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Introduction and motivation



Differential calculation require a good handle of IR divergences, many schemes exist at NNLO

Slicing scheme seems to be more feasible at N3LO due to non existence of subtraction schemes

σ(O) =
∫

0
dτdσ(O)

dτ
=

∫ τ0

0
dτdσ(O)

dτ
+

∫

τ0

dτdσ(O)
dτ

− qT slicing scheme [Catani,Grazzini'07]
− N-jettiness slicing scheme [Boughezal et al.'15][Gaunt et al.'15]

SCET factorization theorem motivates us to consider jettiness as a convenient slicing variable for processes with jets in
the final state

lim
τ→0

dσ(O) = Bτ ⊗Bτ ⊗ Sτ ⊗Hτ ⊗ dσLO
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Motivation



A phase space is split according to a slicing variable

Possible to use any lower order calculation with additional jet in the τ > τcut region

To apply at the NNNLO level:
− Existing NNLO+j calculations

− Many efficient NNLO subtraction schemes

Approximate cross section in the singular region from the factorisation formula

dσ
dτ
=Hτ ⊗ {Bτ} ⊗ {Jτ} ⊗ Sτ ⊗

dσ0

dτ
+O (τ)

− Hard function Hτ
− Beam function Bτ, jet function Jτ
− Soft function Sτ
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Slicing scheme ingredients



For two hard partons with momenta pa and pb jettiness is defined as follows

T0 =
m
∑

i=1
min
§2pa · ki

Q
,
2pb · ki

Q

ª

, ki − are soft partons

It is possible to rescale pa =
psab

2 n,pb =
psab

2 n̄ and go to the frame where n and n̄ are back-to-back

Eikonal factors E(k, l) have uniform scaling: rescale integration momenta qi = q′i
Qτpsab

, qi ∈ {k, l}

S(τ)∼
∫

�

ddk
�m

︸ ︷︷ ︸

ext

�

ddl
�n

︸ ︷︷ ︸

loop

δ(τ−T0)E(k, l)→ 1
τ

� sab

Q2τ2

�ε(m+n)∫
�

ddk′
�m �ddl′
�n
δ

�

1−
m
∑

i=1
min{αi,βi}

�

E(k′, l′)

Sudakov decomposition

ki =
αi
2

n+
βi
2

n̄+ ki,⊥, ki · n= βi, ki · n̄= αi, n · n̄= 2, n2 = n̄2 = 0
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Zero-jettiness measurement function



Ingredients of the final result



0-jettiness in hadronic collisions is equal to Thrust or 2-jettiness in e+e− annihilation or Higgs decay

H,Z,W± , . . . γ,Z, . . .

The limit τ→ 0 corresponds to the soft limit of the squared amplitude - eikonal Feynman rules

Need to include all possible real and virtual corrections to the amplitude squared
n

n̄

2-loop tree

n

n̄

1-loop 1-loop

n

n̄

1-loop tree

n

n̄

tree tree

Possible to combine different measurement function terms into unique configurations

Perform integration over highly non-trivial region - all kinds of divergencies are possible
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What is actually calculated?



Minimum function is a problem for analytic calculation

Definition which is more friendly for phase-space integration generates many configurations

δ

�

1−
m
∑

i=1
min{αi,βi}

�

= δ(1− β1 − β2 − . . . )θ (α1 − β1)θ (α2 − β2) · · ·+δ(1− β1 −α2 − . . . )θ (α1 − β1)θ (β2 −α2) . . .

Configurations can be mapped to the minimal set due to symmetries of Eikonal factor and δ(1− {α,β})

RVV single configuration with δ(1− k · n), trivial phase-space integration
− Two-loop soft current is known [Duhr, Gehrmann'13]

RRV two configurations nn and nn̄
− Emission of gluons and quark pair [Chen et al.'22] [Baranowski et al.'24]

RRR two configurations nnn and nnn̄
− Same hemisphere gluon emission [Baranowski et al.'22]
− Different hemispheres configuration nnn̄ and quark pair emission in nnn configuration - this work

