
Yazeed Balasmeh
Arpan Ghosal

Fast & Efficient
Python Programming Workshop

1

Why Python is slow ?

2

Dynamic Typing in Python:

● Variables are dynamically typed: They get their type at runtime when values (PyObject*) are
assigned.

● Impact on Performance:
○ This makes it difficult for the interpreter to optimize execution.
○ In contrast, compiled languages allow extensive analysis and optimization before runtime.

Why Python is slow ?

3

Dynamic Typing in Python:

● Python has only one data type, PyObject* with a pointer to its runtime type, which is yet another
PyObject*.

● Python is a dynamically typed language (Duck Typing). It wraps and later unwraps objects (referred to
as boxing/unboxing).

PyObjectfloat

>> f = 0.5

PyObject

Box

unBox

>> f = f ** 2

float

Why Python is slow ?

4

Flexible Data Structures in Python

● Built-in Structures: Python’s built-ins (e.g., lists, dictionaries) are highly flexible and versatile.
● Trade-offs:

○ Generic nature, less efficient for numerical computations.
○ Perform well when processing diverse data types, but introduce significant overhead when handling

large amounts of uniform data.

Flexible nature of Python

Enhances programmer productivity Causes performance problems

❏ How do we measure performance?

❏ Navigating algorithmic complexity

❏ Tools that help achieve this

What to know, before optimising your code for acceleration …

5

Performance Analysis

6

➔ Execution Time

A simple example:

def fact(n):

product = 1

 for i in range(n):

product = product * (i+1)

return product

def fact2(n):

if n == 0:

return 1

 else:

return n * fact2(n-1)

timeit
10 µs ± 183 ns per loop (mean ± std.
dev. of 7 runs, 100000 loops each)

30.5 µs ± 8 µs per loop (mean ± std. dev.
of 7 runs, 10000 loops each)

Better!

Performance Analysis

7

Why Execution Time Isn't the Best Metric for Algorithmic Complexity ?

● Execution time alone is not a reliable measure of algorithmic complexity because it depends on external
factors like hardware, system load, and compiler optimizations.

● Objective complexity analysis requires a more standardized approach, such as evaluating the algorithm's
asymptotic behavior (Big O notation), which focuses on input size rather than specific execution time.

● Instead of timing, we need to consider a line-by-line evaluation of the algorithm’s structure, breaking
down operations to assess how the number of steps grows as input size increases.

Performance Analysis

8

➔ Line-by-line evaluation

● Python provides the ability to evaluate your code line by line, allowing you to identify bottlenecks.

● By pinpointing these bottlenecks, we can optimize our code, leading to increased efficiency and faster
performance.

● Python offers several profiling libraries. We will focus on two key libraries: cProfile and line_profiler.

Performance Analysis

9

➔ Line-by-line evaluation

Function which sorts a list of elements using the bubble sort algorithm.

import cProfile
#Here we are using CProfile

def bubble_sort(a):
n = len(a)
for i in range(n):

for j in range(n - i - 1):
if a[j] > a[j + 1]:

a[j], a[j + 1] = a[j + 1], a[j]
return a

Total time: 15.256 seconds

Performance Analysis

10

➔ Line-by-line evaluation

Function which sorts a list of elements using the bubble sort algorithm.

from line_profiler import LineProfiler
#Here we are using Line_Profile

def bubble_sort(a):
n = len(a)
for i in range(n):

for j in range(n - i - 1):
if a[j] > a[j + 1]:

a[j], a[j + 1] = a[j + 1], a[j]
return a

Total time: 58.4391 s

Performance Analysis

11

➔ Line-by-line evaluation

Profiling Overhead

● CProfile: This profiler operates with lower overhead, giving a general overview of function execution times. It allows for efficient
profiling without significantly affecting the performance of the code being analyzed.

● Line Profiler: In contrast, this profiler incurs higher overhead because it tracks execution time for each individual line of code. As a
result, the reported execution times may be longer due to the additional processing required.

Measurement Focus

● CProfile: This tool measures the total execution time of function calls, which includes the time spent in any sub-functions.
Consequently, this can create the impression that functions are faster than they actually are since it aggregates all execution time into
a single measurement.

● Line Profiler: This profiler concentrates on the time taken by each line of code, offering detailed insights into performance
inefficiencies. It is particularly useful for identifying bottlenecks within loops and complex sections of code.

CProfile provides broad overview of function performance, Line Profiler delivers in-depth insights into execution time of each line of code.

Performance Analysis

12

➔ Big-O Notation

Big-O notation describes the relationship between the size of the
input to an algorithm and the number of steps required to execute it.

Unlike measuring performance for a specific instance (such as
calculating fact(50)), Big-O focuses on how well an algorithm
scales with:

1. Increasing Input Size: How the algorithm's performance
changes as the input size grows.

2. Type of Input: How the algorithm's efficiency varies with
different types of input data.

This approach provides a more comprehensive evaluation metric
than assessing concrete execution time for a specific case.

