GPU Programming

Yazeed Balasmeh Arpan Ghosal

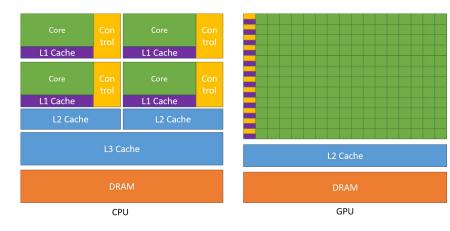
CPPS Center for Particle Physics Siegen

Accelerator Optimized Programming

Softwares can leverage hardware accelerators like:

- GPUs (Graphics Processing Units)
 effective for parallel tasks; used heavily in video renderings, ML, simulations etc.
- TPUs (Tensor Processing Units)
 accelerate tensor operations, work seamlessly with TensorFlow; very efficient ML training and inference.
- **ASICs** (Application-Specific Integrated Circuits) - usually custom-designed, efficient for specific tasks; can be used for example in cameras.
 - More customizable versions: FPGAs (Field-Programmable Gate Arrays).

These accelerators are designed to enhance performance by handling tasks like **parallel processing** and **matrix operations**, enabling faster and more efficient computations.



Using accelerators in Python

Many Libraries Available for Hardware Acceleration:

•	CuPy	<i>r</i> : Serves as a simple drop-in replacement for NumPy.	Tutorials will be
	0	Runs exclusively on GPUs.	provided if you are interested.
	0	Easy and direct GPU control.	
•	JAX,	TensorFlow, PyTorch:	
	0	Provide NumPy-like interfaces.	We will mainly
	0	Run on CPUs, GPUs, and TPUs.	discuss this part.
	0	Offer advanced features like Just-In-Time (JIT) compilation and automatic differentiation	
•	Num		
	0	Uses JIT compilation to enable GPU acceleration.	Introduced already
	0	Allows for fast execution of Python code.	
•	CUDA (Nvidia):		
	0	Ideal for low-level control and customization.	
	0	Enables writing custom GPU kernels using features like warps and threads.	Possible in future (?)

TensorFlow

Google's Deep Learning Library: TensorFlow

- Key Idea: A powerful mathematical library that focuses on dataflow graphs to perform operations on multi-dimensional arrays (tensors) efficiently.
- Open-source and highly popular: Over 185k ★ on (ranked 12th overall).
- **Scalability:** Big plus for large-scale applications.
- Two main components:
 - High-level API: Keras for building neural networks easily.
 - Low-level API: Offers NumPy-style operations (e.g., tf.sqrt, tf.random.uniform).

#-----> ILLUSTRATIVE ONLY !!

Running simple operations with tf.Session() as sess: print("a + b =", sess.run(c)) print("a * b =", sess.run(d))

Using TensorFlow for matrix operations mat1 = tf.constant([[3., 3.]]) mat2 = tf.constant([[2.],[2.]]) product = tf.matmul(mat1, mat2)

Execute the matrix operation with tf.Session() as sess: result = sess.run(product) print("Matrix multiplication result.", result)

```
# Building a neural network using high-level Keras API
model = tf.keras.Sequential([
tf.keras.layers.Dense(512, activation='relu', input_shape=(784,)),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
```

Generate random data to simulate training inputs = tf.random.normal([1000, 784]) targets = tf.random.uniform([1000], maxval=10, dtype=tf.int32)

Train the model model.fit(inputs, targets, epochs=5)

PyTorch

Excellent support by Facebook: PyTorch

- **More Pythonic**: No need for graph building. Easier for beginners to ML.
- **Dynamic:** Changes can be made on-the-fly during executions.
- **Behaves like NumPy**: Easy to use and intuitive for Python developers.
- **Key Advantage**: Allows the use of standard Python for control flow, making it flexible and powerful.

https://www.pytorch.org

#-----> ILLUSTRATIVE ONLY !!

Building a neural network with PyTorch's nn module class SimpleNIV(nn.Module): def __init__(self): super(SimpleNN, self)__init__() self.layer1 = nn.Linear(784, 512) self.relu = nn.ReLU() self.layer2 = nn.Linear(512, 10) self.softmax.ninear(self); self.softmax.ninear(self);

> def forward(self, x): x = self.relu(self.layer1(x)) x = self.softmax(self.layer2(x)) return x

model = SimpleNN()

Generate random data to simulate input inputs = torch.randn(1000, 784) targets = torch.randint(0, 10, (1000,))

Define loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), Ir=0.001)

Demonstrating dynamic computation adjustments for i in range(5): if i % 2 == 0: optimizer.param_groups[0]['Ir'] *= 0.1 # Adjust learning rate dynamically outputs = model(inputs) loss = criterion(outputs, torch.nn.functional.one_hot(targets, num_classes=10)) print(#Adjusted learning rate. Epoch (i+1). Loss: (loss.item))"

TensorFlow vs PyTorch

Oh no, we're too **static**. Let's be more **dynamic**! Oh no, we're too **dynamic**. Let's be more **static**!

O PyTorch

TensorFlow

A Scientific Python-Focused Package

- Combines the functionality of NumPy/SciPy with automatic differentiation.
- Optimized for speed with GPU/TPU support and JIT compilation.

https://jax.readthedocs.io/en/latest/quickstart.html

Quickstart

JAX is a library for array-oriented numerical computation (*à la* <u>NumPy</u>), with automatic differentiation and JIT compilation to enable high-performance machine learning research.

This document provides a quick overview of essential JAX features, so you can get started with JAX quickly:

- JAX provides a unified NumPy-like interface to computations that run on CPU, GPU, or TPU, in local or distributed settings.
- JAX features built-in Just-In-Time (JIT) compilation via <u>Open XLA</u>, an open-source machine learning compiler ecosystem.
- JAX functions support efficient evaluation of gradients via its automatic differentiation transformations.
- JAX functions can be automatically vectorized to efficiently map them over arrays representing batches of inputs.

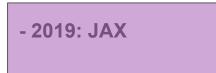
Comparison

- 2016: TensorFlow

Heavy, multiple features, but not as sleek and clean as JAX

- 2017: PyTorch

Good for scientific computing, very pythonic but less straightforward for productions and deployments



The go-to these days

GPU Programming

Check the Google collab notebook.