Intro Details RRV RRR Results

5/41 18. 11. 2024 Andrey Pikelner: N3LO 0-jettiness soft function KIT TTP

From measurement function to configurations



1. There are many highly non-trivial integrals, which we can calculate with direct integration

− All integrations are divergent at the boundaries only

− All integrals are linear reducible, GPLs only at all steps

− Once there is a way to subtract divergencies integrals calculated with HyperInt [Panzer'15]

2. Utilization of the modern multi-loop calculation techniques to reduce the problem to (1)

− Reduction of integrals to the minimal set of master integrals

− Differential equations for integrals at the expense of introducing new parameters

− Symmetry relations between integrals

− Input expression organization in ”diagram”-like structures
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Calculation strategy



For each soft emission we have one θ -function in the measurement
function making integration more complicated

For complicated denominators in the RRR case make direct
integration is impossible

Complicated one-loop sub-integrals in the RRV make direct
integration impossible

Unregulated divergencies in the RRR case

⊗ ⊗ ⊗ ⊗ ⊗ ⊗⊗ ⊗ ⊗ ⊗

A B∼ 1
k1 · k2

C∼ 1
(k1 · k2)(k1 · k3)

D∼ 1
(k1 + k2 + k3)2
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Relative complexity of ingredients



Two-loop corrections r(2)S to single gluon emission soft current are known exactly in ε [Duhr, Gehrmann'13]

k

n

n̄

= rS(k)















k

n

n̄

+
k

n

n̄















, rS(k) = 1+
∞
∑

l=1
Al

s

�

−(n · n̄)
2(k · n)(k · n̄)

�lε
r(l)S

Two contributions from different hemisphere emissions need to be integrated, S(3)g = s2,0 + s1,1 + s0,2

sl,m =

∫

ddk
(2π)d−1 δ

+
�

k2� [δ(1− k · n)θ (k · n̄− k · n) +δ(1− k · n̄)θ (k · n− k · n̄)]wL,M(k)

wL,M(k) =Re
�

J†
L(k)JM(k)
�

= k

n

n̄

L-loop M-loop
Linear propagators only

Factorisation of k-dependent part of soft current
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RVV corrections



One-loop corrections with two soft emissions



⊗ ⊗

RRV squared amplitudes generated from scratch

Results for one-loop soft current are known [Zhu'20][Czakon et al.'22]

RRV result for gg final state were computed earlier [Chen,Feng,Jia,Liue'22]

Recalculation in the unified way including qq̄ final state [Baranowski et al.'24]

Multi-loop calculations inspired approach

Reduction to the minimal set of master integrals with loop and phase-space integration

Differential equations from IBP reduction - parameter to differentiate is needed
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One-loop corrections with double emission



In dimensional regularisation system of IBP equation can be constructed by differentiation under integral sign
∫

ddl ∂
∂ lµ

�

vµ · f ({l})
�

,
∂

∂ k · n̄
θ (k · n̄− k · n) = δ(k · n̄− k · n)

IBP for integrals with θ -functions generate new auxiliary topologies, partial fractioning required

θ (k · n̄− k · n)
(k · n̄)a(k · n)b

→
δ(k · n̄− k · n)
(k · n̄)a(k · n)b

− RRR θθθ
︸︷︷︸

Level 3

→ δθθ + θδθ + θθδ
︸ ︷︷ ︸

Level 2

→ δδθ +δθδ+ θδδ
︸ ︷︷ ︸

Level 1

→ δδδ
︸︷︷︸

Level 0
− RRV θθ
︸︷︷︸

Level 2

→ δθ + θδ
︸ ︷︷ ︸

Level 1

→ δδ
︸︷︷︸

Level 0
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Modified reverse unitarity to deal with θ -integrals



n

n̄

a1
a2

a3

a4
a5

k1

k2

Number of MIs after IBP reduction of both configurations in RRV case

δδ δθ + θδ θθ
8 36 15

Direct integration possible, except pentagon and box with a3 = 0

DE in auxiliary parameters for most complicated integrals

Original integrals from DE solution

Additional parameter z is not needed - utilize variables from integral representation

To recover integrals of interest I instead of taking limit I= limz→z0 J(z) we integrate I=
∫

dzJ(z)
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RRV master integrals calculation



For δδ integrals we introduce auxiliary parameter x and solve DE system ∂x J(x) =M(ε,x)J(x)

