathbf{a}}(\mathbf{k}\cdot\mathbf{n})^{\mathbf{b}}}\rightarrow\frac{\delta(\mathbf{k}\cdot\bar{\mathbf{n}}-\mathbf{k}\cdot\mathbf{n})}{(\mathbf{k}\cdot\bar{\mathbf{n}})^{\mathbf{a}}(\mathbf{k}\cdot\mathbf{n})^{\mathbf{b}}}$$

- RRR
$$\theta\theta\theta \rightarrow \delta\theta\theta + \theta\delta\theta + \theta\theta\delta \rightarrow \delta\theta\theta + \theta\delta\delta \rightarrow \delta\theta\theta + \theta\delta\delta \rightarrow \delta\theta\theta + \theta\delta\theta \rightarrow \delta\theta\theta + \theta\theta\theta\theta \rightarrow \delta\theta\theta \rightarrow \delta\theta \rightarrow \delta\theta\theta \rightarrow \delta\theta \rightarrow \delta\theta\theta \rightarrow \theta\theta \rightarrow$$

Details

0000000

RRV master integrals calculation

Number of MIs after IBP reduction of both configurations in RRV case

$$\delta\delta$$
 $\delta\theta + \theta\delta$ $\theta\theta$ 8 36 15

- $\,\blacksquare\,$ Direct integration possible, except pentagon and box with $a_3=0$
- DE in auxiliary parameters for most complicated integrals

Original integrals from DE solution

- lacktriangle Additional parameter z is not needed utilize variables from integral representation
- To recover integrals of interest I instead of taking limit $I = \lim_{z \to z_0} J(z)$ we integrate $I = \int dz J(z)$

Intro
IIIII

• For $\delta\delta$ integrals we introduce auxiliary parameter x and solve DE system $\partial_x J(x) = M(\varepsilon, x)J(x)$

$$I_{\delta\delta} = \int d(\mathbf{k}_1 \cdot \mathbf{k}_2) f(\mathbf{k}_1 \cdot \mathbf{k}_2) = \int_0^1 d\mathbf{x} \int d(\mathbf{k}_1 \cdot \mathbf{k}_2) \frac{\delta(\mathbf{k}_1 \cdot \mathbf{k}_2 - \frac{\mathbf{x}}{2})}{\delta(\mathbf{k}_1 \cdot \mathbf{k}_2)} = \int_0^1 J(\mathbf{x}) d\mathbf{x}$$

• For $\delta\theta$ and $\theta\delta$ we use integral representation for θ -function and solve DE system $\partial_z J(z) = M(\varepsilon,z)J(z)$

$$\theta(b-a) = \int_0^1 b\delta(zb-a)dz, \quad I_{\delta\theta} = \int_0^1 J(z)dz$$

• For $\theta\theta$ integrals PDE system in two variables z_1, z_2 , no IBP reduction with θ -functions needed

$$I_{\theta\theta} = \int_{0}^{1} dz_{1} \int_{0}^{1} dz_{2} J(z_{1}, z_{2})$$

Intro

Details 000000 RRV oooo●oo

RRR 000000000000000000000

Differential equations in canonical form

- For all auxiliary integrals it is possible to find alternative basis of integrals, such ε dependence of the DE system matrix factorizes completely: $M(\varepsilon) \to \varepsilon A$ [Henn '13]
- Straightforward solution for integrals in canonical basis in terms of GPLs
- Simpler boundary conditions fixing due to known general form of expansion near singular points

$$g(z) = z^{a_1 + b_1 \varepsilon} (c_1 + \mathcal{O}(z)) + z^{a_2 + b_2 \varepsilon} (c_2 + \mathcal{O}(z)) + \dots$$

Construction of subtraction terms to remove endpoint singularities in the final integration

$$\int_0^1 J(z)dz = \int_0^1 \underbrace{\left[J(z) - z^{a_i + b_i \varepsilon} j_0(z) - (1-z)^{a_k + b_k \varepsilon} j_1(z)\right]}_{\varepsilon - \mathrm{expanded}} dz + \int_0^1 \underbrace{\left(z^{a_i + b_i \varepsilon} j_0(z) - (1-z)^{a_k + b_k \varepsilon} j_1(z)\right)}_{\varepsilon - \mathrm{exact}} dz$$

Intro	Details	RRV	RRR	Results
0000	000000	00000●0	0000000000000000000	0000000000

Summary: real-real-virtual contributions

- lacktriangle IBP reduction of integrals with θ -functions and loop integration can be efficiently implemented
- Differential equations for auxiliary integrals can be constructed and solved analytically
- Auxiliary integrals are simplified in the limit, and all required boundary constants can be calculated

Intro

Details 000000 RRV 0000000

Triple real soft emissions

Triple real emissions

Recalculated input for eikonal factors with partial fractioning and topology mapping

