Behind the Flavour Anomalies: Where do we stand?

Mauro Valli

INFN Rome

many THANKS to: M. Fedele, A.Paul, L.Silvestrini \& L.Vittorio

EFTs \& Precision : Flavour

Lagrangian:

$$
\mathscr{L}(x)=\sum_{\mathscr{O}} \Lambda_{O}^{4-\operatorname{dim} O} O(x)
$$

Local operator

Physical effects $\sim\left(\frac{E}{\Lambda_{\sigma}}\right)^{\operatorname{dim} 0-4}$
A. Greljo @ LHC Forum '23

UTA: Unitarity Triangle Analysis

$$
\begin{gathered}
\bar{\rho}=0.160 \pm 0.009 \sim 6 \% \\
\bar{\eta}=0.346 \pm 0.009 \sim 3 \% \\
\hline \lambda=0.2251 \pm 0.0008 \\
A=0.827 \pm 0.010
\end{gathered}
$$

Rend. Lincei Sci. Fis. Nat. 34 (2023) 37

Flavour \& BSM Physics

Generic source of Flavor / CP violation -> high NP scale

- SM UT: Towards \% precision ... Overall remarkable consistency.
- NPUT:

EOPTOM

A theory of Flavour is either highly non-trivial or likely unnatural BEHIND THE FLAVOUR ANOMALIES THERE IS A PICTURE LIKE THAT!

WHAT IS AN

ANOMALY?

ChatGPT

An anomaly refers to something that deviates from what is standard, normal, or expected. It can be a deviation from a pattern, behavior, or occurrence that stands out from the typical or anticipated norm. Anomalies can occur in various contexts, such as in data analysis, scientific observations, natural phenomena, or even in human behavior.

ARE THESE (EXCITING) ANOMALIES ? ...

... THERE WERE EXCITING ANOMALIES ...

B ANOMALIES : WHERE ARE WE STANDING

PRD 107 (2023) 5
SMEFT GLOBAL ANALYSIS: KEY NP OPERATORS

$$
\begin{aligned}
O_{2223}^{L Q} & =\bar{L}_{2} \gamma_{\mu} L_{2} \bar{Q}_{2} \gamma^{\mu} Q_{3} \\
O_{2322}^{Q e} & =\bar{Q}_{2} \gamma_{\mu} Q_{3} \bar{e}_{2} \gamma^{\mu} e_{2}
\end{aligned}
$$

$$
\begin{aligned}
C_{9} & \propto C^{Q e}+C^{L Q} \\
C_{10} & \propto C^{Q e}-C^{L Q}
\end{aligned}
$$

B ANOMALIES : WHERE ARE WE STANDING

QCD ~ LEPTON UNIVERSAL NP

Known Unknowns in \boldsymbol{B}-> $\mathbf{K}^{*} \ell \ell$

$$
h_{\lambda}\left(q^{2}\right)=\frac{\epsilon_{\mu}^{*}(\lambda)}{m_{B}^{2}} \int d^{4} x e^{i q x}\left\langle\bar{K}^{*}\right| T\left\{j_{\text {em }}^{\mu}(x) \mathcal{H}_{\text {eff }}^{\text {had }}(0)\right\}|\bar{B}\rangle
$$

JHEP 09 (2010) 089
-> AS SMALL AS IN
QCD FACTORIZATION

1) Light-cone sum rules (LCSR)
2) Single soft gluon approx.
3) Pheno extrapolation to J / ψ

MORE RECENTLY RECOMPUTED IN [JHEP 02 (2021) 088, JHEP 09 (2022) 133]

1) LCSR at $q^{2} \leq 0$
2) Szego polynomials (!) to exploit analyticity and $B \rightarrow>M / \psi$ data
3) dispersive bounds

CHARMING PENGUINS VERY TINY (?) NP REQUIRED TO ADDRESS DATA.

Known Unknowns in \boldsymbol{B}-> $\boldsymbol{K}^{*} \ell \ell$

 JHEP 06 (2016) 116, JHEP 07 (2017) 025, EPJC 83 (2023) 1A DATA DRIVEN APPROACH

$$
\tilde{h}_{\lambda}\left(q^{2}\right)=\sum_{k} \tilde{h}_{\lambda}^{(k)}\left(\frac{q^{2}}{\mathrm{GeV}^{2}}\right)^{k}
$$

$$
\text { up to } k=2
$$ 16 real coeffs involved

ΔC_{9} (semi-lep operator) ΔC_{7} (e.m. dipole operator)