Iδδ =
∫

d (k1 · k2) f(k1 · k2) =

∫ 1

0
dx
∫

d (k1 · k2)δ(k1 · k2 −
x
2
)f(k1 · k2) =

∫ 1

0
J(x)dx

For δθ and θδ we use integral representation for θ -function and solve DE system ∂z J(z) =M(ε,z)J(z)

θ (b− a) =
∫ 1

0
bδ(zb− a)dz, Iδθ =

∫ 1

0
J(z)dz

For θθ integrals PDE system in two variables z1,z2, no IBP reduction with θ -functions needed

Iθθ =
∫ 1

0
dz1

∫ 1

0
dz2 J(z1,z2)

Intro Details RRV RRR Results

12/41 18. 11. 2024 Andrey Pikelner: N3LO 0-jettiness soft function KIT TTP

RRV master integrals from differential equations



For all auxiliary integrals it is possible to find alternative basis of integrals, such ε dependence of the DE system matrix
factorizes completely: M(ε)→ εA [Henn'13]

Straightforward solution for integrals in canonical basis in terms of GPLs

Simpler boundary conditions fixing due to known general form of expansion near singular points

g(z) = za1+b1ε (c1 +O (z)) + za2+b2ε (c2 +O (z)) + . . .

Construction of subtraction terms to remove endpoint singularities in the final integration

∫ 1

0
J(z)dz=
∫ 1

0

�

J(z)− zai+biεj0(z)− (1− z)ak+bkεj1(z)
�

︸ ︷︷ ︸

ε−expanded

dz+
∫ 1

0

�

zai+biεj0(z)− (1− z)ak+bkεj1(z)
�

︸ ︷︷ ︸

ε−exact

dz
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Differential equations in canonical form



IBP reduction of integrals with θ -functions and loop integration can be efficiently implemented

Differential equations for auxiliary integrals can be constructed and solved analytically

Auxiliary integrals are simplified in the limit, and all required boundary constants can be calculated
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Summary: real-real-virtual contributions



Triple real soft emissions



Recalculated input for eikonal factors with partial fractioning and topology mapping

ggg= ggg+ gcc̄, coincides with the known expression in physical gauge [Catani,Colferai,Torrini'19]

gqq̄ in agreement with [Del Duca,Duhr,Haindl,Liu'23]

Same hemisphere

k1

k2

k3

n̄ n

δ(τ− β1 − β2 − β3)

Different hemispheres

k1

k2

k3

n̄ n

δ(τ− β1 − β2 −α3)

Same hemisphere result for ggg final state is known [Baranowski et al.'22]
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Triple real emissions



Same hemisphere emission of k1,k2 partons

Integration in the region β1
︸︷︷︸

∼λ

<< α1,β2
︸ ︷︷ ︸

∼1

<< α2
︸︷︷︸

∼1/λ

Both are close to the ~n direction cosθ1 ∼ cosθ2 ∼ 1+O (λ)
And large energies difference ω1 ∼ 1<<ω2 ∼ 1/λ

Possible cases for integrals in the potentially unregulated region

Integrals in the region with scaleless integrations safe

Integrals with zero sum of two contributions from θ1 > θ2 and θ1 < θ2 parts safe

Rare cases of integrals with non-trivial region contribution Additional regulator needed
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Divergences unregulated dimensionally



Example region k1,k2: β1 ∼ λ and α2 ∼ 1/λ change of variables β1 = ξ1α1 and α2 = β2/ξ2

Our choice for regulator to modify integration measure for each dkiθ (ai − bi)→ dkiθ (ai − bi)bνi

∫

dα1dβ1dα2dβ2(β1β2)ν

(α1β1α2β2)ε
→







∫

dα1dβ2dxdξ2
(α1β2)1−2ε+ν

ξ1−ν
2 xε−ν , ξ1 < ξ2,ξ1 = xξ2

∫

dα1dβ2dxdξ1
(α1β2)1−2ε+ν

ξ1−ν
1 x2−ε , ξ2 < ξ1,ξ2 = xξ1

Additional complications due to a new regulator

− More complicated reduction due to an additional parameter in the problem

− Master integrals calculation is more difficult due to the need to consider the double limit ε,ν→ 0
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Additional regulator in action