- $\mathbf{ggg} = \mathbf{ggg} + \mathbf{gc\bar{c}}$, coincides with the known expression in physical gauge
- gqq̄ in agreement with

[Catani, Colferai, Torrini'19]

[Del Duca, Duhr, Haindl, Liu'23]

 $\delta(\tau - \beta_1 - \beta_2 - \beta_3)$

Different hemispheres

Same hemisphere result for ggg final state is known

[Baranowski et al. '22]

15/41

Details

Divergences unregulated dimensionally

- Same hemisphere emission of k_1, k_2 partons
- Integration in the region $\beta_1 << \alpha_1, \beta_2 << \alpha_2$
- Both are close to the \vec{n} direction $\cos \theta_1 \sim \cos \theta_2 \sim 1 + \mathcal{O}(\lambda)$
- And large energies difference $\omega_1 \sim 1 << \omega_2 \sim 1/\lambda$

Possible cases for integrals in the potentially unregulated region

Integrals in the region with scaleless integrations

safe

• Integrals with zero sum of two contributions from $\theta_1 > \theta_2$ and $\theta_1 < \theta_2$ parts

safe

Rare cases of integrals with non-trivial region contribution

Additional regulator needed

Details

Additional regulator in action

- Example region k_1, k_2 : $\beta_1 \sim \lambda$ and $\alpha_2 \sim 1/\lambda$ change of variables $\beta_1 = \xi_1 \alpha_1$ and $\alpha_2 = \beta_2/\xi_2$
- $\bullet \ \, \text{Our choice for regulator to modify integration measure for each } \, dk_i \theta(a_i-b_i) \to dk_i \theta(a_i-b_i) b_i^{\nu}$

$$\int \frac{\mathrm{d}\alpha_1 \mathrm{d}\beta_1 \mathrm{d}\alpha_2 \mathrm{d}\beta_2 (\beta_1 \beta_2)^{\nu}}{(\alpha_1 \beta_1 \alpha_2 \beta_2)^{\varepsilon}} \to \begin{cases} \int \mathrm{d}\alpha_1 \mathrm{d}\beta_2 \mathrm{d}x \mathrm{d}\xi_2 \frac{(\alpha_1 \beta_2)^{1-2\varepsilon+\nu}}{\xi_2^{1-\nu} x^{\varepsilon-\nu}} &, \, \xi_1 < \xi_2, \xi_1 = x\xi_2 \\ \int \mathrm{d}\alpha_1 \mathrm{d}\beta_2 \mathrm{d}x \mathrm{d}\xi_1 \frac{(\alpha_1 \beta_2)^{1-2\varepsilon+\nu}}{\xi_1^{1-\nu} x^{2-\varepsilon}} &, \, \xi_2 < \xi_1, \xi_2 = x\xi_1 \end{cases}$$

- Additional complications due to a new regulator
 - More complicated reduction due to an additional parameter in the problem
 - Master integrals calculation is more difficult due to the need to consider the double limit $\varepsilon, \nu \to 0$

ntro
IIIU
0000

Details 000000 RRV 0000000 RRR 000•0000000000000000

Reduction of v-regulated integrals

Approaches to ν -dependent IBP reduction problem (IBP with ν is available)

- 1. Direct v-dependent reduction with additional variable
 - X Time consuming and not flexible especially if basis change needed
 - ✓ Minimal set of master integrals and full v-dependent solution
- 2. Filtering remove all equations with potentially divergent integrals from the IBP system
 - \checkmark Very fast compared to the full ν -dependent reduction
 - X Potentially unreduced integrals, needs divergencies analysis for all integrals in the IBP system
- 3. Expansion rewrite IBP system as a new system for $1/\nu$ expansion coefficients of integrals
 - Fast reduction with control of divergencies
 - X Additional divergent parts of integrals from the intermediate steps of IBP reduction can appear

Details

- $\label{eq:consider} \mbox{ From the analysis of possible divergencies we consider ansatz } \ J_a = \sum_{k=k_0}^{\infty} J_a^{(k)} \nu^k \mbox{ with } k_0 = -1$
- lacksquare Solution of the IBP reduction problem for regular-u integrals I_a has the form

$$I_a^{(0)} = R_{ab} \, J_b^{(0)} + D_{ab} \, \tilde{J}_b^{(-1)}$$

- We require a "good" basis to fulfill the following conditions:
 - Coefficients in front of master integrals do not contain $1/\nu$ poles
 - Each master integral is a member of only one set $J_{\rm b}$ or $\tilde{J}_{\rm b}$
 - Candidates for the set $J_{\rm b}$ can be found from the $\nu=0$ reduction
- Regular integrals $J_b^{(0)}$ are calculated in a standard way, calculation of needed divergent parts $\tilde{J}_b^{(-1)}$ is simplified, since only specific regions contribute

