

Belle II beyond anomalies: what's new, what's next?

Vitalii Lisovskyi (Aix Marseille Univ, CNRS/IN2P3, CPPM) on behalf of the Belle II collaboration

Siegen, 11 April 2024

Belle II beyond anomalies: what's new, what's next?

Vitalii Lisovskyi (Aix Marseille Univ, CNRS/IN2P3, CPPM) on behalf of the Belle II collaboration

Siegen, 11 April 2024

The journey so far

- Belle II: mostly running on/near $\Upsilon(4S)$ resonance, with a short scan above $\Upsilon(4S)$
- Can include the Belle data: $\Upsilon(1 5S)$

Vitalii Lisovskyi

average neutrals energy resolution ~2%

The journey so far

- World record peak luminosity in summer 2022: 4.7×10^{34} /cm²/s
- Progress limited by sudden beam losses and other accelerator issues
- LS1: machine improvements & complete the vertex detector

• The data taking has resumed recently

- Main objectives for 2024:
 - Reach and maintain the peak luminosity of $10^{35}/cm^{2}/s$
 - Cross the 1ab⁻¹ milestone
 - Prove the effectiveness of the work done in LS1

Vitalii Lisovskyi

Belle II Online luminosity Exp: 7-30 - All runs 17.5 Integrated luminosity **Recorded Weekly** [fb⁻¹] 15.0 $\int \mathcal{L}_{Recorded} dt = 450.38 \, [\text{fb}^{-1}]$ 12.5 **Total integrated Weekly** 10.0 7.5 5.0 2.5 0.0 Date

Not just more data: improvement in the analysis tools

Improving the tagging: beauty

- other B): effective tagging efficiency ~30%
- Flavour tagging using machine-learning techniques with the full event information (PID, tracking, kinematics) for the "rest of the event"
 - New **GNN-based tagger GFlaT** [<u>2402.17260</u>] with 37% efficiency
 - Works best when leptons and/or kaons present in the ROE, less well for pion-only events
- Prospects for improvement: requires better understanding of simulation

• Conventional category-based tagger (by charge of the lepton/kaon from the

Improving the tagging: charm

- Conventional method: tag the charge of the pion from $D^{*\pm} \to D^0 \pi^{\pm}$, or lepton from $B^- \to D^0 \ell^- \nu$
 - Loss of statistics due to low production rates, soft pion efficiency etc: ~25% effective efficiency
- New inclusive tagging in $e^+e^- \rightarrow c\bar{c}$ with BDT algorithm [Phys. Rev. D 107, 112010 (2023)]
 - Uses OS and SS information
 - Effective tagging eff. ~48%
 - **Doubles the effective sample size** for CPV and charm mixing studies
 - Useful to **suppress backgrounds** in untagged analyses

Vitalii Lisovskyi

Missing-energy estimation

- **Conventional approach:** full reconstruction of the "other B" in a number of specific decay modes
 - Full event interpretation
 - Hadronic or semileptonic tag
- Inclusive tagger: reconstruct signal first, use the "rest of the event" for tagging
- Disagreement between data and simulated performance needs to be calibrated
- Constant improvements:
 - New tag decay modes added
 - BF and resonant structures of known decays remeasured to improve the simulation
 - Alternative ML tools explored (graph neural networks...)

Vitalii Lisovskyi

The stairway to flavour physicist's heaven

• The eventual target is to collect 50 ab⁻¹, but:

- Going beyond 2×10^{35} /cm²/s requires a redesign of the interaction region and the vertex detector: beam background
- Envisaged LS2 in 2027-2028, no precise planning yet
 - May profit from this shutdown for other detector improvements
- The priority is to run at/near $\Upsilon(4S)$; special datasets at different energies might be collected in the future

Vitalii Lisovskyi

Belle II: what's new, what's next?