Approaches to ν-dependent IBP reduction problem (IBP with ν is available)

1. Direct ν-dependent reduction with additional variable

8 Time consuming and not flexible especially if basis change needed

4 Minimal set of master integrals and full ν-dependent solution

2. Filtering - remove all equations with potentially divergent integrals from the IBP system

4 Very fast compared to the full ν-dependent reduction

8 Potentially unreduced integrals, needs divergencies analysis for all integrals in the IBP system

3. Expansion - rewrite IBP system as a new system for 1/ν expansion coefficients of integrals

4 Fast reduction with control of divergencies

8 Additional divergent parts of integrals from the intermediate steps of IBP reduction can appear
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Reduction of ν-regulated integrals



From the analysis of possible divergencies we consider ansatz Ja =
∞
∑

k=k0

J(k)a ν
k with k0 = −1

Solution of the IBP reduction problem for regular-ν integrals Ia has the form

I(0)a =Rab J(0)b +Dab J̃(−1)
b

We require a ”good” basis to fulfill the following conditions:

− Coefficients in front of master integrals do not contain 1/ν poles
− Each master integral is a member of only one set Jb or J̃b

− Candidates for the set Jb can be found from the ν= 0 reduction

Regular integrals J(0)b are calculated in a standard way, calculation of needed divergent parts J̃(−1)
b is simplified, since only

specific regions contribute

Intro Details RRV RRR Results

19/41 18. 11. 2024 Andrey Pikelner: N3LO 0-jettiness soft function KIT TTP

Importance of a good master integrals basis



Integrals for both nnn and nnn̄ configurations with denominator 1/k2
123 are difficult to calculate

Since integrals are single scale, auxiliary parameter is needed to construct the system of DE I→ J(m2)

We modify the most complicated propagator 1
�

k1+k2+k3
�2 → 1
�

k1+k2+k3
�2+m2

Calculation of boundary conditions is possible in the limit m2→∞, but still very difficult

Massless integrals I are obtained from the solution for J(m2) in the limit m2→ 0, which is not trivial

Difficulties of the chosen strategy

Both points m2→ 0 and m2→∞ are singular points of the DE system

Solution of the DE for integrals with massive denominator is only possible numerically
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DE for RRR integrals with auxiliary mass



A much larger DE system, ∼ 650 equations are needed for nnn̄ configuration compared to ∼ 150 for nnn

Need to calculate all contributing regions into boundary conditions in the m2→∞ limit

∼ (m2)0

1/m2

∼ (m2)−ε

αi ∼m2

∼ (m2)−2ε

αi,αj ∼m2

For each large parameter αi ∼m2 we remove θ =⇒ additional IBP reduction of boundary conditions integrals possible

Numerical solution of the DE system as a sequence of series expansions [Liu et al.'18][Chen et al.'22]
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Details of the DE solution



�

1/m2
�n+2ε

�

1/m2
�n+ε

�

1/m2
�n

�

m2
�n+aε

�

m2
�n

Sum of all regions at m2→∞ to get high precision numerical solution at the first regular point R∞
High precision numerical solution of the DE between seqence of regular point R∞→R1 . . .Rn→R0

Final result - Taylor branch of the generalized m2→ 0 expansion gives the required result
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From boundaries at m2→∞ to m2→ 0 solution



Numerical DE solution at finite m2

− Independent numerical checks at finite m2

Local Fuchsian form of the DE near singular points m2→ 0 and m2→∞
− Matrix solution and generalized power series expansions
− Minimal set of independent boundary constants to calculate

Self-consistency checks of the DE solution and boundaries

− Unphysical branches disappear after boundaries substitution
− On the real axis m2 ∈ (0,∞) all integrals have zero imaginary parts

Relations between specific branch expansion coefficients and IBP reduction of boundary constants

Massless integrals we are interested in are extracted from the specific branch of m2→ 0 DE solution
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Nice features of the DE and its solution



Local Fuchsian form of the transformed DE with ~f= T~g and y= y(m2)

∂ ~g
∂ y
=

�

A0

y
+
∑

i

Ai

Pi(y)

�

~g, Pi(0) 6= 0

Leading order matrix solution ~g(y) =U(y)~B directly read from the Fuchsian DE: U(y→ 0)∼ yA0

Specific branch yλ expansions, λ= bε

J(λ)1 = ya1+λ
�

cλ1,0 + cλ1,1y1 + cλ1,2y2 + . . .
�

...