In	tro
	000

DE for RRR integrals with auxiliary mass

- Integrals for both nnn and $nn\bar{n}$ configurations with denominator $1/k_{123}^2$ are difficult to calculate
- lacksquare Since integrals are single scale, auxiliary parameter is needed to construct the system of DE $I o J(m^2)$
- $\blacksquare \text{ We modify the most complicated propagator } \frac{1}{\left(k_1 + k_2 + k_3\right)^2} \to \frac{1}{\left(k_1 + k_2 + k_3\right)^2 + m^2}$
- Calculation of boundary conditions is possible in the limit $m^2 \to \infty$, but still very difficult
- lacktriangle Massless integrals I are obtained from the solution for $J(m^2)$ in the limit $m^2 o 0$, which is not trivial

Difficulties of the chosen strategy

- \blacksquare Both points $m^2 \to 0$ and $m^2 \to \infty$ are singular points of the DE system
- Solution of the DE for integrals with massive denominator is only possible numerically

Details of the DE solution

- A much larger DE system, ~ 650 equations are needed for $nn\bar{n}$ configuration compared to ~ 150 for nnn
- lacktriangle Need to calculate all contributing regions into boundary conditions in the $m^2
 ightarrow \infty$ limit

- lacktriangledown For each large parameter $lpha_i \sim m^2$ we remove $heta \Longrightarrow$ additional IBP reduction of boundary conditions integrals possible
- Numerical solution of the DE system as a sequence of series expansions [Liu et al.'18][Chen et al.'22]

Intro	Details	RRV	RRR	Results
0000	000000	0000000	0000000●00000000000	000000000

From boundaries at $m^2 \to \infty$ to $m^2 \to 0$ solution

- Sum of all regions at $m^2 \to \infty$ to get high precision numerical solution at the first regular point R_{∞}
- High precision numerical solution of the DE between sequence of regular point $R_{\infty} \to R_1 \dots R_n \to R_0$
- Final result Taylor branch of the generalized $m^2 \rightarrow 0$ expansion gives the required result

	esults 000000000
--	---------------------

- Numerical DF solution at finite m²
 - Independent numerical checks at finite m²
- Local Fuchsian form of the DE near singular points $m^2 \to 0$ and $m^2 \to \infty$
 - Matrix solution and generalized power series expansions
 - Minimal set of independent boundary constants to calculate
- Self-consistency checks of the DE solution and boundaries
 - Unphysical branches disappear after boundaries substitution
 - On the real axis $m^2 \in (0, \infty)$ all integrals have zero imaginary parts
- Relations between specific branch expansion coefficients and IBP reduction of boundary constants
- Massless integrals we are interested in are extracted from the specific branch of $m^2 \to 0$ DE solution

Intro	Details	RRV	RRR	Results
0000	000000	0000000	000000000•000000000	000000000

• Local Fuchsian form of the transformed DE with $\vec{f} = T\vec{g}$ and $v = v(m^2)$

$$\frac{\partial \vec{\mathbf{g}}}{\partial \mathbf{y}} = \left[\frac{\mathbf{A}_0}{\mathbf{y}} + \sum_{i} \frac{\mathbf{A}_i}{\mathbf{P}_i(\mathbf{y})} \right] \vec{\mathbf{g}}, \quad \mathbf{P}_i(0) \neq 0$$

• Leading order matrix solution $\vec{g}(y) = U(y)\vec{B}$ directly read from the Fuchsian DE: $U(y \to 0) \sim y^{A_0}$

Specific branch y^{λ} expansions, $\lambda = b\varepsilon$

$$\begin{split} J_1^{(\lambda)} &= y^{a_1 + \lambda} \left(c_{1,0}^{\lambda} + c_{1,1}^{\lambda} y^1 + c_{1,2}^{\lambda} y^2 + \dots \right) \\ &\vdots \end{split}$$

$$J_n^{(\lambda)} = y^{a_n + \lambda} \Big(c_{n,0}^{\lambda} + c_{n,1}^{\lambda} y^1 + c_{n,2}^{\lambda} y^2 + \dots \Big)$$

- We are interested in $v = m^2$ and $v = 1/m^2$
- \blacksquare Minimal vector \vec{B} is a subset of $\bigcup\{c_{1,0}^{\lambda},\dots,c_{n,0}^{\lambda}\}$
- All c_i^{λ} , with j > 0 through subset of $c_{i,0}^{\lambda}$
- Reducible integrals expansion coefficients reduction