0

A biased collection of physics topics

Focus mostly on the topics **not** covered by Florian, Markus and Caspar

For physics prospects, a recent reference is the 2022 Snowmass report: <u>2207.06307</u>

Belle II versus anomalies (broadly defined)

Vitalii Lisovskyi

Tau properties

- Abundant $e^+e^- \rightarrow \tau^+\tau^-$ production
- Tau mass: pseudomass method with $e^+e^- \rightarrow \tau^+\tau^-$, $\tau \rightarrow 3\pi\nu$ $1777.09 \pm 0.08 \pm 0.11 MeV/c^{2}$ most precise to date [Phys. Rev. D 108, 032006]
- 0.1785 ⇒ ev) 0.1780

0.1790

0.1775

- Largest syst: beam energy scale, momentum scale
 - Affected by the knowledge of $\Upsilon(4S)$ lineshape and B mass!

• Next step: **tau lifetime** (Belle result is world best)

 Belle II will reduce both stat. and syst. uncertainties significantly, down to 0.2×10^{-15} s

Vitalii Lisovskyi

m₇ [MeV/c²]

Tau SM decays

• Lepton universality in tau decays:

• $\frac{\mathscr{B}(\tau \to \mu \nu \bar{\nu})}{\mathscr{B}(\tau \to e \nu \bar{\nu})}$ (mu/e universality) and $\frac{\Gamma(\tau \to \mu \bar{\nu})}{\Gamma(\pi \to \mu \bar{\nu})}$

- Sensitivity eventually limited by the control of PID performance, but can improve world average by a factor of ~few.
- Michel parameters (Lorentz structure of the $\tau \rightarrow \mu \nu \bar{\nu}$ decay): expected with new algorithms & enlarged drift chamber at Belle II

- Input to the **Cabibbo angle anomaly**: $|V_{\mu s}|$
 - Projected reach down to few % sensitivity, depending on PID performance
- CPV measurements in τ decays...

Vitalii Lisovskyi

$$\frac{1}{2} \frac{\pi \nu}{\mu \nu}$$
 (mu/tau universality)
 $\frac{1}{2} \frac{\mu \nu}{\mu \nu}$

kink reconstruction at Belle allows to measure with ~100% uncertainty, precision down to few %

from
$$\frac{\mathscr{B}(\tau \to K\nu)}{\mathscr{B}(\tau \to \pi\nu)}$$

LFV searches in τ decays

- The most stringent upper limits on **lepton-flavour**violating tau decays come from the B factories
- Recent Belle II $\tau \rightarrow 3\mu$ <u>search</u>:
 - Tag $e^+e^- \rightarrow \tau^+\tau^-$ with 1-3 tracks on the tag side
 - Look for events with $E_{sig} E_{beam} = 0$ near the τ mass
 - Efficiency >2x better than Belle!
 - UL: $\mathscr{B} < 1.9 \times 10^{-8}$ @90%CL
- Belle II projected reach: few $\times 10^{-9}$ with 10 ab⁻¹ for most LFV channels
 - except for $\tau \rightarrow \ell \gamma$ modes (irreducible bkg due to $\tau \rightarrow \ell \nu \bar{\nu} + \gamma_{ISR}$)
 - This is where beam polarisation may help (about this later)
- Analyses of many other final states in progress
 - Also, <u>searches</u> for new bosons in $\tau \to \ell a$, HNL in $\tau \to \pi N$...

Vitalii Lisovskyi

Penguins and friends

- The recent $B^+ \to K^+ \nu \bar{\nu}$ analysis presented by Caspar. Expect observation with more data! Clarifying the background properties is important
- - Future prospects: $B \to K^* \nu \bar{\nu}, B \to K^0_S \nu \bar{\nu}$, inclusive $B \to X_S \nu \bar{\nu}, B \to \pi(\rho) \nu \bar{\nu}$...
 - Spin-offs: BSM searches in $B \to K^{(*)}$ + invisible, charm decays e.g. $\Lambda_c^+ \to p\nu\bar{\nu}$ or $D \to \pi\nu\bar{\nu}$ (GIM-suppressed)
- Experimental techniques (missing energy) can be applied to $B \rightarrow K^* \tau^+ \tau^-$, $B \rightarrow \rho \tau^+ \tau^-$ searches
 - Expected sensitivity down to 5×10^{-4} BF, still far away from the SM rate
 - But close to the rate predicted by some BSM models explaining $b \rightarrow c \tau \nu$ anomalies
 - As well as LFV $b \to s\tau^{\pm}\ell^{\mp}$ searches, with sensitivity down to few X 10^{-6}
 - similar BSM enhancements possible
- Let me reiterate the importance of understanding & improving the tagging performance