J(λ)n = yan+λ
�

cλn,0 + cλn,1y1 + cλn,2y2 + . . .
�

We are interested in y=m2 and y= 1/m2

Minimal vector ~B is a subset of
⋃

λ

{cλ1,0, . . . ,cλn,0}

All cλi,j with j> 0 through subset of cλi,0
Reducible integrals expansion coefficients reduction
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Boundaries at m2→∞ and series expansions



Local Fuchsian form ⇒ Matrix series solution ⇒ IBP for constants

1. Available IBP reduction tables for massive integrals Xi =
∑

k
Ri,k(m2)Jk

2. Deep enough 1/m2 expansions for master integrals Jk due to possible poles/zeroes in Ri,k(m2)

3. Substitution of expanded MIs and unknown integrals Xi =
∑

λ

X(λ)i to IBP tables provides relations between

leading expansion coefficients xλi,0 and cλj,0 valid for each branch (m2)λ independently

X(λ)i = (m2)a1+λ

�

xλi,0 +
xλi,1
m2 +

xλi,2
m4 + . . .

�

In each region additional boundary constants calculated and checked against reduction prediction

Due to huge difference in calculation complexity possible to select simpler/less divergent integrals
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IBP reduction of boundary constants at m2→∞



Main difficulty comes from the dependence of k2
123 +m2 on three angles, but in specific regions simplifications occur

k2
123 +m2 =
∑

i6=j
αiβj −
q

αiβiαjβj cos
�

ki,⊥,kj,⊥
�

+m2

Region
�

m2
�−ε

, single large parameter e.g. α1 ∼m2

k2
123 +m2→ α1 (β2 + β3) +m2

Region
�

m2
�−2ε

, pair of large parameters e.g. α1 ∼ α2 ∼m2, angle dependence remains since k1 · k2 ∼m2

k2
123 +m2→ k12 + (α1 +α2)β3 +m2
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Boundary integrals simplification



Dependence on angles disappears in k2
123 +m2→ αi
�

βj + βk
�

+m2 in the m2→∞ limit

Only non-trivial scalar product for e.g. α1 ∼m2 is (k2 · k3) and θ (α1 − β1)→ 1

Integration over the relative angle between soft partons in terms of 2F1, function of argument dependent on
ri =

βi
αi
θ (αi − βi) +

αi
βi
θ (βi −αi)

For same-hemisphere emissions we split integration region into ri > rj and ri < rj

k1

k2

n̄ n

δ(α1 − β1)θ (α2 − β2)

k1

k2

n̄ n

δ(α1 − β1)θ (β2 −α2)

k1

k2

n̄ n

θ (α1 − β1)θ (β2 −α2)

k1

k2

n̄ n

θ (α1 − β1)θ (α2 − β2)
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Boundary constants in the region (m2)−ε



For two large parameters, say α1 ∼ α2 ∼m2 integrations become unconstrained θ (α1 − β1)θ (α2 − β2)→ 1

Turn boundary integrals into ordinary PS integral J using 1=
∫

dqδ(q− k1 − k2) insertion

I−2ε =

∫

dqdk3δ(1− βq − β3)C3

q2 +αqβ3 +m2 ×
1

∏

i Di
�

αq,βq,q2,α3,β3
� × Ja1 ...a6

�

β3,αq,βq,q2�

Ja1 ...a6 =

∫

[dk1] [dk2]δ
�

k2
1

�

δ
�

k2
2

�

δ(d) (q− k1 − k2)

(k1 · n)
a1 (k2 · n)

a2 (k1 · n̄)
a3 (k2 · n̄)

a4 (k1 · n+ β3)
a5 (k2 · n+ β3)

a6

IBP reduction possible, nontrivial part in the angular integral Ωn =
∫ dΩk
(k·v1)

a1 (k·v2)
a2 ...(k·vn)

an

After partial fractioning only Ωn with n= 1,2 and maximum single v2
i 6= 0 and all other v2

j = 0

Trivial integration over large parameter αq ∼m2, linear propagators simplified e.g. α1 +α3→ α1
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Boundary constants in the region (m2)−2ε



