
Yazeed Balasmeh
Arpan Ghosal

GPU Programming

Accelerator Optimized Programming

2

Softwares can leverage hardware accelerators like:

● GPUs (Graphics Processing Units)
- effective for parallel tasks; used heavily in video
 renderings, ML, simulations etc.

● TPUs (Tensor Processing Units)
- accelerate tensor operations, work seamlessly
with TensorFlow; very efficient ML training and inference.

● ASICs (Application-Specific Integrated Circuits)
- usually custom-designed, efficient for specific tasks;
can be used for example in cameras.
- More customizable versions: FPGAs (Field-Programmable Gate Arrays).

These accelerators are designed to enhance performance by handling tasks like parallel processing and
matrix operations, enabling faster and more efficient computations.

2

Using accelerators in Python

3

Many Libraries Available for Hardware Acceleration:

● CuPy: Serves as a simple drop-in replacement for NumPy.
○ Runs exclusively on GPUs.
○ Easy and direct GPU control.

● JAX, TensorFlow, PyTorch:
○ Provide NumPy-like interfaces.
○ Run on CPUs, GPUs, and TPUs.
○ Offer advanced features like Just-In-Time (JIT) compilation and automatic differentiation.

● Numba:
○ Uses JIT compilation to enable GPU acceleration.
○ Allows for fast execution of Python code.

● CUDA (Nvidia):
○ Ideal for low-level control and customization.
○ Enables writing custom GPU kernels using features like warps and threads. Possible in future (?)

Introduced already

We will mainly

discuss this part.

Tutorials will be
provided if you
are interested.

3

TensorFlow

4

Google's Deep Learning Library: TensorFlow

● Key Idea: A powerful mathematical library that focuses on
dataflow graphs to perform operations on multi-dimensional
arrays (tensors) efficiently.

● Open-source and highly popular: Over 185k on
(ranked 12th overall).

● Scalability: Big plus for large-scale applications.
● Two main components:

○ High-level API: Keras for building neural networks easily.
○ Low-level API: Offers NumPy-style operations (e.g.,

tf.sqrt, tf.random.uniform).

https://www.tensorflow.org
#-------> ILLUSTRATIVE ONLY !!

Running simple operations
with tf.Session() as sess:

print("a + b =", sess.run(c))
print("a * b =", sess.run(d))

Using TensorFlow for matrix operations
mat1 = tf.constant([[3., 3.]])
mat2 = tf.constant([[2.],[2.]])
product = tf.matmul(mat1, mat2)

Execute the matrix operation
with tf.Session() as sess:

result = sess.run(product)
print("Matrix multiplication result:", result)

Building a neural network using high-level Keras API
model = tf.keras.Sequential([

tf.keras.layers.Dense(512, activation='relu', input_shape=(784,)),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')

])

Compile the model
model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

Generate random data to simulate training
inputs = tf.random.normal([1000, 784])
targets = tf.random.uniform([1000], maxval=10, dtype=tf.int32)

Train the model
model.fit(inputs, targets, epochs=5)

4

https://www.tensorflow.org

PyTorch

5

Excellent support by Facebook: PyTorch

● More Pythonic: No need for graph building. Easier for
beginners to ML.

● Dynamic: Changes can be made on-the-fly during
executions.

● Behaves like NumPy: Easy to use and intuitive for Python
developers.

● Key Advantage: Allows the use of standard Python for
control flow, making it flexible and powerful.

#-------> ILLUSTRATIVE ONLY !!

Building a neural network with PyTorch's nn module
class SimpleNN(nn.Module):

def __init__(self):
 super(SimpleNN, self).__init__()
 self.layer1 = nn.Linear(784, 512)
 self.relu = nn.ReLU()
 self.layer2 = nn.Linear(512, 10)
 self.softmax = nn.Softmax(dim=1)

def forward(self, x):
 x = self.relu(self.layer1(x))
 x = self.softmax(self.layer2(x))
 return x

model = SimpleNN()

Generate random data to simulate input
inputs = torch.randn(1000, 784)
targets = torch.randint(0, 10, (1000,))

Define loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

Training loop
for i in range(5):

optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, torch.nn.functional.one_hot(targets, num_classes=10))
loss.backward()
optimizer.step()
print(f"Epoch {i+1}, Loss: {loss.item()}")

Demonstrating dynamic computation adjustments
for i in range(5):

if i % 2 == 0:
 optimizer.param_groups[0]['lr'] *= 0.1 # Adjust learning rate dynamically

outputs = model(inputs)
loss = criterion(outputs, torch.nn.functional.one_hot(targets, num_classes=10))
print(f"Adjusted learning rate, Epoch {i+1}, Loss: {loss.item()}")

https://www.pytorch.org

5

https://www.pytorch.org

TensorFlow vs PyTorch

6

Oh no, we're too static.
Let's be more dynamic!

Oh no, we're too dynamic.
Let's be more static!

6

JAX

7

A Scientific Python-Focused Package

● Combines the functionality of NumPy/SciPy with automatic differentiation.
● Optimized for speed with GPU/TPU support and JIT compilation.

https://jax.readthedocs.io/en/latest/quickstart.html

7

https://jax.readthedocs.io/en/latest/quickstart.html

Comparison

8

- 2016: TensorFlow

- 2017: PyTorch

- 2019: JAX

Heavy, multiple features, but not as
sleek and clean as JAX

Good for scientific computing, very
pythonic but less straightforward for
productions and deployments

The go-to these days

8

GPU Programming

9

Check the Google collab notebook.

9

