Kulturhaus Lÿz 11 apr 2024 Siegen

Behind the Flavour Anomalies : Where do we stand?

Mauro Valli

INFN Rome

MANY THANKS TO: M. Fedele, A.Paul, L.Silvestrini & L.Vittorio

EFTs & Precision : Flavour

UTA: Unitarity Triangle Analysis

SM UT: Towards % precision ... Overall remarkable consistency.

A theory of Flavour is either highly non-trivial or likely unnatural BEHIND THE FLAVOUR **ANOMALIES** THERE IS A PICTURE LIKE THAT!

ChatGPT

\$

An anomaly refers to something that deviates from what is standard, normal, or expected. It can be a deviation from a pattern, behavior, or occurrence that stands out from the typical or anticipated norm. Anomalies can occur in various contexts, such as in data analysis, scientific observations, natural phenomena, or even in human behavior.

ARE THESE (EXCITING) ANOMALIES?...

... THERE WERE EXCITING ANOMALIES ...

BANOMALIES: WHERE ARE WE STANDING

BANOMALIES: WHERE ARE WE STANDING

QCD ONLY

QCD ~ LEPTON UNIVERSAL NP

KNOWN UNKNOWNS IN $B \rightarrow K^* \ell \ell$

JHEP 09 (2010) 089 —> AS SMALL AS IN QCD FACTORIZATION

 $h_{\lambda}(q^2)$

1) Light-cone sum rules (LCSR)

 $d^4x e^{iqx} \langle \bar{K}^* | T\{j^{\mu}_{\text{em}}(x) \mathcal{H}^{\text{had}}_{\text{eff}}(0)\} | \bar{B} \rangle$

- 2) Single soft gluon approx.
- 3) Pheno extrapolation to J/ψ

MORE RECENTLY RECOMPUTED IN [JHEP 02 (2021) 088, JHEP 09 (2022) 133]

- 1) LCSR at $q^2 \le 0$
- 2) Szego polynomials (!) to exploit analyticity and $B \longrightarrow M J/\psi$ data

3) dispersive bounds

CHARMING PENGUINS VERY TINY (?)

NP REQUIRED TO ADDRESS DATA.

KNOWN UNKNOWNS IN $B \rightarrow K^* \ell \ell$

JHEP 06 (2016) 116, JHEP 07 (2017) 025, EPJC 83 (2023) 1

A DATA DRIVEN APPROACH

 ΔC_9 (semi-lep operator)

$$\tilde{h}_{\lambda}(q^2) = \sum_{k} \tilde{h}_{\lambda}^{(k)} \left(\frac{q^2}{\text{GeV}^2}\right)$$

up to k = 2, 16 real coeffs involved

k

$$\left\{ \left(C_{9}^{\text{eff}} + h_{-}^{1} \right) V_{L-} + \frac{m_{B}^{2}}{q^{2}} \left[\frac{2m_{b}}{m_{B}} \left(C_{7}^{\text{eff}} + h_{-}^{0} \right) T_{L-} - 16\pi^{2}h_{-}^{2} q^{4} \right] \right\}$$

$$\left\{ \left(C_{9}^{\text{eff}} + h_{-}^{1} \right) \tilde{V}_{L0} + \frac{m_{B}^{2}}{q^{2}} \left[\frac{2m_{b}}{m_{B}} \left(C_{7}^{\text{eff}} + h_{-}^{0} \right) \tilde{T}_{L0} - 16\pi^{2} \left(\tilde{h}_{0}^{0} + \tilde{h}_{0}^{1} q^{2} \right) \right] \right\}$$

$$\left\{ \left(C_{9}^{\text{eff}} + h_{-}^{1} \right) V_{L+} + \frac{m_{B}^{2}}{q^{2}} \left[\frac{2m_{b}}{m_{B}} \left(C_{7}^{\text{eff}} + h_{-}^{0} \right) T_{L+} - 16\pi^{2} \left(h_{+}^{0} + h_{+}^{1} q^{2} + h_{+}^{2} q^{4} \right) \right] \right\}$$

DO NOT HAVE C7,9 SHORT-DISTANCE COUNTERPART!

 ΔC_7 (e.m. dipole operator)

(A) WHAT ABOUT ANALYTIC PROPERTIES OF AMPLITUDES ?(B) HADRONIC PARAMETERIZATION HIDING NEW PHYSICS ?

Rescattering from intermediate on-shell hadronic states. These effects NOT captured by any analytic cut solely in q².

Analyticity <--> mapping into unit circle as done in **EPJC 78 (2018) 6** only if B invariant mass would not allow for cut (2) (instead, it does!).

ANSWER TO (A): ANOMALOUS THRESHOLDS

Bold estimate which highlighted the potential impact of these effects. *See talk of M. Hoferichter & S. Mutke on this!*

- Anomalous thresholds depend on masses in the loop (Landau eq.s)
- Charming penguins not CKM suppressed, phenomenological impact?