Details

IBP reduction of boundary constants at $m^2 \rightarrow \infty$

Local Fuchsian form ⇒ Matrix series solution ⇒ IBP for constants

- I . Available IBP reduction tables for massive integrals $X_i = \sum\limits_k R_{i,k}(m^2) J_k$
- 2. Deep enough $1/m^2$ expansions for master integrals J_k due to possible poles/zeroes in $R_{i,k}(m^2)$
- 3. Substitution of expanded MIs and unknown integrals $X_i = \sum_{\lambda} X_i^{(\lambda)}$ to IBP tables provides relations between leading expansion coefficients $x_{i,0}^{\lambda}$ and $c_{i,0}^{\lambda}$ valid for each branch $(m^2)^{\lambda}$ independently

$$X_i^{(\lambda)} = (m^2)^{a_1 + \lambda} \left(\frac{\mathbf{x}_{i,0}^{\lambda} + \frac{\mathbf{x}_{i,1}^{\lambda}}{m^2} + \frac{\mathbf{x}_{i,2}^{\lambda}}{m^4} + \dots \right)$$

- In each region additional boundary constants calculated and checked against reduction prediction
- Due to huge difference in calculation complexity possible to select simpler/less divergent integrals

Intro
0000

Boundary integrals simplification

• Main difficulty comes from the dependence of $k_{123}^2 + m^2$ on three angles, but in specific regions simplifications occur

$$k_{123}^2 + m^2 = \sum_{i \neq j} \alpha_i \beta_j - \sqrt{\alpha_i \beta_i \alpha_j \beta_j} \cos \left(k_{i,\perp}, k_{j,\perp} \right) + m^2$$

 \blacksquare Region $\left(m^2\right)^{-\varepsilon}$, single large parameter e.g. $\alpha_1 \sim m^2$

$$k_{123}^2 + m^2 \rightarrow \alpha_1 (\beta_2 + \beta_3) + m^2$$

• Region $(m^2)^{-2\varepsilon}$, pair of large parameters e.g. $\alpha_1 \sim \alpha_2 \sim m^2$, angle dependence remains since $k_1 \cdot k_2 \sim m^2$

$$k_{123}^2 + m^2 \rightarrow k_{12} + (\alpha_1 + \alpha_2)\beta_3 + m^2$$

Intro

Details 000000 RRV 0000000

Boundary constants in the region $(m^2)^{-\varepsilon}$

- Dependence on angles disappears in $k_{123}^2 + m^2 \rightarrow \alpha_i(\beta_i + \beta_k) + m^2$ in the $m^2 \rightarrow \infty$ limit
- Only non-trivial scalar product for e.g. $\alpha_1 \sim m^2$ is $(k_2 \cdot k_3)$ and $\theta(\alpha_1 \beta_1) \to 1$
- Integration over the relative angle between soft partons in terms of 2F1, function of argument dependent on $r_i = \frac{\beta_i}{\alpha_i} \theta(\alpha_i - \beta_i) + \frac{\alpha_i}{\beta_i} \theta(\beta_i - \alpha_i)$
- For same-hemisphere emissions we split integration region into $r_i > r_i$ and $r_i < r_i$

Boundary constants in the region $(m^2)^{-2\varepsilon}$

- For two large parameters, say $\alpha_1 \sim \alpha_2 \sim m^2$ integrations become unconstrained $\theta(\alpha_1 \beta_1)\theta(\alpha_2 \beta_2) \to 1$
- lacktriangledown Turn boundary integrals into ordinary PS integral J using $I=\int dq \delta(q-k_1-k_2)$ insertion

$$\begin{split} I_{-2\varepsilon} &= \int \frac{\mathrm{d}q \mathrm{d}k_{3} \delta(1-\beta_{q}-\beta_{3}) \mathscr{C}_{3}}{q^{2} + \alpha_{q} \beta_{3} + m^{2}} \times \frac{1}{\prod_{i} D_{i} \left(\alpha_{q}, \beta_{q}, q^{2}, \alpha_{3}, \beta_{3}\right)} \times J_{a_{1} \dots a_{6}} \left(\beta_{3}, \alpha_{q}, \beta_{q}, q^{2}\right) \\ J_{a_{1} \dots a_{6}} &= \int \frac{\left[\mathrm{d}k_{1}\right] \left[\mathrm{d}k_{2}\right] \delta\left(k_{1}^{2}\right) \delta\left(k_{2}^{2}\right) \delta^{(d)} \left(q - k_{1} - k_{2}\right)}{\left(k_{1} \cdot n\right)^{a_{1}} \left(k_{2} \cdot n\right)^{a_{2}} \left(k_{1} \cdot \bar{n}\right)^{a_{3}} \left(k_{2} \cdot \bar{n}\right)^{a_{4}} \left(k_{1} \cdot n + \beta_{3}\right)^{a_{5}} \left(k_{2} \cdot n + \beta_{3}\right)^{a_{6}}} \end{split}$$