We have calculated ∼ 130 integrals without 1/k2
123 denominator and ∼ 100 boundary conditions by direct integration

with HyperInt [Panzer'15]

Summary of used techniques

1. Change variables to satisfy all constraints from δ and θ functions

2. Perform as many integrations as possible in terms of 2F1 and F1 functions with known transformation properties

3. Perform remaining integrations in terms of pFq functions if possible

4. For the final integral representation with minimal number of integrations and minimal set of divergencies - construct subtraction
terms

5. Integrand with all divergencies subtracted is expanded in ε and integrated term by term with HyperInt

6. Subtraction terms are integrated in the same way
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Direct integration of MIs and boundary constants



For integrals without 1/k2
123 denominator use parametrisation similar to one used for analytical calculation

− Straightforward hyper-cube parametrisation due to simple angle dependence of 1/
�

ki · kj
�

denominators only
− Sector decomposition with remapping x→ 1 divergencies to x′→ 0 with pySecDec or FIESTA

For integrals with 1/k2
123 at m2 = 0 we avoid the need to use angles and construct Mellin-Barnes representation

− Repeated application of (A+B)λ→
∫

Aλ1 Bλ2 , important to have A,B> 0 at each step
− Angle integration simplified until can be integrated in terms of gamma functions only
− Analytical continuation with MBresolve and numerical integration with MB

Integrals with 1/k2
123 at finite m2, which are less divergent due to mass regularization

− Careful preselection of less divergent integrals using available reduction to prevent SD from complexity explosion
− For finite integrals or integrals with factorized divergencies direct integration with subtraction
− Midpoint splitting for xi→ 1 divergencies and sector decomposition for overlapping divergencies using FIESTA
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Numerical checks of calculated integrals



First we convert complicated denominator 1/k2
123 into product of scalar products

1
(k1 · k2 + k2 · k3 + k3 · k1)λ

=
1
Γ (λ)

c+i∞
∫

c−i∞

dz1dz2

(2πi)2
Γ (λ+ z1 + z2)Γ (−z1)Γ (−z2)

(k1 · k2)z1+z2+λ(k2 · k3)−z1 (k3 · k1)−z2

Introduce unit length vectors to make standard angular integral structure transparent

1
(ki · kj)λ

=
1
Γ (λ)

c+i∞
∫

c−i∞

dz
2πi
Γ (−z)Γ (λ+ z)

2−z �Æαiβj −
Æ

αjβi
�2z

�

αiβiαjβj
�z/2+λ/2

1
(ρi ·ρj)z+λ

, ρi =

�

1,
~ki,⊥

|~ki,⊥|

�

Final angles integration can be done in closed form well suited for subsequent MB integrations

∫

dΩ1dΩ2dΩ3

(ρ1 ·ρ2)λ1 (ρ2 ·ρ3)λ2 (ρ3 ·ρ1)λ3
=

Γ3(1− ε)
π3/226ε+λΓ (1− 2ε)

Γ (1− 2ε −λ)
3
∏

i=1
Γ
� 1

2 − ε −λi
�

3
∏

i=1

i−1
∏

j=1
Γ
�

1− 2ε −λi −λj
�
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Mellin-Barnes representation for angular integral



Use angles between transverse momenta as parameters

(ki · kj) = 1/2
�
q

αiβj −
q

αjβi

�2
+
q

αiβiαjβjρij

ρ12 = (1− cosθ1) ρ13 = (1− cosθ2) ρ23 = (1− cosθ1 cosθ2 − sinθ1 sinθ2 cosθ3)

Integral divergences analysis

xi ∈ [0,1]→ zi ∈ [0,∞), div: {z} → 0 or {z} →∞
Possible subsets Z0 and Z∞ of {z1, . . . ,zn}
Do rescalings zi→ λzi,zi ∈ Z0 and zi→ 1/λzi,zi ∈ Z∞
Divergent if for