Performance Analysis

13

➔ Big-O Notation

Simple Example: Quick Sort

def QuickSort(arr):
if len(arr) <= 1:

return arr
pivot = arr[len(arr) // 2]
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]
return QuickSort(left) + middle + QuickSort(right)

At each level of recursion, we make
comparisons and partition the array, which
takes O(n) time. The recursion proceeds for
approximately log(n) levels, because the
array size halves with each step.

Therefore, the time complexity of Quicksort
is O(n log n).

What is the
complexity of this

function ?

Performance Analysis

14

➔ Big-O Notation

Simple Example: Merge Sort

def merge_sort(arr):
if len(arr) > 1:

 mid = len(arr) // 2
 left = arr[:mid]
 right = arr[mid:]

 # Recursively sort both halves
 merge_sort(left)
 merge_sort(right)

 i = j = k = 0

 # Merge the two halves
 while i < len(left) and j < len(right):
 if left[i] < right[j]:
 arr[k] = left[i]
 i += 1
 else:
 arr[k] = right[j]
 j += 1
 k += 1

 # Check if any element was left in the left half
 while i < len(left):
 arr[k] = left[i]
 i += 1
 k += 1

 # Check if any element was left in the right half
 while j < len(right):
 arr[k] = right[j]
 j += 1
 k += 1

What is the
complexity of this

function ?

Merge Sort works by dividing
the array into two halves.
Each half is recursively sorted.
The two sorted halves are then
merged back together into a
single sorted array.
It’s stable and guarantees O(n
log n) time complexity but
requires extra space for merging.

Performance Analysis

15

➔ Big-O Notation

1. Memory Usage:

● Quick Sort is an in-place sorting algorithm,
meaning it doesn't need extra memory for
temporary arrays, while Merge Sort requires
additional space for merging. This makes Quick
Sort more efficient in terms of memory usage,
especially for large datasets.

2. Cache Efficiency:

● Quick Sort has better cache locality, accessing
memory sequentially and utilizing modern CPU
cache more effectively. Merge Sort accesses
memory in a scattered way, leading to more cache
misses and slower performance.

A bit about Numpy

- Stores data in continuous memory blocks for high performance.

- Allows operations on entire arrays/lists without explicit loops for increased speed

(Vectorization).

- Supports operations on arrays of different sizes without manual size adjustment

(Broadcasting).

- Provides fast, element-wise array operations (ufuncs).

- Integrates well with Pandas and SciPy.

- Able to perform complex mathematical computations such as linear algebra and

Fourier transforms.

- Uses less memory compared to traditional Python lists, with precise control

over data types.

- Consistent over different platforms and OS.

- Can be extended with C or Fortran for performance-critical tasks.

16

Performance Analysis

17

➔ CPU Usage

sum = 0
for i in range(b.shape[0]):

sum += i

versus sum = np.sum(b)

Vectorization
Vectorization refers to the process of converting operations that typically process one element at a time, such as
those in a loop, into operations that process multiple elements simultaneously.

● Key aspects:
- Data parallelism utilizing SIMD architecture (as implemented in GPUs).
- Contiguous memory management.

● Benefits:
- Performance improvements by reducing the number of interpreted loops in high-level languages.
- Lower memory footprint by minimizing temporary variable storage.
- Cleaner and more concise code, better readability.
- Utilized in tons of libraries (some we will discuss today).

VectorizedNon-Vectorized

18

Loop-wise versus Vectorization

19

Broadcasting
Broadcasting simplifies the handling of arrays with different dimensions by automatically 'broadcasting' the smaller array across
the larger one so that they have compatible shapes.

● Key aspects:
- Avoids explicit data replication, thus minimizing memory usage.
- Smaller array is "broadcast" across the larger array so that they appear to have the same shape.

● Rules for broadcasting:
- To deem which two arrays are suitable for operations, NumPy compares the shape of the two arrays

dimension-by-dimension starting from the trailing dimensions, working it's way forward. (from right to left)
- Two dimensions are said to be compatible if both of them are equal, or either one of them is 1.
- If both the dimensions are unequal and neither of them is 1, then NumPy will throw an error and halt.

20

Auto Differentiation
Automatic differentiation (AD or autograd) is a set of techniques to evaluate the derivative of a function with a mix of numerical
and symbolic approaches.

Every computer program executes a sequence of elementary arithmetic operations and elementary functions.

By applying the chain rule repeatedly to these operations, derivatives of arbitrary order can be computed automatically and efficiently.

Widely implemented in libraries - JAX (uses XLA to run on GPUs), integrated autograd systems in Tensorflow and PyTorch etc.

How Autograd Works?

● Autograd can be implemented using two main methods:
○ Forward mode AD: Computes derivatives from the input towards the output.

Suitable when there are fewer inputs than outputs.
○ Reverse mode AD (often used in deep learning): Computes derivatives from the

output back to the inputs. Suitable when there are fewer outputs than inputs, as in
the case of a loss function in neural networks.

● Computation Graph: AD involves constructing a computation graph where nodes
represent operations or variables and edges represent dependencies between these
operations. Forward pass computes the values, and the backward pass propagates
derivatives.

21

22

Auto Differentiation - Comparison

Grad descent calculated over 1M steps.
GPU starts to performs better as number of steps increases.

23