- $\blacksquare \text{ IBP reduction possible, nontrivial part in the angular integral } \Omega_n = \int \frac{\mathrm{d}\Omega_k}{(k\cdot v_1)^{a_1}(k\cdot v_2)^{a_2}...(k\cdot v_n)^{a_n}}$
- \blacksquare After partial fractioning only Ω_n with n=1,2 and maximum single $v_i^2\neq 0$ and all other $v_j^2=0$
- $\ \ \, \hbox{Trivial integration over large parameter $\alpha_q \sim m^2$, linear propagators simplified e.g. $\alpha_1 + \alpha_3 \to \alpha_1$ }$

Intro

Details 000000 RRV 0000000

Direct integration of MIs and boundary constants

- We have calculated ~ 130 integrals without $1/k_{123}^2$ denominator and ~ 100 boundary conditions by direct integration with HyperInt [Panzer'15]
- Summary of used techniques
- 1. Change variables to satisfy all constraints from δ and θ functions
- Perform as many integrations as possible in terms of ₂F₁ and F₁ functions with known transformation properties
- 3. Perform remaining integrations in terms of ${}_{\rm p}{\rm F}_{\rm q}$ functions if possible
- 4. For the final integral representation with minimal number of integrations and minimal set of divergencies construct subtraction terms
- 5. Integrand with all divergencies subtracted is expanded in ε and integrated term by term with HyperInt
- 6. Subtraction terms are integrated in the same way

0000 000000 0000000 00000000000000000	Intro	Details	RRV	RRR	Results
	0000	000000	0000000	0000000000000000000000000000000000	000000000

Numerical checks of calculated integrals

- For integrals without $1/k_{123}^2$ denominator use parametrisation similar to one used for analytical calculation
 - Straightforward hyper-cube parametrisation due to simple angle dependence of $1/(k_i \cdot k_i)$ denominators only
 - Sector decomposition with remapping $x \to 1$ divergencies to $x' \to 0$ with pySecDec or FIESTA
- For integrals with $1/k_{123}^2$ at $m^2 = 0$ we avoid the need to use angles and construct Mellin-Barnes representation
 - Repeated application of $(A + B)^{\lambda} \rightarrow \int A^{\lambda_1} B^{\lambda_2}$, important to have A, B > 0 at each step
 - Angle integration simplified until can be integrated in terms of gamma functions only
 - Analytical continuation with MBresolve and numerical integration with MB
- Integrals with $1/k_{123}^2$ at finite m^2 , which are less divergent due to mass regularization
 - Careful preselection of less divergent integrals using available reduction to prevent SD from complexity explosion
 - For finite integrals or integrals with factorized divergencies direct integration with subtraction
 - Midpoint splitting for $x_i \to 1$ divergencies and sector decomposition for overlapping divergencies using FIESTA

Intro	Details	RRV	RRR	Results
0000	000000	0000000	00000000000000000	000000000

Mellin-Barnes representation for angular integral

• First we convert complicated denominator $1/k_{123}^2$ into product of scalar products

$$\frac{1}{(k_1 \cdot k_2 + k_2 \cdot k_3 + k_3 \cdot k_1)^{\lambda}} = \frac{1}{\Gamma(\lambda)} \int_{c-i\infty}^{c+i\infty} \frac{dz_1 dz_2}{(2\pi i)^2} \frac{\Gamma(\lambda + z_1 + z_2)\Gamma(-z_1)\Gamma(-z_2)}{(k_1 \cdot k_2)^{z_1 + z_2 + \lambda}(k_2 \cdot k_3)^{-z_1}(k_3 \cdot k_1)^{-z_2}}$$

Introduce unit length vectors to make standard angular integral structure transparent

$$\frac{1}{(\mathbf{k_i} \cdot \mathbf{k_j})^{\lambda}} = \frac{1}{\Gamma(\lambda)} \int\limits_{c-i\infty}^{c+i\infty} \frac{\mathrm{d}z}{2\pi \mathrm{i}} \Gamma(-z) \Gamma(\lambda+z) \frac{2^{-z} \left(\sqrt{\alpha_i \beta_j} - \sqrt{\alpha_j \beta_i}\right)^{2z}}{\left(\alpha_i \beta_i \alpha_j \beta_j\right)^{z/2 + \lambda/2}} \frac{1}{(\rho_i \cdot \rho_j)^{z+\lambda}}, \quad \rho_i = \left(1, \frac{\vec{k}_{i,\perp}}{|\vec{k}_{i,\perp}|}\right)$$