$$
\begin{aligned}
& \left\{\left(C_{9}^{\mathrm{eff}}+\overline{h_{-}^{1}}\right) V_{L-}+\frac{m_{B}^{2}}{q^{2}}\left[\frac{2 m_{b}}{m_{B}}\left(C_{7}^{\mathrm{eff}}+\overline{h_{-}^{0}}\right) T_{L-}-16 \pi^{2} h_{-}^{2} q^{4}\right]\right\} \\
& \left\{\left(C_{9}^{\mathrm{eff}}+\overline{h_{-}^{1}}\right) \tilde{V}_{L 0}+\frac{m_{B}^{2}}{q^{2}}\left[\frac{2 m_{b}}{m_{B}}\left(C_{7}^{\mathrm{eff}}+\overline{h_{-}^{0}}\right) \tilde{T}_{L 0}-16 \pi^{2}\left(\tilde{h}_{0}^{0}+\tilde{h}_{0}^{1} q^{2}\right)\right]\right\} \\
& \left\{\left(C_{9}^{\mathrm{eff}}+\overline{h_{-}^{1}}\right) V_{L+}+\frac{m_{B}^{2}}{q^{2}}\left[\frac{2 m_{b}}{m_{B}}\left(C_{7}^{\mathrm{eff}}+\overline{h_{-}^{0}}\right) T_{L+}-16 \pi^{2}\left(h_{+}^{0}+h_{+}^{1} q^{2}+h_{+}^{2} q^{4}\right)\right]\right\}
\end{aligned}
$$

DO NOT HAVE $\mathrm{C}_{7,9}$ SHORT-DISTANCE COUNTERPART!

dislikes \hat{E}^{\square}
(A) WHAT ABOUT ANALYTIC PROPERTIES OF AMPLITUDES?
(B) HADRONIC PARAMETERIZATION HIDING NEW PHYSICS?

ANSWER TO (A): CHARMING PENGUINS

Rescattering from intermediate on-shell hadronic states.
These effects NOT captured by any analytic cut solely in q2.

Analyticity < - > mapping into unit circle as done in EPJC 78 (2018) 6 only if B invariant mass would not allow for cut (2) (instead, it does!).

ANSWER TO (A): ANOMALOUS THRESHOLDS

PLB 840 (2023) 137877

Bold estimate which highlighted the potential impact of these effects,
See talk of M. Hoferichter \& S. Mutke on this!

- Anomalous thresholds depend on masses in the loop (Landau eq.s)
- Charming penguins not CKM suppressed, phenomenological impact?

TRIANGLE DIAGRAMS DO NOT LOOK A PRIORI NEGLIGIBLE TO ME. ANALYTICITY OF THE AMPLITUDES WAY MORE COMPLICATED THAN SINGLE DISPERSION RELATION LITERATURE RELIES ON.

Fronsdal \& Norton - J.Math.Phys. 5, 100 (1964) Lucha, Melikhov \& Simula - PRD 75, 016001 (2007)

ANSWER TO (B): ARE WE HIDING NEW PHYSICS?

No! TVE

SYMMETRIES OF THE AMPLITUDE DO NOT ALLOW TO DISENTANGLE

 ORIGIN OF A UNIVERSAL ΔC_{9} IN CP-EVEN ANGULAR ANALYSIS \& BRS.- IF SHIFT INDEPENDENT OF HELICITY \& q2 [2401.18007] ... VERY INTERESTING!
- WE MIGHT LEARN MORE WITH ADDITIONAL OBSERVABLES [2403.13056]

WISHLIST: A LATTICE BREAKTHROUGH [Martinelli et al., work in progress]

ANSWER TO (B): ARE WE HIDING NEW PHYSICS?

No!

SYMMETRIES OF THE AMPLITUDE DO NOT ALLOW TO DISENTANGLE ORIGIN OF A UNIVERSAL ΔC_{9} IN CP-EVEN ANGULAR ANALYSIS \& BRS.

- IF SHIFT INDEPENDENT OF HELICITY \& q2 [2401.18007] ... VERY INTERESTING!
- WE MIGHT LEARN MORE WITH ADDITIONAL OBSERVABLES [2403.13056] WISHLIST: A LATTICE BREAKTHROUGH [Martinelli et al., work in progress]

LHCb EXTRACTED RECENTLY NON-LOCAL EFFECTS FROM DATA [PRL132 (2024) 13]
See A. Mauri's talk

- Non-local function follows [JHEP 09 (2022) 133]

$$
\mathcal{H}_{\lambda}(z)=\frac{1-z z_{/ / \psi}}{z-z_{/ / \psi}} \frac{1-z z_{\psi(2 S)}}{z-z_{\psi(2 S)}} \hat{\mathcal{H}}_{\lambda}(z), \quad \hat{\mathcal{H}}_{\lambda}(z)=\phi_{\lambda}^{-1}(z) \sum_{k} a_{\lambda, k} z^{k}
$$