Penguins and friends

- similar performance in muons and electrons helps for LFU tests.
 - Sensitivity to (semi-)**inclusive** $b \rightarrow s\ell^+\ell^-$

 $\begin{array}{c} B^0 \rightarrow \eta \ell^+ \ell^- \\ B^0 \rightarrow \eta e^+ e^- \end{array} \end{array}$ $B^0 \to \eta \mu^+ \mu^ B^+ \rightarrow \pi^+ e^+ e^+$ $B^0 \to \pi^0 \ell^+ \ell^ B^0 \rightarrow \pi^0 e^+ e^ B^0 \rightarrow \pi^0 \mu^+ \mu^-$

- normalisation modes used by LHCb such as $B \to K^{(*)}J/\psi$

Vitalii Lisovskyi

• Reach in $b \to s(d)e^+e^-$ and $b \to s(d)\mu^+\mu^-$ statistically limited compared to LHCb, but

• Very competitive in final states with neutrals e.g. $B^0 \to \pi^0 e^+ e^-$, see <u>recent Belle result</u>

	$N_{ m sig}$	$\mathcal{B}^{\mathrm{UL}}~(10^{-8})$
	$\begin{array}{c} 0.5^{+1.0}_{-0.8} \\ 0.0^{+1.4}_{-1.0} \\ 0.8^{+1.5}_{-1.1} \end{array}$	< 4.8 < 10.5 < 9.4
2	$0.1^{+2.5}_{-1.6}$	< 5.4
-	$-1.8^{+1.6}_{-1.1}\\-2.9^{+1.8}_{-1.4}\\-0.5^{+3.6}_{-2.7}$	$< 3.8 \\ < 7.9 \\ < 5.9$

• Belle II is crucial to provide the measurements of **absolute branching fractions**, e.g. for

• Pre-requisite: better understanding of f_{+-}/f_{00} (relative B^+/B^0 production rates)

Diphoton

- Recent Belle+Belle II search for $B^0 \rightarrow \gamma\gamma$ (see <u>Moriond talk</u>): a very suppressed $b \rightarrow d$ transition
- UL < 6.4×10^{-8} @90% CL, only factor ~5 above the SM prediction
 - SM uncertainties are <u>large</u> (LD/SD interplay)
 - Any exp input to help control the theory uncertainties?
- Very interesting measurement with more data!
- $D^0 \rightarrow \gamma \gamma$ search in prospects: sensitivity down to $\sim 10^{-7}$ (factor ~ 10 above the SM rate)
- A less suppressed $B_s^0 \rightarrow \gamma\gamma$ can be searched if B_s^0 data collected

Vitalii Lisovskyi

Radiative (charm) decays

- Rich potential with $b \rightarrow s\gamma$: e.g.
 - photon polarisation in $B \rightarrow K\pi\pi\gamma$ down to ~1% with more data
 - CP asymmetries in $B \rightarrow K^* \gamma$ at sub-percent precision
 - Inclusive $b \to s\gamma$ rate at ~10% precision depending on E_{γ} threshold (eventually systematics-dominated)
- In the **charm sector**, the penguin $c \rightarrow u\gamma$ is very suppressed
 - The 4π geometry helps to reject $c \rightarrow u\pi^0$ backgrounds
 - W exchange $cd \rightarrow us\gamma$ (long-distance) is expected to have a larger rate
 - Interest to measure photon polarisation
- Belle did the <u>first search</u> for **radiative charm baryon decays** $\Lambda_c^+ \to \Sigma^+ \gamma \text{ and } \Xi_c^0 \to \Xi^0 \gamma$
- BF limits at the 2×10^{-4} level, hope for observation at Belle II?
 - Theory predictions in few $\times 10^{-5}$ range