• Final angles integration can be done in closed form well suited for subsequent MB integrations

$$\int \frac{\mathrm{d}\Omega_1 \mathrm{d}\Omega_2 \mathrm{d}\Omega_3}{(\rho_1 \cdot \rho_2)^{\lambda_1} (\rho_2 \cdot \rho_3)^{\lambda_2} (\rho_3 \cdot \rho_1)^{\lambda_3}} = \frac{\Gamma^3 (1 - \varepsilon)}{\pi^{3/2} 2^{6\varepsilon + \lambda} \Gamma (1 - 2\varepsilon)} \frac{\Gamma (1 - 2\varepsilon - \lambda) \prod\limits_{i=1}^3 \Gamma \left(\frac{1}{2} - \varepsilon - \lambda_i\right)}{\prod\limits_{i=1}^3 \prod\limits_{j=1}^{i-1} \Gamma \left(1 - 2\varepsilon - \lambda_i - \lambda_j\right)}$$

Intro

31/41

Details 000000 RRV 0000000 RRR 00000000000000000000

Finite mass integrals

Use angles between transverse momenta as parameters

$$\begin{split} (\mathbf{k_i} \cdot \mathbf{k_j}) &= 1/2 \Big(\sqrt{\alpha_i \beta_j} - \sqrt{\alpha_j \beta_i} \Big)^2 + \sqrt{\alpha_i \beta_i \alpha_j \beta_j} \rho_{ij} \\ \rho_{12} &= (1 - \cos \theta_1) \quad \rho_{13} = (1 - \cos \theta_2) \quad \rho_{23} = (1 - \cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 \cos \theta_3) \end{split}$$

Integral divergences analysis

- $\mathbf{x}_i \in [0,1] \to \mathbf{z}_i \in [0,\infty)$, div: $\{\mathbf{z}\} \to 0$ or $\{\mathbf{z}\} \to \infty$
- Possible subsets Z_0 and Z_{∞} of $\{z_1, \ldots, z_n\}$
- Do rescalings $z_i \to \lambda z_i, z_i \in Z_0$ and $z_i \to 1/\lambda z_i, z_i \in Z_\infty$
- Divergent if for $\int \frac{dz}{z^a} \prod P(z)^b \to \lambda^w \int \frac{dz}{z^a} \prod P(z)^b$

$$\mathbf{w} + \dim(\mathbf{Z}_0) - \dim(\mathbf{Z}_{\infty}) \le 0$$

• For all integrals with $Z_{\infty} \neq \emptyset$ split at point 0

$$\int\limits_0^\infty dz f(z) = p \int\limits_0^\infty \frac{dz}{(1+z)^2} f\bigg(\frac{pz}{1+z}\bigg) + p \int\limits_0^\infty \frac{dz}{z^2} f\bigg(\frac{p(1+z)}{z}\bigg)$$

Select less divergent integrals determined by all Z₀ sets

Details

Summary: triple-real contributions

- Additional regulator is required for correct IBP reduction
- Efficient techniques are developed to decrease the complexity of the reduction with additional regulator
- $\,\blacksquare\,$ DE for auxiliary m^2 dependent integrals with $1/k_{123}^2$ propagator makes calculation possible
- DE in addition to numerical solution also provides many important consistency checks and relations
- Integrals are highly non-trivial for numerical checks

Intro
0000

Final result and applications

Laplace space and UV renormalization

Final unrenormalized result for the NNNLO soft function is a sum over configurations C

$$S_{\tau,B}^{\rm NNNLO} = \sum_{C} S_{\tau,B}^{\rm RVV,C} + \sum_{C} S_{\tau,B}^{\rm RRV,C} + \sum_{C} S_{\tau,B}^{\rm RRR,C}$$

lacktriangle For the renormalization we need the NNLO result expanded to higher orders in arepsilon

[Baranowski'20]

$$S_{\tau,B} = \delta(\tau) + \frac{a_{s,B}}{\tau} \left(\frac{s_{ab}}{Q^2 \tau^2}\right)^{\epsilon} S_1 + \frac{a_{s,B}^2}{\tau} \left(\frac{s_{ab}}{Q^2 \tau^2}\right)^{2\epsilon} S_2 + \frac{a_{s,B}^3}{\tau} \left(\frac{s_{ab}}{Q^2 \tau^2}\right)^{3\epsilon} S_3 + \mathcal{O}\left(a_{s,B}^4\right)$$

lacktriangle Do strong coupling renormalization $a_{s,B}=\mu^{2\epsilon}Z_{a_s}a_s(\mu)$ and do Laplace transform with parameter $\bar{u}=ue^{\gamma_E}$

$$\tilde{S}_{B}\left(a_{s}(\mu),L_{S}\right)=\int\limits_{0}^{\infty}d\tau e^{-\tau u}\,S_{\tau,B}\left(a_{s,B}\rightarrow\mu^{2\varepsilon}Z_{a_{s}}a_{s}(\mu)\right),\quad L_{S}=\ln\biggl(\mu\bar{u}\frac{\sqrt{s_{ab}}}{Q}\biggr)$$

lacksquare Convenient to consider \tilde{S}_{B} because the renormalization in Laplace space is multiplicative