∫ dz
za

∏

P(z)b→ λw ∫ dz
za

∏

P(z)b

w+ dim
�

Z0
�

− dim (Z∞)≤ 0

For all integrals with Z∞ 6= ; split at point 0< p<∞

∞
∫

0

dzf(z) = p

∞
∫

0

dz
(1+ z)2

f
� pz

1+ z

�

+ p

∞
∫

0

dz
z2 f
�p(1+ z)

z

�

Select less divergent integrals determined by all Z0 sets
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Finite mass integrals



Additional regulator is required for correct IBP reduction

Efficient techniques are developed to decrease the complexity of the reduction with additional regulator

DE for auxiliary m2 dependent integrals with 1/k2
123 propagator makes calculation possible

DE in addition to numerical solution also provides many important consistency checks and relations

Integrals are highly non-trivial for numerical checks
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Summary: triple-real contributions



Final result and applications



Final unrenormalized result for the NNNLO soft function is a sum over configurations C

SNNNLO
τ,B =
∑

C
SRVV,C
τ,B +
∑

C
SRRV,C
τ,B +
∑

C
SRRR,C
τ,B

For the renormalization we need the NNLO result expanded to higher orders in ε [Baranowski'20]

Sτ,B = δ(τ) +
as,B

τ

� sab

Q2τ2

�ε

S1 +
a2

s,B

τ

� sab

Q2τ2

�2ε
S2 +

a3
s,B

τ

� sab

Q2τ2

�3ε
S3 +O
�

a4
s,B

�

Do strong coupling renormalization as,B = µ2εZas as(µ) and do Laplace transform with parameter ū= ueγE

S̃B (as(µ),LS) =

∞
∫

0

dτe−τu Sτ,B
�

as,B→ µ2εZas as(µ)
�

, LS = ln
�

µū
psab

Q

�

Convenient to consider S̃B because the renormalization in Laplace space is multiplicative
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Laplace space and UV renormalization



Multiplicative renormalization in the Laplace space with LS dependent renormalization constant Zs(as,LS)

S̃(as,LS) = Zs(as,LS)S̃B(as,LS) = O
�

ε0� − LS = ln
�

µū
psab

Q

�

− µ dependence in as(µ) and LS

Zs determined by the pole part of S̃B satisfies RG equation

�

∂

∂LS
+ β(as)

∂

∂ as

�

lnZs(as,LS) = Γs (as,LS) = −4γcusp(as)LS − 2γs(as)

− Γs is finite

− Known cusp an.dim γcusp

− Known non-cusp an.dim γs

Possible to make prediction for the NNNLO pole part of S̃B and therefore for Sτ,B from the NNLO result

Final form of the renormalized NNNLO soft function can be split into constant and LS dependent parts

ln
�

S̃(as,LS)
�

=
∞
∑

i=1

2i
∑

j=0
Cijai

sL
j
S = ln
�

S̃
�

+
∞
∑

i=1

2i
∑

j=1
Cijai

sL
j
S, S̃= S̃(as,0)
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Renormalization and checks from RG equation



Eikonal line representation dependence completely factorizes at NNNLO due to Casimir scaling

ln
�

S̃
�

CR
=− asπ

2 + a2
s

�

nfTF

�80
81
+

154π2

27
−

104ζ3

9

�

−CA

�

2140
80

+
871π2

54
−

286ζ3

9
−

14π4

15

��

+ a3
s

�

n2
f T2

F

�

265408
6561

−
400π2

243
−

51904ζ3

243
+

328π4

1215

�

+ nfTF (CFXFF +CAXFA) +C2
AXAA

�

+O
�

a4
s

�

With as =
αs
4π and new coefficients calculated numerically with high precision

XFF = 68.94258498 XFA = 839.72385238 XAA = −753.77578727

Soft function constants in nf = 5 QCD required for resummed predictions (q : CR→ CF) and (g : CR→ CA)

cS,q
3 = −1369.575849 cS,g

3 = −3541.982541
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Result for NNNLO zero-jettiness soft function



fit region

τ= 0 τ= 1

R̄(τ) =
1
∫

τ

dτ′
σhad

dσ
dτ′ from EERAD3

R(τ) =
τ
∫

0

dτ′
σhad

dσ
dτ′

Fit in the region, where NNLO MC predictions and approximate factorization prediction overlap