Vitalii Lisovskyi

A few words on $b \rightarrow c \ell \nu$ and $b \rightarrow u \ell \nu$

 Closing the gap between inclusive and exclusive decays to corner the $|V_{cb}|$

> $\mathcal{B}(B^+ \to X_c^0 \ell^+ \nu_\ell) \approx 10.79 \%$ $D^{**0}\ell^+\nu_\ell + Other$ $D^{*0}\ell^+\nu_\ell$ $D^0 \ell^+ \nu_\ell$ $2.31\,\%$ $5.05\,\%$ $2.38\,\%$

- $|V_{\mu b}|$ inclusive down to ~3-5% precision with 10ab⁻¹ (theory-dominated), exclusive more precise
- Precision on $R_{D^{(*)}}$ down to few %
- High hope to observe $B^+ \rightarrow \mu^+ \nu$ and improve significantly $B^+ \rightarrow \tau^+ \nu$ measurement: both down to ~10% relative unc. with 10ab⁻¹
 - Benefit from inclusive tagging developed for $B^+ \rightarrow K^+ \nu \nu$

• Don't forget about $B^+ \rightarrow \mu^+ \nu \gamma$ (see <u>here</u>)

Vitalii Lisovskyi

ľ
-
[
-
-
-
 •
 50

CP violation in B decays

- Trademark of Belle II: entangled B production \rightarrow high flavour-tag efficiency • NB: <u>search</u> for non-perfect entanglement is an interesting QM test!
- World-best sensitivity achievable in final states with π^0 , K_L^0 or K_S^0
- With 10 ab⁻¹, expect precision of
 - ~1% on $\sin 2\phi_1^{(eff)} \equiv \sin 2\beta^{(eff)}$ in tree-dominated $(c\bar{c})K^0$ or ~2% in loopdominated $\eta' K^0$
 - See the <u>recent result</u> in $B^0 \to J/\psi K_S^0$ with early Belle II data (3x worse than LHCb Run1+2)
 - ~2.5° on $\phi_2 \equiv \alpha$ in $B \rightarrow \rho \rho$: Belle II the key player even with a few ab⁻¹!

• ~2.5° on
$$\phi_2 \equiv \gamma$$

• Narrowing down on the isospin sum rule in $B \rightarrow K\pi$ decays (" $K\pi$ puzzle"), where $A_{CP}(B \rightarrow K_S^0 \pi^0)$ will be driven by Belle II (down to ~5% at 10 ab⁻¹)

• <u>Recent Belle II result</u> compatible with the SM: $I_{K\pi} = -0.03 \pm 0.13 \pm 0.04$

• CPV studies in multibody charmless B decays advantageous at Belle II: efficiency reasonably flat in phase-space

Vitalii Lisovskyi

CPV in charm

- Belle II uniquely positioned to probe CPV in final states with neutrals
 - Fully-charged and charged+1-neutral final states dominated by LHCb
- $D^0 \rightarrow \pi^0 \pi^0$ and $D^+ \rightarrow \pi^+ \pi^0$ are well motivated
 - Projected sensitivity down to 0.07% (50 ab⁻¹) for $D^0 \rightarrow \pi^0 \pi^0$ with the conventional D^* tag
 - but we have a much better tagger now!
 - still might be not enough to probe the $\mathcal{O}(10^{-4})$ effects
- Isospin **sum rule** by comparing CPV in $D^0 \to \pi^+\pi^-$, $D^0 \to \pi^0\pi^0$ and $D^+ \to \pi^+\pi^0$ decays: probe whether CPV is SM or beyond
- Absolute charm BFs and (rare) decays with neutrals will likely be the more important contribution