TRIANGLE DIAGRAMS DO NOT LOOK A PRIORI NEGLIGIBLE TO ME.

ANALYTICITY OF THE AMPLITUDES WAY MORE COMPLICATED THAN SINGLE DISPERSION RELATION LITERATURE RELIES ON.

Fronsdal & Norton — **J.Math.Phys. 5, 100 (1964)** Lucha, Melikhov & Simula — **PRD 75, 016001 (2007)**

ANSWER TO (B): ARE WE HIDING NEW PHYSICS?

SYMMETRIES OF THE AMPLITUDE DO NOT ALLOW TO DISENTANGLE ORIGIN OF A UNIVERSAL ΔC_9 IN CP-EVEN ANGULAR ANALYSIS & BRS.

- IF SHIFT INDEPENDENT OF HELICITY & q2 [2401.18007] ... VERY INTERESTING!
- WE MIGHT LEARN MORE WITH ADDITIONAL OBSERVABLES [2403.13056] WISHLIST: A LATTICE BREAKTHROUGH [Martinelli et al., work in progress]

ANSWER TO (B): ARE WE HIDING NEW PHYSICS?

SYMMETRIES OF THE AMPLITUDE DO NOT ALLOW TO DISENTANGLE ORIGIN OF A UNIVERSAL ΔC_9 in CP-even angular analysis & BRS.

- IF SHIFT INDEPENDENT OF HELICITY & q2 [2401.18007] ... VERY INTERESTING!

- WE MIGHT LEARN MORE WITH ADDITIONAL OBSERVABLES [2403.13056] WISHLIST: A LATTICE BREAKTHROUGH [Martinelli et al., work in progress]

LHCb EXTRACTED RECENTLY NON-LOCAL EFFECTS FROM DATA [PRL132 (2024) 13]

• Non-local function follows [JHEP 09 (2022) 133] $\mathcal{H}_{\lambda}(z) = \frac{1 - zz_{J/\psi}}{z - z_{J/\psi}} \frac{1 - zz_{\psi(2S)}}{z - z_{\psi(2S)}} \hat{\mathcal{H}}_{\lambda}(z), \qquad \hat{\mathcal{H}}_{\lambda}(z) = \phi_{\lambda}^{-1}(z) \sum_{k} a_{\lambda,k} z^{k}$

• EVIDENCE FOR ΔC_9 at 2 sigma level

Special Article - Tools for Experiment and Theory

BEST CODE

HEPfit: a code for the combination of indirect and direct constraints on high energy physics models

J. de Blas^{1,2}, D. Chowdhury^{3,4}, M. Ciuchini⁵, A. M. Coutinho⁶, O. Eberhardt⁷, M. Fedele⁸, E. Franco⁹, G. Grilli di Cortona¹⁰, V. Miralles⁷, S. Mishima¹¹, A. Paul^{12,13,a}, A. Peñuelas⁷, M. Pierini¹⁴, L. Reina¹⁵, L. Silvestrini^{9,16}, M. Valli¹⁷, R. Watanabe⁵, N. Yokozaki¹⁸

[1910.14012]

https://hepfit.roma1.infn.it

https://github.com/silvest/HEPfit

Special Instructions

This ZIP file contains the Supplemetal Material for the publication LHCb-PAPER-2023-032. The files are:

coefficients{}.json : - the fit results in form of a bootstrapped set of fit parameters core/ : - a directory with the implementation of the signal amplitude model employed in the analysis main.py : - main script with some instruction and examples on how to use the package

LHCb-PAPER-2023-032-Supplemental-Material.zip

HEPfit MCMC results

BAYESIAN INFORMATION CRITERION PENALIZES ADDITION OF UNIVERSAL ΔC_9 .

HEPfit MCMC results

EXPANDING @ NEXT ORDER — INCLUDING $O(z^3)$ — AFFECTS INFERENCE OF ΔC_9^U

B ANOMALIES : A 🌞 FUTURE

LHCb upgrade(s) will allow us to probe precisely the q² dependence in the angular analysis ...

-> pin down effects from hadronic physics

Belle II is already delivering interesting results!

IF UNIVERSAL AC9 GETS COMPATIBLE W/HELICITY & q² INDEPENDENCE, LET'S NOT FORGET SAGAN'S LESSON:

BACKUP

B ANOMALIES : P₅

2110.10126

EXTRACTION OF HADRONIC EFFECTS

2110.10126

Phenomenological Data Driven

$$h_{0,\pm}(q^2) = \sum_{k=0,1,2} h_{0,\pm}^{(k)} \left(\frac{q^2}{\text{GeV}^2}\right)^k$$

PROJECTIONS @ 50 fb⁻¹

(Hurth et al.`17 + Albrecht et al.`17)

Scaling LHCb stat errors roughly of 1/6

[arXiv:**1809.03789**]