Intro	
0000	

Details 000000 RRV 0000000 RRR

Renormalization and checks from RG equation

• Multiplicative renormalization in the Laplace space with L_S dependent renormalization constant $Z_s(a_s, L_S)$

$$\tilde{S}(a_s,L_S) = Z_s(a_s,L_S) \tilde{S}_B(a_s,L_S) = \mathcal{O}\left(\varepsilon^0\right)$$

-
$$L_S = ln \left(\mu \bar{u} \frac{\sqrt{s_{ab}}}{Q} \right)$$

- μ dependence in $a_a(\mu)$ and L_S

 \blacksquare Z_s determined by the pole part of \tilde{S}_{B} satisfies RG equation

$$\left(\frac{\partial}{\partial L_{s}} + \beta(a_{s})\frac{\partial}{\partial a_{s}}\right) \ln Z_{s}(a_{s}, L_{S}) = \Gamma_{s}(a_{s}, L_{S}) = -4\gamma_{cusp}(a_{s})L_{S} - 2\gamma_{s}(a_{s})$$

- $\Gamma_{\rm s}$ is finite
- Known cusp an.dim $\gamma_{\rm cusp}$
- Known non-cusp an.dim γ_s
- Possible to make prediction for the NNNLO pole part of \tilde{S}_{B} and therefore for $S_{\tau B}$ from the NNLO result
- lacktriangle Final form of the renormalized NNNLO soft function can be split into constant and $L_{
 m S}$ dependent parts

$$\ln \left(\tilde{S}(a_s, L_S) \right) = \sum_{i=1}^{\infty} \sum_{j=0}^{2i} C_{ij} a_s^i L_S^j = \ln \left(\tilde{S} \right) + \sum_{i=1}^{\infty} \sum_{j=1}^{2i} C_{ij} a_s^i L_S^j, \quad \tilde{S} = \tilde{S}(a_s, 0)$$

Result for NNNLO zero-jettiness soft function

Eikonal line representation dependence completely factorizes at NNNLO due to Casimir scaling

$$\begin{split} \frac{\ln\left(\tilde{S}\right)}{C_R} &= -a_s\pi^2 + a_s^2 \left[n_f T_F \left(\frac{80}{81} + \frac{154\pi^2}{27} - \frac{104\zeta_3}{9} \right) - C_A \left(\frac{2140}{80} + \frac{871\pi^2}{54} - \frac{286\zeta_3}{9} - \frac{14\pi^4}{15} \right) \right] \\ &+ a_s^3 \left[n_f^2 T_F^2 \left(\frac{265408}{6561} - \frac{400\pi^2}{243} - \frac{51904\zeta_3}{243} + \frac{328\pi^4}{1215} \right) + n_f T_F \left(C_F \mathbf{X}_{FF} + C_A \mathbf{X}_{FA} \right) + C_A^2 \mathbf{X}_{AA} \right] + \mathcal{O}\left(a_s^4 \right) \end{split}$$

• With $a_s = \frac{\alpha_s}{4\pi}$ and new coefficients calculated numerically with high precision

$$X_{EE} = 68.94258498$$

$$X_{EE} = 68.94258498$$
 $X_{EA} = 839.72385238$

$$X_{AA} = -753.77578727$$

• Soft function constants in $n_f = 5$ QCD required for resummed predictions $(q: C_R \to C_F)$ and $(g: C_R \to C_A)$

$$c_3^{S,q} = -1369.575849$$

$$c_3^{S,g} = -3541.982541$$

- Fit in the region, where NNLO MC predictions and approximate factorization prediction overlap
- From the condition $R(\tau) + \bar{R}(\tau) = 1$ and all C_i , G_{ii} except C_3 known

$$R(\tau) = \left(1 + \sum_{k=1}^{\infty} \frac{C_k}{2\pi} \left(\frac{\alpha_s}{2\pi}\right)^k\right) \exp\left[\sum_{i=1}^{\infty} \sum_{j=1}^{i+1} \frac{G_{ij}}{G_{ij}} \left(\frac{\alpha_s}{2\pi}\right)^i \ln^j \frac{1}{\tau}\right]$$

lacktriangle Missing C_3 in the parametrisation of dijet region for NNLO Thrust

[Monni, Gehrmann, Luisoni'11]

		$C_3 = -1050$	$0 \pm 180 \pm 500$	
Intro	Details	RRV	RRR	Results
0000	000000	0000000	000000000000000000	0000●00000