Vitalii Lisovskyi

Decay another day

Vitalii Lisovskyi

Inclusive charm baryons

- Two ways to obtain **inclusive** charm baryon datasets:
 - baryon-number, s and c conservation in e^+e^- collisions: $e^+e^- \rightarrow D^{(*)-}\bar{p}\pi^+\Lambda^+$
 - notable example: [<u>Phys.Rev.Lett. 113 (2014) 4, 042002</u>]
 - B-meson decays, $\bar{B}^0 \to \Xi_c^+ \bar{\Lambda}_c^-$ with one baryon treated as recoil
 - notable example: [<u>Phys.Rev.D 100 (2019) 3, 031101</u>]
 - low statistics
- Useful to measure absolute BF, but in particular decays with missing energy (semileptonic)
- More results expected with these methods
 - Absolute BFs of Ξ_c/Ω_c imprecise or unknown (more data & better tagging helps!)
 - Note: BES III catching up by running on baryon-pair thresholds

Vitalii Lisovskyi

Dipole moments

- Muon g-2 inputs: measure cross-section inputs to the HVP calculation
 - $\sigma(e^+e^- \rightarrow \text{hadrons})$ below 1 GeV dominated by $e^+e^- \rightarrow \pi^+\pi^-$ and $e^+e^- \rightarrow \pi^+\pi^-\pi^0$
- New measurement of $\sigma(e^+e^- \rightarrow \pi^+\pi^-\pi^0)$ using $\sigma(e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR})$ and the beam-energy constraint: see L. Corona at Moriond 2024 and 2404.04915
- Achieved accuracy of 2.2%, moves the global fit up
 - Dominant systematics: π^0 eff, PROKHARA MC generator (no NNLO ISR)
 - Measurements of $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ and others will come next
- Tau EDM: use spin correlation in $e^+e^- \rightarrow \tau^+\tau^-$, probe $\gamma\tau\tau$ vertex vs CP reversal
 - Belle result is the world best (precision $\sim 0.6 \times 10^{-17}$ e*cm), 20 orders above SM
 - Belle II can improve further

Vitalii Lisovskyi

"Chiral Belle" proposal

- What if we get a **polarised** electron beam?
 - ~70% polarisation might be a realistic target, without disruption the core physics programme (~no luminosity loss)
- Electroweak measurements: asymmetry in cross-sections with left- vs right-handed electrons
 - measure the neutral-current vector coupling or $\sin \theta_W$ at 10 GeV
- Access to g-2 (tau) down to the SM value, and improved EDM
 - changing the beam polarisation direction is required
- Improvement in tau Michel parameters measurement
- Reduced backgrounds in $\tau \rightarrow \ell \gamma$ search: SM backgrounds gets modified angular distribution
 - but what if the LFV process also gets modified? = access to helicity structure of new physics

• Feasibility studies ongoing.

Vitalii Lisovskyi

https://arxiv.org/abs/2205.12847

Catch me if you can

- A plethora of **direct** searches done, ongoing or planned:
 - Axion-like particles with $e^+e^- \rightarrow a\gamma$ and $a \rightarrow \gamma\gamma$, or $e^+e^- \rightarrow ae^+e^-$
 - Dark photons in various signatures: $e^+e^- \rightarrow \gamma X$, $e^+e^- \rightarrow \mu^+\mu^- X$, ... <u>recent search</u>
 - Z' in parameter space relevant for muon g-2
 - Dark matter candidates: long-lived particles, scalars in $B \rightarrow KS...$
 - Dilepton resonance: <u>recent dimuon search</u>; probing ATOMKI anomaly in dielectron
- Expected world-best sensitivity for many signatures below 10 GeV
- Searches that rely on missing energy depend severely on the detector performance
 - Ensuring the **hermeticity**: a small inefficiency in one subsystem can severely impact the reach
 - Cosmic-ray veto performance

Vitalii Lisovskyi

Projections

Summary

- There are many classes of "anomalies" where Belle II can contribute
 - or create new anomalies!

• A lot achieved with the data collected so far

 New ideas to improve the effective sensitivity even with existing data

prospects