EVIDENCE FOR ΔC_{9} AT 2 SIGMA LEVEL

HEPfit: a code for the combination of indirect and direct constraints on high energy physics models

J. de Blas ${ }^{1,2}$, D. Chowdhury ${ }^{3,4}$, M. Ciuchini ${ }^{5}$, A. M. Coutinho ${ }^{6}$, O. Eberhardt 7, M. Fedele 8, E. Franco ${ }^{9}$, G. Grilli di Cortona ${ }^{10}$, V. Miralles ${ }^{7}$, S. Mishima ${ }^{11}$, A. Paul ${ }^{12,13, \mathrm{a}}$ © , A. Peñuelas ${ }^{7}$, M. Pierini ${ }^{14}$, L. Reina ${ }^{15}$, L. Silvestrini ${ }^{9,16}$, M. Valli ${ }^{17}$, R. Watanabe ${ }^{5}$, N. Yokozaki ${ }^{18}$

$\sqrt{\text { Special Instructions }}$
This ZIP file contains the Supplemetal Material for the publication LHCb-PAPER-2023-032.
The files are:
coefficients\{\}.json : - the fit results in form of a bootstrapped set of fit parameters
core/ : - a directory with the implementation of the signal amplitude model employed in the analysis main.py : - main script with some instruction and examples on how to use the package

LHCb-PAPER-2023-032-Supplemental-Material.zip
HEPfit
LHCb
bootstrap
$P_{5}^{\prime}: \operatorname{bin}[4,6] \mathrm{GeV}^{2}$

$P_{5}^{\prime}: \operatorname{bin}[2.5,4] \mathrm{GeV}^{2}$

$P_{5}^{\prime}:$ bin $[6,8] \mathrm{GeV}^{2}$

HEPfit MCMC results

HEPfit MCMC results

EXPANDING @ NEXT ORDER - INCLUDING $\mathcal{O}\left(z^{3}\right)$ - AFFECTS INFERENCE OF ΔC_{9}^{U}

B ANOMALIES: A FUTURE

LHCb upgrade(s) will allow us to probe precisely the q^{2} dependence in the angular analysis ...
\rightarrow pin down effects from hadronic physics

Belle II is already delivering interesting results!

NO WAY OF EXTRACTING UNIVERSAL SHORT DISTANCE IN $B \rightarrow K^{*} \| I I F$ ONE IS AGNOSTIC ABOUT RESCATTERING - IS THERE FULL AGREEMENT ON THIS? -

IF TRIANGLE DIAGRAMS ARE NON-NEGLIGIBLE (WHY THEY
WOULD BE?) , DRESENT DISPERSIVE BOUNOS ARE NOT OK

- IDEAS TO MAKE PROGRESS HERE? -

IF UNIVERSAL $\triangle C_{9}$ GETS COMPATIBLE

- W/ HELICITY \& q ${ }^{2}$ INDEPENDENCE,
LET'S NOT FORGET SAGAN'S LESSON:

BACKUP

B ANOMALIES: P ${ }_{5}^{\prime}$

$\sqrt{34 .}$ M. Ciuchini, A. M. Coutinho, M. Fedele, E. Franco, A. Paul, L. Silvestrini et al., Hadronic uncertainties in semileptonic $B \rightarrow K^{*} \mu^{+} \mu^{-}$decays, PoS BEAUTY2018 (2018) 044, [arXiv:1809.03789].
67. A. Khodjamirian, T. Mannel, A. Pivovarov and Y.-M. Wang, Charm-loop effect in $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$and $B \rightarrow K^{*} \gamma$, JHEP 09 (2010) 089, [arXiv:1006.4945].

EXTRACTION OF HADRONIC EFFECTS

34. M. Ciuchini, A. M. Coutinho, M. Fedele, E. Franco, A. Paul, L. Silvestrini et al., Hadronic uncertainties in semileptonic $B \rightarrow K^{*} \mu^{+} \mu^{-}$decays, PoS BEAUTY2018 (2018) 044, [arXiv: 1809.03789].
67. A. Khodjamirian, T. Mannel, A. Pivovarov and Y.-M. Wang, Charm-loop effect in $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$and $B \rightarrow K^{*} \gamma$, JHEP 09 (2010) 089, [arXiv:1006.4945].

Phenomenological Data Driven

$$
h_{0, \pm}\left(q^{2}\right)=\sum_{k=0,1,2} h_{0, \pm}^{(k)}\left(\frac{q^{2}}{\mathrm{GeV}^{2}}\right)^{k}
$$

PROJECTIONS @ 50 fb-1

(Hurth et al.`17 + Albrecht et al.'17)