From soft function to singular cross section

- Coefficient C3 is determined by constant parts of Hard(H), Jet(J) and Soft(S) functions
 - N3LO hard function is known $c_{\rm 3}^{\rm H} = 8998.08$

[Abbate, Fickinger, Hoang et al. '10]

- N3LO jet function known $c_3^{\rm J} = -128.651$

[Brüser,Liu,Stahlhofen'18]

lacktriangle From C_3 value can determine c_3^{S} , since all other ingredients are known

[Brüser,Liu,Stahlhofen'18]

$$c_3^{\rm S} = \begin{cases} -19988 \pm 1440 \pm 4000 & \text{fit result} \\ -1369.57 & \text{this work, exact} \end{cases}$$

 \blacksquare Inverse of the relation with known $c_3^{\rm S}$ allows C_3 color structures prediction

[Monni,Gehrmann,Luisoni'11]

	$n_f^0 N^2$	$n_{\rm f}^0 N^0$	$n_f^0 N^{-2}$	$n_f^1N^1$	$n_f^1 N^{-1}$	$n_f^2 N^0$	sum
				-1581.01			
Fit	3541 ± 51	-265 ± 8	-71 ± 3	-5078 ± 145	236 ± 7	95 ± 120	-1543 ± 195

Intro 0000 Details 000000 RRV 0000000 RRR

Results 00000 • 0000

Applications

[Becher.Schwartz'08]

[Ju, Xu, Yang, Zhou'23]

[Abbate, Fickinger, Hoang et al.'10]

[Bell.Lee.Makris et al.'23]

- Thrust resummation for α_s determination, missing ingredient c_s^S is now available
 - c₂^S numerical fit
 - c_3^H known, fitted c_3^J, c_3^S
 - c_2^H , c_2^J known, attempt to extract c_2^S
- Higgs decay to quarks/gluons α_s series convergence restored

$$\tilde{s}_{g} = 1 - 2.36\alpha_{s} + 1.617\alpha_{s}^{2} - \underbrace{(22.89 \pm 5.67)}_{g_{s}} \alpha_{s}^{3}$$

Differential N3LO jet production in DIS and VBF

Intro
0000

39/41

Applications

- Thrust resummation for α_s determination, missing ingredient c_2^S is now available
 - c₂^S numerical fit
 - c_3^H known, fitted c_3^J, c_3^S
 - $c_3^{\rm H}, c_3^{\rm J}$ known, attempt to extract $c_3^{\rm S}$
- Higgs decay to quarks/gluons α_s series convergence restored

$$\tilde{s}_{g} = 1 - 2.36\alpha_{s} + 1.617\alpha_{s}^{2} - \underbrace{1.785}_{creat}\alpha_{s}^{3}$$

Differential N3LO jet production in DIS and VBF

Generalization to N3LO 1-jettiness

- Most complicated real contribution from dipole terms with emissions between i, j lines only
- $\bullet \ \, \text{For each soft momenta} \,\, k \,\, \text{and dipole eikonal factor} \,\, S_{ii} \,\, \text{dependent on} \,\, p_i, p_i \,\, \text{only with} \,\, \Theta_{ii} = \theta \, \big(k \cdot p_i k \cdot p_i \big) \,\,$

$$\left[\delta(\tau-k\cdot p_i-\ldots)\Theta_{mi}\Theta_{ji}+\delta\left(\tau-k\cdot p_j-\ldots\right)\Theta_{mj}\Theta_{ij}+\delta\left(\tau-k\cdot p_m-\ldots\right)\Theta_{im}\Theta_{jm}\right]S_{ij}$$

• With $\Theta_{mx} = 1 - \Theta_{xm}$ most singular contributions coincide with zero-jettiness contributions

$$\left[\delta\left(\tau-k\cdot p_{i}-\dots\right)\Theta_{ji}+\delta\left(\tau-k\cdot p_{j}-\dots\right)\Theta_{ij}\right]S_{ij}+less\ singular$$

Intro	Details	RRV	RRR	Results
0000	000000	0000000	0000000000000000000	ooooooo•oo

Conclusion

- Zero-jettiness slicing scheme is pushed from N2LO to N3LO level with the last missing ingredient calculated
 - Thrust resummation in e⁺e⁻ annihilation and Higgs decay
 - Differential cross section predictions for DIS and VBF
- Developed techniques
 - For efficient reduction of phase-space integrals with Heaviside θ -functions constraints in the presence of loop corrections and additional regulators
 - For the high precision numerical solution of differential equations for auxiliary integrals, making possible most complicated master integrals computation
 - For calculation of the large number of highly divergent integrals required for boundary conditions and master integrals without complicated dependence on soft partons momenta

Intro	Details	RRV	RRR	Results
0000	000000	0000000	000000000000000000	0000000●0

Thank you for your attention!