From the condition R(τ) + R̄(τ) = 1 and all Ci,Gij except C3 known

R(τ) =
�

1+
∞
∑

k=1
Ck

� αs

2π

�k
�

exp





∞
∑

i=1

i+1
∑

j=1
Gij

� αs

2π

�i
lnj 1
τ





Missing C3 in the parametrisation of dijet region for NNLO Thrust [Monni,Gehrmann,Luisoni'11]

C3 = −1050± 180± 500
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Singular region cross section from MC simulation



Coefficient C3 is determined by constant parts of Hard(H), Jet( J) and Soft(S) functions

− N3LO hard function is known cH
3 = 8998.08 [Abbate,Fickinger,Hoang et al.'10]

− N3LO jet function known cJ
3 = −128.651 [Brüser,Liu,Stahlhofen'18]

From C3 value can determine cS
3 , since all other ingredients are known [Brüser,Liu,Stahlhofen'18]

cS
3 =

�

−19988± 1440± 4000 fit result

−1369.57 this work, exact

Inverse of the relation with known cS
3 allows C3 color structures prediction [Monni,Gehrmann,Luisoni'11]

n0
f N2 n0

f N0 n0
f N−2 n1

f N1 n1
f N−1 n2

f N0 sum

From cS
3 2766.05 −60.1237 0.37891 −1581.01 18.4901 133.47 1277.25

Fit 3541± 51 −265± 8 −71± 3 −5078± 145 236± 7 95± 120 −1543± 195

Intro Details RRV RRR Results

38/41 18. 11. 2024 Andrey Pikelner: N3LO 0-jettiness soft function KIT TTP

From soft function to singular cross section



Thrust resummation for αs determination, missing ingredient cS
3 is now available

− cS
2 numerical fit [Becher,Schwartz'08]

− cH
3 known, fitted cJ

3,cS
3 [Abbate,Fickinger,Hoang et al.'10]

− cH
3 ,cJ

3 known, attempt to extract cS
3 [Bell,Lee,Makris et al.'23]

Higgs decay to quarks/gluons αs series convergence restored [Ju,Xu,Yang,Zhou'23]

s̃g = 1− 2.36αs + 1.617α2
s − (22.89± 5.67)
︸ ︷︷ ︸

fit

α3
s

Differential N3LO jet production in DIS and VBF
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Applications



Thrust resummation for αs determination, missing ingredient cS
3 is now available

− cS
2 numerical fit [Becher,Schwartz'08]

− cH
3 known, fitted cJ

3,cS
3 [Abbate,Fickinger,Hoang et al.'10]

− cH
3 ,cJ

3 known, attempt to extract cS
3 [Bell,Lee,Makris et al.'23]

Higgs decay to quarks/gluons αs series convergence restored [Ju,Xu,Yang,Zhou'23]

s̃g = 1− 2.36αs + 1.617α2
s − 1.785
︸ ︷︷ ︸

exact

α3
s

Differential N3LO jet production in DIS and VBF
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Applications



Most complicated real contribution from dipole terms with emissions between i, j lines only

For each soft momenta k and dipole eikonal factor Sij dependent on pi,pj only with Θij = θ
�

k · pi − k · pj
�

�

δ (τ− k · pi − . . . )ΘmiΘji +δ
�

τ− k · pj − . . .
�

ΘmjΘij +δ (τ− k · pm − . . . )ΘimΘjm
�

Sij

With Θmx = 1−Θxm most singular contributions coincide with zero-jettiness contributions
�

δ (τ− k · pi − . . . )Θji +δ
�

τ− k · pj − . . .
�

Θij
�

Sij + less singular
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Generalization to N3LO 1-jettiness



Zero-jettiness slicing scheme is pushed from N2LO to N3LO level with the last missing ingredient calculated

− Thrust resummation in e+e− annihilation and Higgs decay

− Differential cross section predictions for DIS and VBF

Developed techniques

− For efficient reduction of phase-space integrals with Heaviside θ -functions constraints in the presence of loop corrections and
additional regulators

− For the high precision numerical solution of differential equations for auxiliary integrals, making possible most complicated
master integrals computation

− For calculation of the large number of highly divergent integrals required for boundary conditions and master integrals without
complicated dependence on soft partons momenta
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Conclusion



Thank you for your attention!
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